The field of this invention generally relates to audio connectors, and particularly relates to four-contact jacks and plugs that retain compatibility with standardized three-contact jacks and plugs.
Standardized audio plugs and jacks are frequently used in consumer audio and telecommunication products. Audio plugs are familiar to most people, with the typical audio plug comprising a series of electrically isolated cylindrical segments ending in a “tip” segment. More particularly, the body of the plug usually includes a sleeve, a ring, and a terminating tip. While generally used in audio applications, the sleeve-ring-tip audio plug nomenclature derives from the time when similarly styled plugs were used by operators of the early telephone switchboards. Indeed, such plugs commonly are referred to as “phone” plugs, although they are most commonly used in audio applications. Many manufacturers, such as SWITCHCRAFT, make standardized 2.5 mm and 3.5 mm audio plugs and jacks. Some of the most common uses for audio plugs include termination of headphone/headset cables, microphone cables, guitar cables and other types of audio “patch” cords.
Audio plugs are commonly used for both stereophonic and monaural devices. For example, a stereo headset, such as might be plugged into a WALKMAN or other portable audio device, typically includes an audio-plug terminated cable. In a common electrical configuration for stereophonic peripherals, the left speaker is wired to the plug tip, the right speaker is wired to the plug ring, and the plug sleeve serves as a ground connection. Of course, the audio device includes an audio jack with internal contacts arranged to selectively contact the sleeve, ring, and tip of the inserted plug.
Telephone headsets, as commonly used for telephony applications, do not require stereo sound. Such headsets typically comprise a monaural speaker for audio output and a microphone for audio input. Again, the headset cable is typically terminated by a standardized 3-contact audio plug with, for example, the microphone wired to the plug tip, the speaker wired to the plug ring, and headset ground wired to the sleeve of the plug. Again, the corresponding audio device will include a standardized audio jack that includes the appropriately arranged internal contacts.
Because the sizes and typical wiring schematics for such audio plug and jack combinations are relatively standardized, cross-manufacturer compatibility exists. For example, a headset manufacturer that adopts an industry standard audio plug for its various headset models can be relatively assured that those headsets will be compatible with audio devices from other manufacturers. Thus, there is a significant impetus for manufacturers to use standardized plug and jack configurations.
The present invention comprises a method and apparatus providing enhanced audio jacks and plugs that offer additional interconnect features while retaining compatibility with existing standardized audio plugs and jacks. In an exemplary embodiment, an audio device includes an enhanced four-contact audio jack that is compatible with audio peripherals that use a corresponding enhanced four-contact audio plug, as well as peripherals using standard three-contact audio plugs. Likewise, an audio peripheral equipped with the enhanced four-contact audio plug is compatible with audio devices using corresponding four-contact audio jacks, and with those using standard three-contact jacks. An exemplary audio peripheral including a four-contact audio plug according to the present invention may, for example, include two speakers providing stereo sound as well as a microphone.
The four-contact plug according to the present invention comprises four ordered segments, including a tip, a first ring, a second ring, and a sleeve. The four-contact plug may be sized consistent with any of the standard sizes for three-contact plugs such that it may be plugged into three-contact jacks as well as four-contact jacks. In an exemplary arrangement, the sleeve and second ring are adjacently positioned and have a combined length that is substantially equal to the length of the sleeve in a similarly sized three-contact audio plug. When used in an audio peripheral with two speakers and a microphone, the tip of the plug electrically connects to the microphone, the first ring electrically connects to a first speaker, the second ring electrically connects to a second speaker, and the sleeve electrically connects to ground. With this configuration, insertion of the plug into a four-contact jack of a compatible audio device couples the device's audio output circuits to the peripheral's speakers, the device's audio input circuit (MIC in) to the microphone, and the appropriate device ground to the peripheral ground. The exemplary physical and electrical configuration of the four-contact plug is compatible with standard three-contact jacks.
The four-contact audio jack according to the present invention includes four separate contacts arranged such that individual jack contacts properly interconnect with corresponding segments of a compatibly sized four-contact audio plug, while retaining compatibility with similarly sized three-contact plugs. Thus, the sleeve and second ring contacts of the four-contact plug are positioned to individually connect with the sleeve and second ring segments, respectively, of a four-contact plug, or together with the sleeve segment of a three-contact plug. Likewise, the first ring contact of the four-contact jack is physically arranged such that it contacts the first ring segment of four-contact plugs and the single ring segment of three-contact plugs. Finally, the tip contact is arranged to properly connect with the tip of both three- and four-contact plugs.
An exemplary circuit arrangement of the audio device that includes the four-contact jack connects first and second audio output circuits, e.g., stereo outputs, with the first and second ring contacts of the jack, connects a microphone input to the tip contact of the jack, and connects a device ground to the sleeve contact of the jack. With this arrangement, the four-contact jack is compatible with audio peripherals that use three-contact plugs, such as stereo headphone peripheral and microphone/speaker headsets.
Many types of electronic devices and peripherals can benefit from the inclusion of the enhanced jacks and plugs of the present invention. For example, a portable communication device, such as a mobile station, can consolidate audio output and microphone input functions into a single enhanced audio jack. Including the enhanced audio jack thus saves valuable space and reduces cost, yet allows the device to retain backward compatibility with audio peripherals that use three-contact plugs. Similar benefits accrue to audio peripherals incorporating the enhanced audio plug, inasmuch as these peripherals work with either audio devices using enhanced audio jacks or standard three-contact audio jacks.
Many types of audio peripherals use standardized audio plugs for interconnecting with the respective audio devices. For example,
The present invention expands the flexibility of the above three-contact plug-and-jack configurations by adding a fourth segment. Having the extra segment allows, for example, the inclusion of both stereo audio output and microphone input functions in a single plug/jack combination. However, the inclusion of new functionality preferably should not render the new four-contact plug configuration incompatible with standard three-contact jacks, nor render the new four-contact jack configuration incompatible with standard three-contact plugs.
The physical configuration described above for plug 42 ensures physical compatibility with the standard three-contact jack 26. Of course, electrical compatibility between plug 42 and jack 26 depends on the electrical configuration of plug 42.
With this exemplary electrical configuration, audio plug 42 maintains electrical compatibility with the typical electrical configurations of the three-contact audio jacks 26 shown in
Note that insertion of plug 42 into jack 26 for either of the above jack configurations results in at least one peripheral speaker 12 being connected to a speaker output connection in the jack, thereby providing audio output functionality. Moreover, the other plug-to-jack interconnections are harmless, even if not functionally correct. Therefore, four-contact plug 42 is compatible with standard wiring configurations of the three-contact jack 26.
ADC 88 provides a digitized microphone input signal to one or more additional processing circuits, generically referred to herein as additional circuits 90. Those skilled in the art will appreciate that these additional circuits 90 will vary with the intended use of audio device 60. For example, if audio device 60 is mobile communication device, additional circuits 90 will typically comprise one or more microprocessors, various RF and other communication and input/output circuits. Such details are not necessary to understanding the present invention and will not be further explored. Indeed, inclusion of DACs 82 and the ADC 88 presupposes that the additional circuits 90 process digital audio signals, but this assumption is not germane to the present invention, and it should be understood that such converters may be omitted from device 60 if it operates exclusively in the analog domain.
Regardless of the implementation details of audio device 60, the exemplary electrical configuration of jack 62 is chosen for compatibility with audio plug 42, as well as for backward compatibility with the typical electrical configurations of the standard three-contact audio plugs 16. As such, the audio output signal from audio output circuit 74-1 is coupled to the ring 66 contact of jack 62, and the audio output signal from audio output circuit 74-2 is coupled with the ring contact 68 of jack 62. Lastly, the audio input of audio input circuit 76 is coupled to the tip contact 70 of jack 62.
In addition to this electrical arrangement, the various contacts of jack 62 are physically arranged or otherwise positioned to physically contact the corresponding segments of inserted audio plugs 16 and 42 in a desired manner. For compatibility with the three-contact plugs 16, the ring contact 68 is positioned such that both it and sleeve contact 64 connect with sleeve 18 of the three contact plug 16. In other words, ring contact 66 connects with ring 20 of the three-contact plug 16 and with ring 48 of the four-contact plug 42, but ring contact 68 connects with a corresponding ring when plug 42 is inserted, and connects with a sleeve when plug 16 is inserted. Thus, this contact arrangement results in the grounding (sleeve connection) of the output from audio output circuit 74-2 when a three-contact plug 16 is inserted into jack 62. However, such grounding generally is harmless with respect to output circuit 74-2.
Not only does the use of audio jack 62 allow such multiple connections at a single interface point, its use also allows sound card 102 to retain compatibility with older types of audio peripherals using standardized configurations of the three-contact audio plug 16, such as those shown in
To better understand the backward compatibility of the above four-contact arrangement, compare the wiring arrangement of plug 16 in configuration 16-1 corresponding to audio peripheral 10 (microphone+speaker), and configuration 16-2 corresponding to audio peripheral 34 (stereo speakers), as shown in
With configuration 16-2, plugging audio peripheral 34 into audio device 60 via jack 62 connects speaker 12-1 to the audio input circuit 76, which is harmless, and properly connects speaker 12-2 to audio output circuit 74-1 and ground 24 of audio peripheral 34 to ground 72 of audio device 60. Thus, while leaving one of the two speakers 12 in peripheral 34 unpowered, the user is provided with at least one channel of audio output and no harm is done to either peripheral 34 or audio device 60. Further, audio device 60, as described later in more detail, may be configured to distinguish between three- and four-contact audio plugs and modify its audio output in response. For example, if audio device 60 senses insertion of plug 16, it may update the audio signal output from audio output circuit 74-1 so that it changes from a single channel to a combined stereo channel.
The universal compatibility of jack 62 may be of even greater value in space-constrained applications.
As was noted above, insertion of the three-contact audio plug 16, in one or more of its standard wiring configurations, results in grounding of audio output circuit 74-2 of audio device 60, as a consequence of the physical positioning of ring contact 68 within jack 62. That is, the segment length of sleeve 18 in plug 16 is such that ring contact 68 connects with sleeve 18 and, by virtue of sleeve contact 64 of jack 62 also connecting with sleeve 18, ring contact 68 becomes grounded, thereby grounding audio output circuit 74-2. If such grounding is undesirable, audio device 60 may sense grounding and respond appropriately.
In
If the contacts are shorted together, control logic 124 actuates switch 126, which may be a digitally controlled switch, and which opens the connection between the audio output circuit 74-2 and the ring contact 68. That is, the shorting control circuit 120 may be configured to disconnect audio output circuit 74-2 from jack 62 when ring contact 68 is detected as shorted or otherwise grounded.
Control logic 124 may further operate to shut down or otherwise disable amplifier 80 of the audio circuit 74-2 for power savings while audio circuit 74-2 is disconnected from jack 62. Note that amplifier 80 may be of the type that exhibits a high-impedance output whenever it is disabled. If so, switch 126 may be omitted and amplifier 80 of audio output circuit 74-2 simply placed in high-impedance state responsive to sensing the short between sleeve contact 64 and ring contact 68.
Further, if audio circuit 74-2 is disabled or otherwise disconnected, it may be desirable to adjust the content of the remaining audio signal output by audio output circuit 74-1. Thus, when ring contact 68 of jack 62 is not shorted, audio output circuits 74-1 and 74-2 preferably provide left and right stereo output signals. However, when ring contact 68 is shorted and stereo output is not available, audio device 60 may adjust the audio signal from audio output circuit 74-1 such that it includes combined left and right channel information, or otherwise adjusts it as appropriate for monaural output mode.
Such audio output adjustment may be accomplished in any number of ways, such as by controlling multiplexer 128 such that it outputs one of the stereo channels (either left or right) in a first state, and, in a second state, outputs a summation of the left and right stereo signals as provided by summer 130. Control logic 124 may be used to control the state of multiplexer 128 responsive to sensor 122. Alternatively, additional the circuits 90 may include a signal processor or other signal processing circuitry, that simply reformulates the audio content of the audio signal amplified by audio circuit 74-1 as needed. Such an approach would eliminate the need for multiplexer 128 and summer 130.
In general, the present invention defines exemplary electrical and physical configurations for a four-contact audio plug and jack that provide enhanced interconnect functionality when used as a plug-and-jack pair, but where each maintains backward compatibility with standard three-contact jack and plug configurations. While the above details represent exemplary configurations and applications for the inventive jack and plug configurations, such details are not limiting. Indeed, the present invention is limited only by the scope of the following claims and the reasonable equivalents thereof.
This application claims priority under 35 U.S.C. § 119(e) from the following U.S. provisional application: Application Ser. No. 60/452,212 filed on Mar. 5, 2003. That application is incorporated in its entirety by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
5118309 | Ford | Jun 1992 | A |
6069960 | Mizukami et al. | May 2000 | A |
6394852 | Huang | May 2002 | B1 |
6461199 | Koga et al. | Oct 2002 | B1 |
6718113 | Mine et al. | Apr 2004 | B2 |
20020025728 | D'Addario et al. | Feb 2002 | A1 |
20030008564 | Lebron | Jan 2003 | A1 |
20040204185 | Snyder et al. | Oct 2004 | A1 |
Number | Date | Country |
---|---|---|
1134958 | Sep 2001 | EP |
1202400 | May 2002 | EP |
Number | Date | Country | |
---|---|---|---|
20040175993 A1 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
60452212 | Mar 2003 | US |