BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a top view of the cup lid of the present invention.
FIG. 2 is a sectional view of the cup lid of the present invention mounted on a cup, along lines A-A of FIG. 1, with the closure means in an open position.
FIG. 3 is a sectional view of the cup lid of the present invention mounted on a cup, along lines A-A of FIG. 1, with the closure means in a closed position forming a chamber.
FIG. 4, an alternate embodiment, is a sectional view of the cup lid similar to FIG. 2, with the closure means in the open position.
FIG. 5 an alternate embodiment of FIG. 4, is a sectional view of the cup lid similar to FIG. 3, with the closure means in the closed position.
FIG. 6 is a top view of another alternate embodiment whereby the fluid openings are circular, the well has two openings in a different location and arms shown with pinch points.
FIG. 7 a top view of another alternate embodiment with the closure means in a closed position and no opening in the closure means.
FIG. 8 a side view of various embodiments of the support arm whereby the pinch point may be on either one surface, congruent on both surfaces, or convex on both surfaces.
FIG. 9 is an enlarged schematic drawing of chamber 36 generally taken from FIG. 3.
FIG. 10 is another alternate embodiment whereby the closure means is detachable from the cup lid for placement directly within the well.
FIG. 11 is a sectional view along lines B-B of FIG. 10 whereby plug 16′″ has been detached from the cup lid and is placed within well 15, as shown by the arrow.
FIG. 12 is an exploded schematic drawing view of the relationship of the peripheral edge 13 and cup 23.
FIG. 13 is an enlarged schematic drawing of the relationship of the peripheral edge 13 and cup 23.
FIG. 14 is an enlarged schematic drawing of chamber 36 showing plug 16″ from the embodiment of FIG. 7, sectioned at line C-C of FIG. 7.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The unitary splash-proof beverage lid 10 of the present invention is illustrated in FIG. 1. Cup lid 10 comprises a disc 11, having a center portion 12, a peripheral edge area 13, a first fluid opening 14, and a well 15. A plug 16 is formed as a unitary part of cup lid 10 and is connected to disc 11 by a pair of support arms 17 and 18, at the peripheral edge 13 of disc 11. First arm 17 is connected to edge 13 at pivot 19 and second arm 18 is connected to edge 13 at pivot 20. Arms 17 and 18 are flexible, concentric, and spaced apart, from peripheral edge 13. Plug 16 is rotateable at pivots 19 and 20 relative to disc 11. Plug 16 has a second fluid opening 21 and is connected to said arms 17 and 18 at neck 22.
As seen in FIGS. 2 and 3 cup lid 10 is mounted on a cup 23 (shown in FIG. 2 as a partial cup). Disc 11 fits on cup 23 in a snap-fitting peripheral arrangement, such that lid 10 is in constant uninterrupted contact with the top circumferential edge 24 of cup 23. Cup 23 may be at least partially filled with liquid 25. Lid 10 has an air vent opening 26.
The underside of peripheral edge 13 is constructed and arranged to releasably attach to the upper circumferential edge 24 of cup 23. FIGS. 12 and 13 are sectional views of the arrangement of lid 10 and cup 23. Lid 10 is releasably attached to cup 23 with a snap-fit, or friction-fit, type of mechanical engagement. Lid 10 has underside outer vertical wall 27, underside interior vertical wall 28, and underside interior horizontal wall 29 that interact as a single contiguous contact surface with top circumferential portion of cup 23. Said walls 27, 28, and 29 interact with the outside top wall 27′, inside top wall 28′ and top edge 29′ respectively of cup 23, to make the snap-fit/friction fit.
As seen in FIG. 9, well 15 has an interior vertical circumferential wall 30 and a floor wall surface 31. Said floor 31 has an opening previously identified as first fluid opening 14 to allow flow of liquid 25 through lid 10 when cup 10 is tilted for drinking purposes. Plug 16 has circumferential sidewall 32, a floor wall surface 33, and a circumferential lip 34.
The height of interior circumferential wall 30 extends from floor 31 to a circumferential drinking edge 35 of lid 10. The height of circumferential sidewall 32 of plug 16 extends from floor 31 to circumferential lip 34.
Plug 16 is constructed and arranged to fit within well 15 with a friction-fit or a snap-fit type of mechanical engagement. Preferably plug 16 will be releasable from well 15 though it may also be desirable to have plug 16 permanently fit or permanently snap within well 15.
It is preferable that circumferential lip 34 contact circumferential drinking ledge 35 to form a smooth upper drinking surface 41 which would include drinking ledge 35 and lip 34.
Circumferential wall 30 of well 15 is constructed and arranged to be of greater height than the height of circumferential sidewall 32 of plug 16, such that a chamber 36 is formed when plug 16 is inserted into well 15.
Chamber 36 is formed by the lower portion of circumferential wall 30 (below plug 16), the top of floor wall 31, and the bottom of floor wall 33. As can be seen in FIGS. 3 and 9, there is fluid communication between the interior of cup 23 through first drinking hole 14, through chamber 36, and through second drinking hole 21. Chamber 36, may include an air vent to atmosphere (not shown) in floor wall 31 or fall wall 33, or to the interior of cup 23 in sidewall 30.
Referring to FIG. 3, when plug 16 is placed within well 15, a second well, drinking well 37 is formed. The depth of drinking well 37 equal to the height of circumferential wall 32. Preferably the depth of well 37 will be as shallow as possible and chamber 36 will be correspondingly larger. The variable for altering the chamber 36 size during the manufacturing process will be to increase the height of wall 30 and decrease the height of wall 32.
Well 15, plug 16 and chamber 36 interact. The chamber 16 thus can be of any size shape—subject to the interrelationships and other outside forces, as long as the circumferential wall 32 of plug 16 can sufficiently engage the circumferential wall 30 of well 15 in a frictional-fit/snap-fit relationship.
An alternate embodiment is shown in FIGS. 4 and 5. In this embodiment the well 15′ and plug 16′ have been inverted. They still interact to form a chamber 36′.
Other alternate embodiments are shown in FIG. 6, with two first fluid openings 14 in a different shape, round, and in alternate locations closer to the peripheral edge 13 of lid 10. Also, second fluid opening 21 is of a round shape. Said fluid openings 14 and 21 can be of a variety of shapes and sizes and can be in various locations to provide fluid communication from within cup 23 through openings 14 and 21 of chamber 36. Additionally, arms 17 and 18 may have pinch points 38 and 39.
As seen in FIGS. 3, 5, and 7, when plug 16 is rotated to engage well 15, arms 17 and 18 flex accordingly in a bow fashion. Referring to FIG. 6, pinch point 38 on arm 17 and pinch point 39 on arm 18 will result in less flexing of arms 17 and 18, in the rotated position. With the pinch points 38 and 39, arms 17 and 18 will fold in a flatter position, such that said arms 17 and 18 in the folded position will be closer to lid 10. Pinch points 38 and 39 are made during the manufacturing process, and it is well known in the art, to weaken a point such that said weakened point will form an angular vertex upon application of force to create a fold in said arms 17 and 18.
FIG. 8 is a side view of three possible embodiments of the pinch point 38 on support arm 17. There may be a single indentation on only one horizontal surface, complementary, congruent indentations on each of the upper and lower horizontal surface of support arm 17, or convex indentations opposite each other on both the upper and lower horizontal surfaces of support arm 17.
In another alternate embodiment, it is often desirable to releasably seal the drink opening. As shown in FIGS. 7 and 14, plug 16″ does not have a fluid opening. Well 15 in this embodiment as in the other embodiments has a first fluid opening 14 to provide fluid communication to cup 23. Plug 16″ in this embodiment being removable, is inserted into well 15 in the friction-fit/snap-fit relationship as previously described. Thus providing a leak-proof sealing arrangement for lid 10, when it is desired to have a cup lid 10 with such characteristics. In this embodiment, a user can insert plug 16″ when it is desired to seal fluid opening 14, for example, to prevent any leaks or spills, or, to keep a beverage hot or cold, to close or cover the drinking hole opening 14. Then when the user desires to drink the fluid the plug 16″ can be removed, while at the same time plug 16″ remains connected to cup 10 by arms 17 and 18 in close proximity to lid 10, for insertion again into well 15 when desired.
In yet another embodiment, as shown in FIGS. 10 and 11, plug 16′″ can be releasably attached to lid 10, such that it can be removed from lid 10 and placed into well 15 in a snap-fit, friction-fit relationship as previously described, but without arms 17 and 18. In this embodiment, plug 16′″ is detachably connected to cup lid 10 by a breakable tab 40. When plug 16′″ is removed from lid 10 it is placed and held in well 15 with a friction-fit as previously described. This allows drinking from the splash proof lid 10, as previously described where there is fluid communication from inside cup 23 through opening 14, chamber 36 and opening 21.
In addition, though wall 15 and plug 16 have been shown and depicted as round, it is also within the scope of this invention that the well and plug can be different shapes and sizes including oval, square, rectangular, kidney, etc.
While the invention has been described in its preferred form or embodiment with some degree of particularity, it is understood that this description has been given only by way of example and that numerous changes in the details of construction, fabrication, and use, including the combination and arrangement of parts, may be made without departing from the spirit and scope of the invention.