The present invention relates generally to the field of luggage handles. Particularly, the present invention relates to a system for attaching a handle to a piece of luggage, and more particularly to a universal telescoping luggage handle system capable of being installed in luggage items of varying size. Additionally, a tube housing is disclosed having a particular geometry which provides superior strength characteristics and enhanced structural integrity.
A typical telescoping handle design for transport devices, such as wheeled luggage, often comprises two telescoping tubes, one on either side of the luggage. The telescoping tubes allow the user to extend the handle to a comfortable length while pulling the luggage. Furthermore, the telescoping tubes can also be collapsed to allow the handle to be retracted whenever it is convenient, for example when the luggage is stowed.
It is common practice for luggage retailers to provide a variety of different luggage designs or models, as well as different sizes of a given design, in order to meet consumer demand. For example, retailers typically provide both a full-size suitcase having a particular design, as well as a matching reduced-size version of the same design which can be stored in an overhead compartment of an aircraft. Each luggage model, and each size of a particular model, has a specific set of dimensions which require a specific handle design having components with corresponding dimensions. Therefore, vendors must manufacture a variety of separate parts, such as telescoping tubes of differing lengths, for each different luggage model and size. This requirement of a series of separate parts, each of which is dedicated to a single luggage model or size, increases the complexity of the manufacturing process and introduces greater variance in component tolerances thereby inhibiting quality control measures. Also, vendors are required to maintain an inventory of different size handle components to accommodate varying models and sizes of luggage which further increases the costs associated with the luggage systems known in the prior art.
Furthermore, conventional retractable handle designs are prone to denting or breakage due to the high torsional and bending loads that are frequently exerted on the telescoping tubes during use, as well as mishandling by carriers during inspection and transit. Additionally, such conventional handle designs do not provide, and in some designs may prohibit, simplified repair or replacement of a damaged tube. As a result, consumers often discard the luggage entirely, which adds to their expense and can detract from their satisfaction.
Thus, there remains a need for an efficient and effective method and system for providing a universal retractable handle assembly for use in luggage of a variety of different designs and sizes. Furthermore, there is a need for a reinforced tube housing which is less susceptible to damage due to accidental impact or forces applied during customary usage.
The purpose and advantages of the present invention will be set forth in and apparent from the description that follows, as well as will be learned by practice of the invention. Additional advantages of the invention will be realized and attained by the methods and systems particularly pointed out in the written description and claims hereof, as well as from the appended drawings.
To achieve these and other advantages and in accordance with the purpose of the invention, as embodied and broadly described, the invention includes a method of attaching a universal retractable handle system to a variety of luggage designs and sizes.
Particularly, the invention includes a retractable handle assembly for attachment to a piece of luggage comprising a bracket member having a base portion and at least one tube receiving portion extending therefrom, the tube receiving portion having a length defining a first end and a second end with a plurality of connection locations disposed along the length. A tube is configured to be disposed within the tube receiving portion, with the tube adapted for telescoping extension with respect to the second end of the tube receiving portion. The tube can extend to a first distance when the tube is coupled to the tube receiving portion at a first connection location, and the tube can extend to a second distance when the tube is coupled to the tube receiving portion at a second connection location, wherein the second distance is greater than the first distance.
Additionally, the tube can extend to a third distance when the tube is coupled to the tube receiving portion at a third connection location, wherein the third distance is greater than the second distance. In some embodiments, the bracket member includes two tube receiving portions having a cut-out portion defined between the two tube receiving portions. Further, the base portion has a generally horizontal section and a generally vertical section forming a generally L-shape bracket member with a plurality of apertures formed in the generally horizontal and generally vertical sections. Typically, at least one fastener is inserted through one of the apertures in the generally horizontal and generally vertical sections to couple the bracket member to the luggage.
Also, the base portion can be integrally connected to the tube receiving portion such that the tube receiving portion extends parallel to the generally vertical section of the base portion. The plurality of connection locations can be configured as apertures, and the tube receiving portion can include a rib which extends around the plurality apertures to provide enhanced strength.
In accordance with another aspect of the invention, the tube is coupled to the tube receiving portion with a fastener. The fastener can be a screw having a first thread pitch proximate the tip and a second thread pitch proximate the head. Additionally, the fastener employed can be a self-drilling screw having a flat head configured for countersunk engagement with the tube receiving portion. Alternatively, the self-drilling screw can have a raised head configured to extend beyond the tube receiving portion.
According to another aspect of the invention, a tube housing for a retractable handle device comprises a tube receiving portion having an inner surface and an outer surface such that the inner surface is configured to have a shape which corresponds to a tube inserted therein. Additionally, first and second reinforcing portions are disposed on generally opposite sides of the outer surface and form a plurality of flanges extending outwardly from the outer surface of the tube receiving portion. In some embodiments the tube receiving portion is generally arcuate, whereas the first and second reinforcing portions and flanges are generally planar such that the first and second reinforcing portions are disposed parallel to each other. The tube housing is typically formed from aluminum, or alloys thereof.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and are intended to provide further explanation of the invention claimed.
The accompanying drawings, which are incorporated in and constitute part of this specification, are included to illustrate and provide a further understanding of the method and system of the invention. Together with the description, the drawings serve to explain the principles of the invention.
Reference will now be made in detail to exemplary embodiments of the invention, depictions of which are illustrated in the accompanying drawings. The method and corresponding steps of the invention will be described in conjunction with the detailed description of the system.
The methods and systems presented herein may be used for a universal luggage handle system. The present invention is particularly suited for a universal bracket and telescoping handle assembly capable of being installed in luggage items of varying size. Additionally, a tube housing design is disclosed having a novel geometry which provides superior strength characteristics and enhanced structural integrity.
For purpose of explanation and illustration, and not limitation, exemplary embodiments of the universal bracket and telescoping handle system in accordance with the invention is shown in
In the embodiment illustrated in
Additionally, in some embodiments, the bracket member 10 can have a cut-out portion 17 configured as a channel or slot defined between the two tube receiving portions 14, 16, as shown in
In an exemplary embodiment, the bracket member 10 has a height extending from a first end proximate the base portion 12 to a second end of approximately 7.5 inches, and a width of approximately 7.8 inches. However, the specific dimensions can be varied to accommodate luggage containers of any size, as so desired. In a first embodiment, portions 14, 16 function as tube receiving portions and are configured to have a shape which corresponds to the shape of the tubes 20, which are typically elliptical, as shown in
In accordance with an aspect of the invention, a plurality of tubes 20 having a fixed length can be attached to the bracket member 10 such that each tube can extend to a different distance from the second end of the bracket member 10 when the handle is in the extended position. For example and as illustrated in
Therefore, a single bracket member 10 can be employed in a variety of different sizes of luggage while providing a handle member which can extend the appropriate distance from the luggage to allow a user to comfortably operate and control the luggage. For example, luggage of a first size has two tubes 20 inserted within the two tube receiving portions 14, 16 and is coupled to the bracket member 10 at a first connection location 32, as shown in
Although the exemplary embodiment described above describes three connection locations with uniform spacing therebetween, additional connection locations which have a different spacing are considered to be within the scope of the invention. For example, and as illustrated in
Accordingly, the tubes 20 for use in the retractable handle system of the present invention can be formed to have a common length, and yet allow the handle to extend to different distances and thus be employed in a variety of luggage sizes. Forming the tubes of a standard length is advantageous in that it requires less raw material since each tube can be formed, for example at 24 inch lengths, rather than forming a first tube length of 24 inches, a second tube length of 26 inches, and a third tube length of 28 inches. Further, forming a single size tube relieves the burden of maintaining an inventory of varying size tubes, each of which is dedicated for use in a specific size of luggage. Also, providing a universal retractable handle system for different sizes of luggage allows for cost-effective repair and replacement of damaged tubes. Thus, the universal bracket system of the present invention reduces the number of components used, which simplifies supply chain management, improves manufacturing reliability, and provides greater quality management.
Additionally, the universal bracket and handle system of the present invention can include tubes which are segmented to provide a plurality of stages of extension wherein an upper portion of the tube can be telescopingly received within a lower portion of the tube. Further, a locking feature (not shown) can be incorporated into the handle member to permit the handle to be extended a selected amount intermediate of its maximally extended position to either pull or carry the luggage, and selectively fixing the extendable and retractable handle in the best position for a particular user to pull the luggage case on its wheels. As discussed above, the maximum extended position in such embodiments is determined by which connection location is utilized for coupling the handle to the bracket member 10.
In an exemplary embodiment, the connection locations 30 are configured as apertures which are preformed in the bracket member 10 at select locations such that the tubes 20 can be inserted within tube receiving portions 14, 16 and coupled to the bracket member via fasteners. In other embodiments, the bracket member 10 can be formed without pre-fabricated connection locations, wherein the tubes 20 can be coupled to the bracket member via self-drilling screws which have a thread pitch which varies from the tip to the head. The use of such self-drilling fasteners is advantageous in that they provide greater flexibility in the positioning of the connection locations 30. Furthermore, less torque is required for insertion of self-drilling fasteners as compared to conventional fasteners. This reduction in torque reduces the likelihood of undesirable bending or warping of the bracket member 10 or tube 20. Further, the head can have a flat surface which lies flush with the tube receiving portion 14, 16 to establish a countersunk engagement. Alternatively, the screw can have a raised head which extends outward from the tube receiving portion 14, 16.
Furthermore, a protrusion or rib 15 can extend around the connection locations 30 to provide structural support to absorb any torque exerted during insertion of the fasteners. The rib 15 can be formed with a generally oval shape and extend along the height of the tube receiving portion 14, 16 such that a single rib 15 surrounds all of the connection locations 30, as shown in
In accordance with another aspect of the present invention, a tube housing 40 is provided for use in the universal bracket and luggage handle system described above, as well as other systems. An exemplary embodiment of the tube housing 40, as illustrated in
Accordingly, the sidewalls 43 form a plurality of planar flanges 44 which are positioned outward of the tube receiving portion 41. Flanges 44 are connected to the tube receiving portion 41 by angled portion 45 of the reinforcing portions which define hollow cavities 46 positioned between the outer surface of the tube receiving portion 41 and the reinforcing portions 42. If so desired, the cavities 46 can be filled to provide solid and more rigid reinforcing portions 42. As illustrated in
These reinforcing portions 42 increase the strength and enhance the structural integrity of the tube housing 40 by providing a greater resistance to bending and torsional forces. Additionally, the flanges 44 serve to protect the tube receiving portion 41 from accidental impact or denting since the flanges 44 are positioned beyond the outer surface of the tube receiving portion 41. This configuration serves to help protect the inner surface of the tube receiving portion 41 from deformation, thereby help ensuring proper receipt of a tube 20 within the tube receiving portion 41, and help allowing for uninhibited telescoping extension of the tube 20. Further, forming flanges 44 in a planar configuration is advantageous particularly when the tube housing 40 is employed in direct contact with luggage having relatively soft fabric panels since the flat surface of the flange is not prone to puncture or rip the fabric. The tube housing 40 can be formed of any material, including metals or polymers, which provide sufficient rigidity. In an exemplary embodiment, the tube housing can be formed from extruded aluminum and have a thickness between 0.02-0.04 inches.
In an exemplary embodiment, and as illustrated in
While the present invention is described herein in terms of certain preferred embodiments, those skilled in the art will recognize that various modifications and improvements may be made to the invention without departing from the scope thereof. Moreover, although individual features of one embodiment of the invention may be discussed herein or shown in the drawings of the one embodiment and not in other embodiments, it should be apparent that individual features of one embodiment may be combined with one or more features of another embodiment or features from a plurality of embodiments.
In addition to the specific embodiments claimed below, the invention is also directed to other embodiments having any other possible combination of the dependent features claimed below and those disclosed above. As such, the particular features presented in the dependent claims and disclosed above can be combined with each other in other manners within the scope of the invention such that the invention should be recognized as also specifically directed to other embodiments having any other possible combinations. Thus, the foregoing description of specific embodiments of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to those embodiments disclosed.
It will be apparent to those skilled in the art that various modifications and variations can be made in the method and system of the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention include modifications and variations that are within the scope of the appended claims and their equivalents.
This application is a continuation of application Ser. No. 12/254,616, filed Oct. 20, 2008, which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 12254616 | Oct 2008 | US |
Child | 13723593 | US |