This invention relates to a hybrid rocket system useful, for example, to propel a winged suborbital spacecraft, but not limited to that application. In contrast to solid-fuel and liquid-fuel rockets, a hybrid rocket motor uses both types of fuel. That is, a fluid oxidizer such as nitrous oxide (N2O) is used to burn a solid fuel. The oxidizer is held in a pressurized tank, and the solid fuel (such as HTPB, or hydroxyl-terminated polybutadiene) is cast on the inner walls of a hollow, and typically tubular combustion-chamber housing or motor extending rearwardly from the oxidizer tank, and terminating in a throat and nozzle. A pilot-controlled valve admits oxidizer to the housing, and an igniter (such as a spark or flame type) initiates combustion.
This invention is directed to two significant improvements. First, to a simplified method of securing and mounting the rocket to a spacecraft fuselage or associated structure; and second, to an integrated motor construction which sharply limits possible leakage paths for improved reliability and safety.
The hybrid rocket system of this invention is characterized by use of an oxidizer tank having a cylindrical midsection which can be bonded to a spacecraft inner surface by a layer of elastomeric adhesive. An elongated solid-fuel motor case is mechanically rigidly secured to a central rear surface of the tank, and the case terminates in a throat and nozzle. The elastomeric-adhesive bonding of tank to spacecraft forms the sole support for the rocket system, and separate support for the motor case is not required.
Oxidizer tank 14, shown in cross section in
Sealingly clamped to forward flange 26 is a forward bulkhead 29 which closes the front end of the tank, but provides a valved inlet (not shown) for loading of oxidizer. Similarly sealingly clamped to rear flange 27 is a forwardly convex rear bulkhead 30 which closes the rear end of the tank. An oxidant delivery valve and igniter system (not shown) are mounted on the rear bulkhead within the tank.
Tank cylindrical midsection 15 is covered by a cylindrical skirt 32 which, in a preferred form, is made of about eleven plies or layers of flexible fiberglass cloth, the adhesively bound plies being oriented at 45 degrees to the longitudinal axis of the tank. The inside diameter of the skirt is slightly larger than the outside diameter of the tank midsection, enabling injection of a thick (about 0.1 inch) layer of an elastomeric adhesive PROSEAL P5890, Class B, made by PRC Desoto is satisfactory) to bond the skirt to the tank.
The thus-bonded skirt and tank make a slip fit within a mating inner cylindrical surface 34 of a fuselage of spacecraft 11, enabling injection of a thin (about 0.02 inch) layer of a rigid bonding adhesive to secure the tank and skirt to the fuselage. An adhesive such as HYSOL 9396 is satisfactory. The tank-skirt and skirt-fuselage bondings form the sole support for rocket 10 within the spacecraft.
An aluminum clamping ring 50 having a forwardly and outwardly tapered inner surface 51 fitted over the forward end of the motor case, and against the rear surface of flange 46. A number of threaded fasteners 52 extend through mating openings in ring 50, flange 46, and flange 27 to nuts 53 to tightly clamp those components together, thereby rigidly securing the motor case to the tank. Additional O-ring seals 54 are seated in flange 46 and a forwardly extending ring 55 formed integrally with the rear bulkhead. A perforated cylindrical tube 56 is secured to ring 55, and extends forwardly within the oxidizer tank to provide a slosh baffle.
The oxidizer tank is loaded with nitrous oxide pressurized to about 700 psi, at which pressure the oxidizer is a liquid. Outward swelling of the pressurized tank is at least partially absorbed by the thick layer of elastomeric adhesive bonding the tank skirt to the fuselage, and this adhesive layer also absorbs and damps motor vibrations.
Apart from cylindrical midsection 15, the oxidizer tank roughly approximates a sphere providing a pressure vessel strong enough to support the loads imposed by a fired motor. This strength permits the motor to be cantilevered off the rear end of the tank, and without further support from the fuselage. This single connection enables easy replacement of the motor (typically a single-use component), as well as accomodating motors of varying length, and reducing the number of possible leakage paths. Further, no additional weight is incurred in motor support, as the strong tank/fuselage mounting supports the entire rocket system.
This application is a National Stage application of International PCT application No. PCT/US2004/009694, filed on Mar. 29, 2004, which claims the priority to U.S. Provisional application No. 60/458,296, filed on Mar. 28, 2003.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2004/009694 | 3/29/2004 | WO | 00 | 11/1/2005 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/085252 | 10/7/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3068641 | Fox | Dec 1962 | A |
3097766 | Biehl et al. | Jul 1963 | A |
3178885 | Loughran | Apr 1965 | A |
3354647 | Aycock | Nov 1967 | A |
3568448 | Webb, Jr. | Mar 1971 | A |
3969812 | Beck | Jul 1976 | A |
4504530 | Bliley | Mar 1985 | A |
4561568 | Hoffmeister et al. | Dec 1985 | A |
4577542 | O'Driscoll | Mar 1986 | A |
4631916 | Le Tanter et al. | Dec 1986 | A |
5070691 | Smith et al. | Dec 1991 | A |
5101623 | Briley | Apr 1992 | A |
5119627 | Bradford et al. | Jun 1992 | A |
5341638 | Van Name et al. | Aug 1994 | A |
5613358 | Humiston et al. | Mar 1997 | A |
5715675 | Smith et al. | Feb 1998 | A |
5893266 | Smith et al. | Apr 1999 | A |
6016652 | Smith et al. | Jan 2000 | A |
6058697 | Smith et al. | May 2000 | A |
6082097 | Smith et al. | Jul 2000 | A |
6085516 | Smith et al. | Jul 2000 | A |
6092366 | Smith et al. | Jul 2000 | A |
6125763 | Kline et al. | Oct 2000 | A |
6499287 | Taylor | Dec 2002 | B1 |
6782693 | Floyd | Aug 2004 | B1 |
20020121081 | Cesaroni et al. | Sep 2002 | A1 |
20030093987 | Taylor | May 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20060145018 A1 | Jul 2006 | US |
Number | Date | Country | |
---|---|---|---|
60458296 | Mar 2003 | US |