Aspects and embodiments of the present invention relate to systems and methods for the treatment of individuals experiencing cardiac distress.
Treatment of a subject experiencing cardiac distress may generally include clearing the subject's airway, assisting the subject's breathing, chest compressions, and defibrillation.
Defibrillation can be performed with the use of an automatic external defibrillator (AED). Most automatic external defibrillators are actually semi-automatic external defibrillators (SAED), which require a clinician to press a start button, after which the defibrillator analyzes the subject's condition and provides a shock to the subject if the electrical rhythm is shockable and waits for user intervention before any subsequent shock. Fully automatic external defibrillators, on the other hand, do not wait for user intervention before applying subsequent shocks. As the term is used herein, automatic external defibrillators (AED) include semi-automatic external defibrillators (SAED).
Defibrillation shocks are typically delivered to a subject from a defibrillator through a set of defibrillation electrodes placed on the body of the subject. The electrodes are placed in electrical communication with the skin of the subject in locations that will direct an electrical charge supplied through the electrodes through the heart of the subject.
In some instances, one or more defibrillation electrodes may be provided in a defibrillation electrode pad assembly including a CPR administration area. The CPR administration area may be a portion of the defibrillation electrode pad assembly through which a first responder may apply chest compressions to a subject during the administration of CPR. The CPR administration area may be displaced from defibrillation electrodes in the defibrillation electrode pad assembly.
It is often desirable to arrange the defibrillation electrodes and CPR administration area in a defibrillation electrode pad assembly such that the relative positioning of the defibrillation electrodes and the CPR administration area provide for each to be located on an appropriate location of a subject when the defibrillation electrode pad assembly is applied to the subject. For subjects of different sizes, for example, pediatric subjects versus adult subjects, it has in the past been necessary to provide differently sized defibrillation electrode pad assemblies such that the distance between the defibrillation electrodes and the CPR administration area allows for each to be located properly on the differently sized subjects.
In accordance with a first aspect, there is provided a defibrillation electrode pad. The defibrillation electrode pad comprises an electrode section and a CPR administration section mechanically coupled to the electrode section. The electrode section and the CPR administration section are positioned in the defibrillation electrode pad relative to each other such that the CPR administration section is located above a sternum of an adult subject and the electrode section is located in a position appropriate for the administration of a defibrillation shock to the adult subject when the defibrillation electrode pad is oriented in a first orientation and such that the CPR administration section is located above a sternum of a pediatric subject and the electrode section is located in a position appropriate for the administration of a defibrillation shock to the pediatric subject when the defibrillation electrode pad is oriented in a second orientation different from the first orientation. In some embodiments, the first orientation is rotated by approximately 180 degrees from the second orientation.
In some embodiments, the position appropriate for the administration of a defibrillation shock to the adult subject is an apex position on the chest of the adult subject. The position appropriate for the administration of a defibrillation shock to the pediatric subject may be a lateral position on the pediatric subject.
In some embodiments, the defibrillation electrode pad further comprises indicia of a proper orientation of the defibrillation electrode pad for an adult subject and a proper orientation of the defibrillation electrode pad for a pediatric subject. The defibrillation electrode pad may further comprise a CPR assistance device configured to provide feedback regarding the frequency and/or depth of chest compressions applied to the subject during the administration of CPR to the subject.
In accordance with another aspect, there is provided a method of treating a subject experiencing cardiac distress. The method comprises obtaining a universal defibrillation electrode pad and a defibrillator, determining a proper orientation of the universal defibrillation electrode pad on the subject, applying the universal defibrillation electrode pad to the subject in the proper orientation, and administering therapy to the subject using the universal defibrillation electrode pad.
In some embodiments, the method further comprises applying a second electrode pad to the subject. The method may also further comprise electrically coupling the universal defibrillation electrode pad and the second electrode pad to a defibrillator.
In some embodiments, determining the proper orientation of the universal defibrillation electrode pad comprises determining an orientation of the universal defibrillation electrode pad from indicia of proper orientation provided on the universal defibrillation electrode pad.
In some embodiments, administering therapy to the subject comprises applying chest compressions to the subject through a CPR administration area of the universal defibrillation electrode pad and in some embodiments, administering therapy to the subject comprises applying a defibrillation shock to the subject through an electrode of the universal defibrillation electrode pad.
In some embodiments, the method further comprises physically decoupling an electrode section of the defibrillation electrode pad from a CPR administration section of the defibrillation electrode pad. Physically decoupling the electrode section of the defibrillation electrode pad from the CPR administration section of the defibrillation electrode pad may comprise tearing a bridge of material which physically couples the electrode section to the CPR administration section. Applying the universal defibrillation electrode pad to the subject may comprise separately attaching the electrode section and the CPR administration section to the subject.
In accordance with another aspect, there is provided defibrillation electrode pad. The defibrillation electrode pad includes an electrode section, a CPR administration section, means for providing an indication of a proper orientation of the defibrillation electrode pad on an adult subject, and means for providing an indication of a proper orientation of the defibrillation electrode pad on a pediatric subject.
In some embodiments, the electrode section is mechanically coupled to the CPR administration section by a bridge of material. The bridge of material may include a semi-rigid material configured to provide for the electrode section and the CPR administration section to remain in a fixed orientation relative to one another and separated by a fixed distance from one another. The bridge of material may include a deformable material configured to provide for the relative orientation and distance between the electrode section and the CPR administration section to be varied. In other embodiments, the electrode section is physically unconnected to the CPR administration section. The bridge of material may include one or more perforations configured to provide for the electrode section to be detached from the CPR administration section by cutting or tearing along the one or more perforations.
In some embodiments, the means for providing the indication of the proper orientation of the defibrillation electrode pad indicates that the proper orientation of the defibrillation electrode pad on the adult subject is inverted from the proper orientation of the defibrillation electrode pad on the pediatric subject. The means for providing the indication of the proper orientation of the defibrillation electrode pad may include one of a visual indicator and a tactile indicator of the proper orientation of the defibrillation electrode pad on a subject.
In some embodiments, the CPR administration section includes a displacement sensor. The CPR administration section may further include a CPR assistance device configured to provide feedback regarding frequency and/or depth of chest compressions applied to a subject on which the defibrillation electrode pad is disposed during the administration of CPR to the subject.
The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. In the drawings:
Aspects and embodiments of the present invention are not limited to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” “having,” “containing,” “involving,” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof.
Aspects and embodiments of the present invention include systems and methods which may facilitate the use of a universal treatment pad for defibrillation and/or administration of CPR to both adult and pediatric subjects. The provision of a universal treatment pad for both adult and pediatric subjects may eliminate the need to provide multiple differently sized treatment pads with a defibrillation apparatus for the treatment of adult subjects and pediatric subjects. The provision of a universal treatment pad may prevent errors associated with using an inappropriate treatment pad on a subject and locating a defibrillation electrode and/or CPR treatment area of the treatment pad in positions on the subject which are non-optimal for treatment of the subject.
In some embodiments, the CPR administration section 120 may include a displacement sensor 130, for example, as described in co-pending U.S. patent application Ser. No. 14/313,772 which is incorporated herein by reference. The displacement sensor 130, which may include an accelerometer, may be utilized to monitor the frequency and/or depth of CPR compressions and provide this information to a system which may provide feedback to the first responder to alter the frequency and/or depth of chest compressions as necessary to achieve a desirable CPR administration routine. A CPR assistance device, for example, the PocketCPR® CPR assistance device available from ZOLL Medical Corporation or one of the CPR assistance devices disclosed in U.S. Patent Nos. 7,245,974, 8,096,962, 6,390,996, 6,782,293, 7,108,665, 7,118,542, and 7,122,014 may be used to facilitate the administration of CPR through the CPR administration section 120 and/or may be incorporated into the CPR administration section 120. One or both of the electrode section 110 and CPR administration section 120 may further include one or more monitoring or pacing electrodes and/or a pulse oximetry or perfusion monitor as also described in co-pending U.S. patent application Ser. No. 14/313,772. Defibrillation electrode(s) in the electrode section 110 may, in some embodiments, be utilized to monitor ECG signals from the subject when not being used for defibrillation.
In
The relative locations of the electrode section 110 and the CPR administration section 120 in the defibrillation electrode pad assembly 100 may not be conducive to locating the electrode section 110 in an apex position and the CPR administration section 120 on the sternum of a subject having a body size significantly different from the adult subject illustrated in
However, a properly dimensioned defibrillation electrode pad assembly 100 may be utilized for both adult and pediatric subjects. Positioning the defibrillation electrode pad assembly 100 in a first orientation may provide for the electrode section 110 and the CPR administration section 120 of the defibrillation electrode pad assembly 100 to be located in desirable positions on an adult subject. Positioning the defibrillation electrode pad assembly 100 in a second orientation may provide for the electrode section 110 and the CPR administration section 120 of the defibrillation electrode pad assembly 100 to be located in desirable positions on a pediatric subject.
As illustrated in
As illustrated in
As illustrated in
In some embodiments, the defibrillation electrode pad assembly 100 may include markings or labels to help a first responder determine how to orient the defibrillation electrode pad assembly 100 on a subject. For example, as illustrated in
The defibrillation electrode pad assembly 100 and second electrode patch 140 may be used with a number of different defibrillators, for example, any one of the many defibrillators or AEDs available from ZOLL Medical Corporation. Aspects of the present invention are not limited to use with any particular defibrillator.
In accordance with another aspect, there is provided a method of providing treatment to a subject experiencing cardiac distress. A flowchart of the method is provided in
In act 410, the first responder determines the proper orientation of the universal defibrillation electrode pad for the subject. The determination of the proper orientation of the universal defibrillation electrode pad may be informed by instructions included with the universal defibrillation electrode pad and/or by one or more markings on the universal defibrillation electrode pad. The universal defibrillation electrode pad may be oriented in a first orientation for an adult subject and in a second orientation for a pediatric subject.
In act 420 the first responder applies the universal defibrillation electrode pad to the subject in the determined orientation and also applies any other additional electrode pads to the subject as needed. In act 430, the first responder electrically couples the universal defibrillation electrode pad and any other electrodes to the defibrillator using, for example, cables and quick connectors which may extend from the universal defibrillation electrode pad and other electrode(s). In some embodiments, act 430 may precede act 420 or act 410, or may be eliminated, for example, when the universal defibrillation electrode pad and any other electrodes are supplied pre-coupled to a defibrillator. The first responder then performs CPR as needed on the subject and may also defibrillate the subject as needed (act 440). The performance of CPR, for example, the frequency and/or depth of chest compressions may be guided by feedback from a CPR assistance device applied to or included in the CPR administration section of the universal defibrillation electrode pad. The determination of the need for defibrillation and the timing of the defibrillation may in some instances be determined by the defibrillator.
Having thus described several aspects of at least one embodiment of this invention, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art. For example, it is to be appreciated that any of the features of any of the embodiments disclosed herein may be combined or substituted for features of any other embodiment disclosed herein. Acts of the method disclosed may be performed in alternate orders and one or more acts may be added to or omitted from the method or substituted by one or more alternative acts. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the scope of the invention. Accordingly, the foregoing description and drawings are by way of example only.
This application is a continuation of U.S. patent application Ser. No. 14/494,084, titled “UNIVERSAL DEFIBRILLATION ELECTRODE PAD ASSEMBLY FOR ADULT AND PEDIATRIC SUBJECTS”, filed on Sep. 23, 2014, now U.S. Pat. No. 10,201,696 which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application Ser. No. 61/884,264, titled “UNIVERSAL DEFIBRILLATION ELECTRODE PAD ASSEMBLY FOR ADULT AND PEDIATRIC SUBJECTS,” filed on Sep. 30, 2013, which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5243978 | Duffin, Jr. | Sep 1993 | A |
6141584 | Rockwell et al. | Oct 2000 | A |
6148233 | Owen et al. | Nov 2000 | A |
6356785 | Snyder et al. | Mar 2002 | B1 |
6405083 | Rockwell et al. | Jun 2002 | B1 |
6427685 | Ray, III | Aug 2002 | B1 |
6438417 | Rockwell et al. | Aug 2002 | B1 |
6597948 | Rockwell et al. | Jul 2003 | B1 |
6782293 | Dupelle et al. | Aug 2004 | B2 |
6920354 | Daynes et al. | Jul 2005 | B2 |
7231258 | Moore et al. | Jun 2007 | B2 |
7769465 | Matos | Aug 2010 | B2 |
9079044 | Powers | Jul 2015 | B2 |
20010047140 | Freeman | Nov 2001 | A1 |
20030045905 | Daynes et al. | Mar 2003 | A1 |
20030055459 | Lyster et al. | Mar 2003 | A1 |
20030055477 | Dupelle et al. | Mar 2003 | A1 |
20030088276 | Covey et al. | May 2003 | A1 |
20030171798 | Nova et al. | Sep 2003 | A1 |
20040143298 | Nova et al. | Jul 2004 | A1 |
20040210170 | Palazzolo et al. | Oct 2004 | A1 |
20050010274 | Dupelle et al. | Jan 2005 | A1 |
20050131465 | Freeman et al. | Jun 2005 | A1 |
20050267536 | Freeman | Dec 2005 | A1 |
20060015044 | Stavland et al. | Jan 2006 | A1 |
20060019229 | Morallee | Jan 2006 | A1 |
20070196320 | Yasin | Aug 2007 | A1 |
20070197926 | Danehorn et al. | Aug 2007 | A1 |
20070233199 | Moore et al. | Oct 2007 | A1 |
20070299473 | Matos | Dec 2007 | A1 |
20080004663 | Jorgenson | Jan 2008 | A1 |
20080027338 | Lu et al. | Jan 2008 | A1 |
20090254136 | Powers | Oct 2009 | A1 |
20100004710 | Kellum | Jan 2010 | A1 |
20100164612 | Koyrakh | Jul 2010 | A1 |
20100292748 | Stickney et al. | Nov 2010 | A9 |
20100324612 | Matos | Dec 2010 | A1 |
20110034836 | Halperin et al. | Feb 2011 | A1 |
20110105930 | Thiagarajan et al. | May 2011 | A1 |
20110112593 | Freeman | May 2011 | A1 |
20110288604 | Kaib et al. | Nov 2011 | A1 |
20120146797 | Oskin et al. | Jun 2012 | A1 |
20120185006 | Apperson et al. | Jul 2012 | A1 |
20130102936 | Halsne et al. | Apr 2013 | A1 |
20160082246 | Piazza | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
1555278 | Dec 2004 | CN |
101084040 | Dec 2007 | CN |
101557788 | Oct 2009 | CN |
3110915 | Dec 1982 | DE |
2008523878 | Jul 2008 | JP |
201029728 | Feb 2010 | JP |
2013032710 | Mar 2013 | WO |
Entry |
---|
Aramendi et al. “A Simple Effective Filtering Method for Removing CPR Caused Artefacts from Surface ECG Signals”, Computers in Cardiology, Sep. 25, 2005. |
Associate for the Advancement of Medical Instrumentation, ANSI/AAMI DF:80:2003, Medical Electrical Equipment—Part 2-4: Particular Requirements for the Safety of Cardiac Defibrillators (including Automated External Defibrillators) 2004, ISBN 1-57020-210-9, abstract, p. vi, p. 50, section 107.1.2. |
Romero et al. “Motion Artifact Reduction in Ambulatory ECTG Monitoring: An Integrated System Approach”, Wireless Health, Oct. 10, 2011. |
International Search Report from corresponding PCT Application Serial No. PCT/US2014/056980, dated Jan. 9, 2015. |
Written Opinion from corresponding PCT Application Serial No. PCT/US2014/056980, dated Jan. 9, 2015. |
Number | Date | Country | |
---|---|---|---|
20190117954 A1 | Apr 2019 | US |
Number | Date | Country | |
---|---|---|---|
61884264 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14494084 | Sep 2014 | US |
Child | 16231443 | US |