The invention relates to furniture supports and in particular to a universal outdoor chair leveler.
Seating is quite often a desirable provision during various activities. Though seemingly simple, comfortable seating can, at times, be difficult to achieve. For example, outdoor areas or venues often do not provide seating or are not well suited for chairs, seats or other seating.
From the discussion that follows, it will become apparent that the present invention addresses the deficiencies associated with the prior art while providing numerous additional advantages and benefits not contemplated or possible with prior art constructions.
A universal chair leveler is disclosed herein. The universal chair leveler allows users to sit comfortable at a generally level position even on uneven, sloped or otherwise non-uniform surfaces, such as outdoor amphitheaters and venues. The universal chair leveler is also highly portable and may be used with a variety of chairs.
Various universal chair levelers and methods therefore are disclosed herein. In one exemplary embodiment, a chair leveler for leveling a chair on an angled surface is disclosed. The chair leveler comprises a body having a front, a back, a top, and a bottom, wherein the bottom is angled relative to the top. The chair leveler also comprises a plurality of cavities at the top, wherein each of the plurality of cavities has a distinct shape, and one or more telescopic supports movable between an extended position and a retracted position relative to the bottom of the body.
The chair leveler may also have a threaded hole in the body. In such case, the telescopic support will typically comprise a threaded member inserted in the threaded hole. Alternatively, the telescopic supports may be sleeves that surround the periphery of the body.
It is contemplated that a textured surface may be at the bottom of the body for engaging an angled surface. The plurality of cavities may include a first cavity that extends laterally across the top of the body. In addition, the plurality of cavities may include a second cavity that extends perpendicular to the first cavity. Each of the plurality of cavities may be positioned closer to the front that to the back of the body.
In another exemplary embodiment, a chair leveler for leveling a chair on an angled surface comprises a body comprising a front, a back, a top surface, and a bottom surface, the bottom surface angled relative to the top surface to cause the back to be shorter relative to the front. The chair leveler also comprises a first cavity in the top surface, and a second cavity in the top surface. The first cavity and the second cavity have distinct shapes and are positioned closer to the front than to the back of the body.
The chair leveler may also have one or more telescopic supports movable between an extended position and a retracted position relative to the bottom of the body. The telescopic supports may be proximate the front of the body. In addition or alternatively, the telescopic supports may comprise a sleeve that surrounds the periphery of the body.
It is contemplated that the first cavity may extend laterally across the top of the body. The second cavity may extend perpendicular to the first cavity in one or more embodiments. A textured surface may be at the bottom of the body to engage the angled surface.
Various methods of leveling a chair are disclosed herein as well. In general, use of a universal chair leveler will place a chair in a general level position relative to an angled surface. In one exemplary embodiment, a method of leveling a chair on an angled surface with a chair leveler is disclosed. The method comprises providing a body comprising a front, a back, a top having a first cavity and a second cavity therein, and a bottom, wherein the bottom is angled relative to the top to cause the back to be shorter than the front.
The method also comprises engaging the angled surface with the bottom, and receiving a leg of the chair in the first cavity, the second cavity, or both based on a shape of the leg, wherein the first cavity and the second cavity are distinct in shape. The chair is then supported in a generally leveled position relative to the angled surface. The angled surface is engaged by a textured surface at the bottom of the body.
The method may also comprise elevating the front of the body by extending a telescopic support attached to the body. The telescopic support may comprise a sleeve in one or more embodiments. The first cavity and the second cavity may be positioned closer to the front than the back of the body. The first cavity and the second cavity may be perpendicular to one another.
Other systems, methods, features and advantages of the invention will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the accompanying claims.
The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. In the figures, like reference numerals designate corresponding parts throughout the different views.
In the following description, numerous specific details are set forth in order to provide a more thorough description of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without these specific details. In other instances, well-known features have not been described in detail so as not to obscure the invention.
In general, the universal chair leveler allows a user to level a chair in a variety of environments. It is contemplated that the universal chair leveler will typically be used in outdoors, such as sloped amphitheaters or sloped attendee accommodations. The universal chair leveler may also, for example, be used during outdoor amphitheater concerts, festival or events where the seating surface is sloped toward the stage, on a hillside or uneven grass field. The universal chair leveler may also be used for outdoor sports and recreation where uneven land, ground, sloping terrain exists, such as along riverbanks, steams, ponds and lakes where a chair would be uncomfortable or unsafe or uncomfortable without leveling. The universal chair leveler may also be used for fishing, camping, picnics, watching sporting event and other activities.
The universal chair leveler may also be used on sloped or uneven ground, during fishing, picnics, bird watching, reading and other activities. As will be described further below, the universal chair leveler may be adjustable in one or more embodiments for use with various degrees of slope. In addition, the universal chair leveler may be stackable to allow a plurality of universal chair levelers to be easily transported, distributed, and stored.
A bottom 116 of a universal chair leveler 104 may be sloped to engage a sloped amphitheater or accommodation floor surface. In one or more embodiments, a tread 132 or other textured surface may be attached or applied to the bottom 116 to prevent a universal chair leveler 104 from sliding when in use. It is contemplated that a tread 132 may comprise a resilient material, such a rubber, to function as a friction inducing surface.
A socket 156 may be formed in the body 108, such as in the top 112 of the body, and be shaped to receive one or more chair legs. To illustrate, a socket 156 may comprise one or more cavities 144, 148, 152 to receive chair legs of various shapes. In the exemplary embodiments of
It is contemplated that a universal chair leveler 104 may be height adjustable in one or more embodiments. The universal chair levelers 104 of
As shown in
A threaded opening 160 may open at a bottom 116 of a universal chair leveler 104 such that height adjustment occurs at the bottom of the universal chair leveler. In operation, height adjustment may be accomplished by extending or retracting a telescopic support 164. This may be accomplished by rotating the telescopic support 164 until its threads carry the telescopic support to a desired position.
Referring to
In one or more embodiments, an inset 128 may be formed in the bottom 116 to receive the enlarged portion 136 of a telescopic support 164. An inset 128 is not required but may be provided to allow a telescopic support 164 to fully retract such that its enlarged portion 136 is flush with the bottom 116 of the body 108.
Cavities of various shapes and sizes may be provided. In addition, additional or fewer cavities may be provided in some embodiments. It is contemplated that a user may select which cavity to utilize based on the size, shape or both of a chair leg. In general, a universal chair leveler 104 will receive one or more front legs of a chair. It is contemplated that a back leg may also be received by a universal chair leveler 104. Also, though a pair of universal chair levelers 104 will typically be used at the front legs of a chair, it is contemplated that other numbers of universal chair levelers may be used at one or more legs of a chair such as desired to compensate for the terrain or surface upon which the chair is to be placed.
Referring to
Height adjustment may be accomplished in various ways. As can be seen from
A telescopic support 704 may comprise one or more openings 712 to allow the telescopic support to be held at a particular position. As can be seen in
During adjustment, a user may select a peg 708 and corresponding opening 712 that provides a desired height for the universal chair leveler 104. In
A telescopic support 704 may also comprise a bottom 116 that may have a tread 132 or the like. As such, the bottom 116, tread 132 or both move with a telescopic support 704 and support the universal chair leveler 104 on the surface upon which it is placed.
In addition, a plurality of telescopic supports 704 may be provided in some embodiments. Each telescopic support 704 may be a sleeve structure that conforms to the periphery of another telescopic support or body 108 therein. A peg 708 may be enlarged or lengthened such that it is capable of engaging each telescopic support 704 to hold the telescopic supports in a desired position. At least one of the telescopic supports 704 may comprise a bottom 116, tread 132 or both that engages a floor or other surface, such as described above.
As can be seen, a peg 708 may be part of a peg assembly comprising a cavity or sleeve 904 having a biasing device 908, such as a spring, therein. A peg 708 may biased outward by a biasing device 908, such as shown. In this manner, a user may depress one or more pegs 708 such that it no longer engages and opening 712 to free or release a telescopic support 708. The telescopic support 704 may then be moved to a desired position. A biasing device may then extend the peg 708 into an opening 712 of the telescopic support 704 at such position.
One or more peg assemblies may be provided. As shown in
It is contemplated that a peg assembly need not have a biasing device 908 in all embodiments. For example, in some embodiments, a peg assembly may have a peg 908 and a compartment 904, whereby the peg may be removed from the sleeve to free or release a telescopic support 704. Once a desired position is achieved, the peg 708 may be inserted into an opening 712 of the telescopic support 704 and the compartment 904 to secure the telescopic support in place.
While various embodiments of the invention have been described, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible that are within the scope of this invention. In addition, the various features, elements, and embodiments described herein may be claimed or combined in any combination or arrangement.
This application claims priority to U.S. Provisional Patent Application No. 62/426,063, filed Nov. 23, 2016.
Number | Name | Date | Kind |
---|---|---|---|
1165052 | William | Dec 1915 | A |
1554327 | Boberg | Sep 1925 | A |
1749751 | Bergsten | Mar 1930 | A |
1810971 | Lee | Jun 1931 | A |
1861095 | Schacht | May 1932 | A |
1865899 | Gohmann | Jul 1932 | A |
1915320 | Jones | Jun 1933 | A |
1973226 | Rose | Sep 1934 | A |
2366867 | Nichthauser | Jan 1945 | A |
2371460 | Needham | Mar 1945 | A |
2933754 | Winans | Apr 1960 | A |
4767105 | Caspers | Aug 1988 | A |
4793275 | Usher | Dec 1988 | A |
4830320 | Bellows | May 1989 | A |
5232187 | O'Farrell | Aug 1993 | A |
5263551 | Andersen | Nov 1993 | A |
5427342 | Gagnon | Jun 1995 | A |
5725188 | Monteiro | Mar 1998 | A |
5769371 | Bandur | Jun 1998 | A |
6142431 | Herzog | Nov 2000 | A |
6374841 | Yamamoto | Apr 2002 | B1 |
8407855 | Gagnon | Apr 2013 | B2 |
8960784 | De Berry | Feb 2015 | B1 |
9062466 | Glynos | Jun 2015 | B2 |
9717336 | Apple | Aug 2017 | B1 |
20020027091 | Brown | Mar 2002 | A1 |
20030126751 | Izumi | Jul 2003 | A1 |
20050103966 | Kim | May 2005 | A1 |
20150289649 | Perrin | Oct 2015 | A1 |
20150327682 | Green | Nov 2015 | A1 |
20170295931 | Macyszyn | Oct 2017 | A1 |
20170311719 | Vandenham | Nov 2017 | A1 |
20180140099 | Peters | May 2018 | A1 |
20180271276 | Chartrand | Sep 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20180140099 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
62426063 | Nov 2016 | US |