The present invention relates in general to seals and more particularly to a pinion seal used to seal about an axle pinion.
During assembly of an axle, a pinion seal is assembled between an axle companion flange and a carrier/bearing cage. The pinion seal includes a sleeve portion, which is mounted to and rotates with the axle companion flange, and a seal portion, which is mounted to and is stationary with the carrier/bearing cage. The two end up, then, in sliding engagement at seal contact locations. This requires an axial spacing between certain portions of the two components to assure that the only contact is at the seal contact locations. Thus, in order to accomplish the proper installation of the sleeve portion and seal portion, a contacting spacer is typically employed between the sleeve and the seal. This is particularly true if one attempts to assemble the two portions as a single unit. However, a contacting spacer located between the seal and sleeve components will generally cause, higher torque loss, additional noise, and increased heat generation due to the additional friction between components.
Also, during assembly, since the sleeve portion and the seal portion are typically assembled separately, this may allow contamination to enter the seal. Consequently, it is desirable to have a unitized seal where the two portions can be assembled as one. Being able to assemble the pinion seal as a unitized assembly would also be desirable in order to improve the assembly process.
Thus, it is desirable to have a unitized pinion seal for axle pinion applications that can be assembled as a unit and have a bearing configuration suitable for supporting and spacing the stationary (seal) and rotating (sleeve) components during assembly of the axle.
In its embodiments, the present invention contemplates a unitized pinion seal as shown and described herein.
The present invention further contemplates a method of assembling a unitized pinion seal to a carrier/bearing cage and an axle companion flange as shown and described herein.
An advantage of an embodiment of the present invention is that the unitized seal design will shield the critical areas of the seal during installation, which minimizes the chance for receiving contamination in or damage to critical areas of the seal. Moreover, by shielding the critical areas of the seal, a ground surface finish for the mating components may not be required.
Another advantage of an embodiment of the present invention is that the unitized design allows for assembly of both portions of the seal simultaneously without requiring a contact spacer to be mounted between the seal and sleeve components. The elimination of the spacer will reduce torque loss, minimize the noise, and decrease heat generation by reducing the friction between components. Yet, when assembled onto the axle, the seal allows for the required axial spacing between the rotating and stationary portions of the seal.
A further advantage of an embodiment of the present invention is that the assembly of the unitized design, without spacers, does not require special assembly methods in order to provide the required spacing between components.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
With reference to
The sleeve portion 18 is ring shaped with a generally J-shaped cross-section having a first axially extending ring portion/leg 18A, a radially extending ring portion/leg 18B, and a second axially extending ring portion/leg 18C. The first axially extending ring portion/leg 18A and radially extending ring portion/leg 18B are covered with an elastomeric seal layer 34 including a pair of raised rib portion 36, 38. An outer surface of the first axially extending ring portion/leg 18A of sleeve portion 18 includes a first portion/leg 18A′ having a first predetermined diameter and a second rearward portion/leg 18A″ having a larger diameter than the forward portion/leg 18A′ with a ramp portion 18A′″ being disposed therebetween. It should be understood that other configurations of the sleeve can be utilized. The seal rings 36, 38 of the sleeve portion 18 are adapted to engage the companion flange 14 of the axle 16 in the assembled condition.
The seal portion 20 is provided with the first, second, and third seal lips 28, 30, 32. The seal portion 20 has a recessed region 40 disposed in the vicinity of the first seal lip 28. The recessed portion 40 is adapted to receive a garter spring 42 therein for applying a radially inward force to the seal portion 20. The seal portion 20 includes a body portion 44 which engages a first radially inwardly extending flange portion/leg 24A of the second metal retainer ring 24. The second/leg retainer ring 24 includes a second axially extending ring portion 24B/leg and a third radially outwardly extending flange portion/leg 24C which has an end portion/leg 24D which is crimped around a radially outwardly extending flange portion/leg 22A of the first retainer ring 22. The first retainer ring 22 also includes an axially extending ring portion/leg 22B having an inner diameter surface which engages the second axially extending ring portion/leg 180 of sleeve portion 18. The first retainer ring 22 includes a radially inwardly extending flange portion/leg 22C which engages the radially extending ring portion/leg 18B of sleeve portion 18 as illustrated in
With reference to
The deflector 48 is provided on axle 16 and eventually abuts against the radially extending ring portion/leg 18B of sleeve portion 18, as best seen in
The axial retention level due to the press fit of the sleeve portion 18 onto the first retainer ring 22 is preferably greater than the axial installation load created when the axle companion flange 14 is inserted through the inner diameter of the sleeve portion 18. As a result, the seal portion 20 remains generally stationary relative to the sleeve portion 18 during the initial part of the installation.
In the completed assembly, the companion flange 14 is fully assembled relative to the carrier/bearing cage 12, with the second retainer ring 24 fully assembled to the carrier/bearing cage 12 and the sleeve portion 18 fully assembled to the companion flange 14 of axle 16 such that a proper axial spacing exists between the seal portion 20 and the sleeve portion 18. During operation, the sleeve portion 18 can rotate with the companion flange 14, while the seal portion 20 remains stationary with the carrier/bearing cage 12, with the only contact between the two being sealing lips 28, 30, 32. Thus, the proper sealing is assured while minimizing the friction between the two portions of the pinion seal assembly 10.
With reference to
With reference to
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
This application claims the benefit of U.S. Provisional Application No. 60/463,293, filed on Apr. 16, 2003. The disclosure of the above application is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2004/011987 | 4/16/2004 | WO | 00 | 10/25/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/094877 | 11/4/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3135518 | Carson et al. | Jun 1964 | A |
4136885 | Uhrner | Jan 1979 | A |
4327922 | Walther | May 1982 | A |
4428586 | Romero | Jan 1984 | A |
4448426 | Jackowski et al. | May 1984 | A |
4856794 | Boyers et al. | Aug 1989 | A |
5096207 | Seeh et al. | Mar 1992 | A |
5186472 | Romero et al. | Feb 1993 | A |
5201529 | Heinzen | Apr 1993 | A |
5269536 | Matsushima et al. | Dec 1993 | A |
6083109 | Gerulski | Jul 2000 | A |
6170992 | Angelo et al. | Jan 2001 | B1 |
6729623 | Visconti | May 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20070102885 A1 | May 2007 | US |
Number | Date | Country | |
---|---|---|---|
60463293 | Apr 2003 | US |