The invention relates generally to ground adapters for electrical cables, especially those used aboard marine vessels and platforms. In particular, the invention relates to embodiments for low-impedance designs of a cable shield ground adapter (CSGA).
The United States Navy currently employs two technologies to provide electromagnetic (EM) protection from coupling to topside (i.e., above-deck) cables; conduit which provides an overall EM shield to cables placed within the conduit, and shielded cables with CSGAs used as termination connectors. Both technologies are viable but components used are expensive and difficult to maintain. The proposed CSGA embodiments deal almost exclusively with shielded cables and conduits. These are not explicitly described herein with respect to further applications, although the technology could be applied to the conduit shell whether flexible or rigid.
Conventional CSGA designs have been proven to be effective at grounding cable shielding when properly installed, achieving grounding effectiveness measures that exceed 80 decibels (dB). The conventional designs are designed for use with swage tubes, also known as stuffing tubes. Glenair® Inc. of Glendale, Calif. provides the primary conventional design currently in use. The Glenair® configuration requires the installer to employ CSGA components designed for specific cable sizes and swage tube sizes. Failure to use the exact tube size leads to performance failure for the system. The Glenair® CSGA also requires the installer to remove and discard the gland nut typically supplied with the swage tube by the swage tube manufacturer.
Once installed, the system is not easily repaired. Repair of a failed adapter can be accomplished through one of two methods. The first method requires the disconnection of the shielded cable from the system interface connector through cutting or de-soldering, removal and replacement of the failed component, and replacement of the interface connector. The second method requires a CSGA called a “Split Connector” that represents a device used for in situ replacement of the failed CSGA.
The failed CSGA must be removed from the swage tube, and the split connector is installed in its place. The components from the failed connector are then taped to the upper part of the cable and remain in place for the life of the connector, or until the CSGA assembly is replaced during a refit. The Glenair® system uses an exterior weather proof boot to provide exterior weather protection, but lacks interior protection against water intrusion. Their catalog is available at http://www.glenair.com/catalogs/entire_catalog_shipboard.pdf for lists of parts. A 3:02-minute video presentation on “MIL-PRF-24758A Conduit Assembly and EMI Shield Termination Procedure” available at Glenair® at http://www.glenair.com/video/24758a_full_monty.htm and more generally in a 2:57-minute presentation as “MIL-PRF-24758A Shipboard Conduit Assembly” at http://www.youtube.com/watch?v=Abmj0IN_A40 (without audio). Airmar® Technology in Milford, N.H. also provides an installation guide in http://www.airmartechnology.com/uploads/installguide/17-423-01.pdf.
Another conventional CSGA design, SkinTop®, is available from LAPP Group Inc. of Florham Park, N.J. The SkinTop® design incorporates squared-off contact fingers, which in addition to forming an ohmic contact, also perform a cable centering function. Without the squaring off of the contact, the cable would tend to roll off center. The resultant structural loading imposes the requirement of stiffer materials and shorter finger lengths for the SkinTop® design. The smallest clamping cable diameter for the conventional SkinTop® design is 0.118 inch (″) with a maximum variation of cable diameter of approximately 0.512″ for their largest design.
Additionally, the conventional Skintop® requires the use of a machined cable gland assembly and is therefore not adaptable to variances in the inner diameter of the swage tube. This imposes limits in the design as to the exact size of the swage tube's inner diameter, the units of measure (metric or SAE) and thread type of swage tube. The SkinTop® design also requires the removal and subsequent disposal of the gland nut supplied with the swage tube by the manufacturer. The basic design of the SkinTop® system appears more robust than the Glenair® system. However once installed, the SkinTop® arrangement is not easily repaired. Repair of a failed adapter requires the disconnection of the shielded cable from the system interface connector through cutting or de-soldering, removal and replacement of the failed component, and replacement of the interface connector. The Skintop® system uses a gland washer to provide exterior weather protection, and a weather proof boot can be added to provide additional exterior weather protection. Interior protection against water intrusion is not provided.
Conventional electrical ground adapters yield disadvantages addressed by various exemplary embodiments of the present invention. In particular, various exemplary embodiments provide an electrical conduit ground device for electrically and environmentally shielding an electric cable. The device includes a conduit having a receiving end through which the cable passes axially; an internal seal that inserts into the receiving end; a gland boss that inserts into the receiving end; an external seal that inserts into the boss and extends axially outward from the receiving end; and a grounding assembly disposed between the internal and external seals.
The assembly includes an adapter for providing electrical grounding contact between the cable and the swage tube; a space-retainer for structurally supporting the adapter; and a washer for axially separating the internal and external seals. Various exemplary embodiments provide the adapter for electrically connecting an interior surface of a conduit and an external surface of a cable. The adapter includes an electrically conductive and mechanically flexible sheet having first and second edges that can face each other, the sheet being configured to form an annulus that mechanically contacts the external surface of the cable and a periphery that mechanically contacts the inner surface of the conduit.
These and various other features and aspects of various exemplary embodiments will be readily understood with reference to the following detailed description taken in conjunction with the accompanying drawings, in which like or similar numbers are used throughout, and in which:
In the following detailed description of exemplary embodiments of the invention, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific exemplary embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized, and logical, mechanical, and other changes may be made without departing from the spirit or scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
Various exemplary embodiments related to the invention were developed for the purposes of providing a Cable Shield Ground Adapter (CSGA) with the following characteristics important for use in marine environments and in particular shipboard environments:
Environmental sealing from both interior and exterior weather environments.
Universal Adaptive electrical grounding contact for all sizes of cable or conduit applicable to the maximum interior dimensions of a swage tube whether metric or SAE.
Universal Adaptive electrical grounding contact for minor variances in the interior diameter of swage (stuffing) tubes due to SAE or metric sizing.
Better areal contact with the cable shield and inner wall of swage tube.
Better physical tolerance from pulling or distortion of cable and conduit.
Simplicity of design.
Simplicity of installation, repair and replacement.
At sea component replacement.
Longer lifetime of grounding components.
Ability to use broad selection of conductive materials.
Reduced waste of component materials of common swage tubes.
Reduced cost of installation and repair.
Three potential designs for CSGAs have been developed with maritime utility and exposure to the marine environment as a design driver. These can be notionally referred to as “snowflake”, “roll-o-dex” and “lantern” for purposes of description. Each of these embodiments incorporates a unique deformable conductive diaphragm as the principle component with additional ancillary components common to all three designs. These ancillary components provide for stability during deformation and environmental sealing along with strain relief.
Various exemplary embodiments as described by the proposed designs described as follows overcome all of the design shortcomings of the above listed conventional designs. The exemplary CSGA embodiments are each adaptable to both variances in cable size as well as variances in swage tube diameters using a bidirectional deformable contact design not incorporated in either of the above examples. For example, the “snowflake” diaphragm is designed with peripheral flexible contact fingers along the entire circumference of the diaphragm. This feature is not found in any other known design.
Each of the three embodiments utilize the gland nut 360 supplied with the swage tube 310 to lock components in place and therefore thread size issues common to both the above listed alternatives can be completely avoided so as to enable universal use of the proposed adapters. Each embodiment incorporates ancillary components that can be reused during repair and replacement of the grounding diaphragm and should last the life of the platform with only maintenance needed during refit periods. The grounding diaphragm is designed to be easily repaired in situ with removal and replacement of same type diaphragm components as used in initial installations. Additionally, fitted gaskets are provided for both exterior and interior water intrusion protection with the inner gasket serving as a stabilizing base for the deformable diaphragm.
All three embodiments employ standard components that include the stuffing or swage tube 310, the gland nut 360 that accompanies the swage tube 310 from the manufacturer, the exterior environmental seal 350, the stabilizing washer 340, the conductive retainer 330, and the internal seal 320. The following is a description of each common component followed by a description of the unique components of each design. In particular, conventional arrangements do not incorporate the internal seal 320.
The swage tube 310 is a flared section of pipe made of an electrically conductive material such as steel or aluminum that provides for a grounded penetration through a wall or bulkhead. These components are generally circumferentially welded to the bulkhead but can be threaded under certain circumstances. The purpose of this component is to provide an access point through the bulkhead for the transiting cable 170.
The gland nut 360 is a component provided by the manufacturer to cap the end of the swage tube 310. These nuts are typically machined from brass to the proper diameter and exterior screw-thread (example shown in
The exterior environmental seal 350 is employed by each of the designs, which all utilize a hermetic sealing system which also acts as a centering mechanism (as further described in
A reaction load due to the compression of the external seal 350 on the inner surface of the gland nut 360 creates a sealing surface thereby preventing leakage. The annular compression of the external seal 350 causes the inner diameter of the external seal 350 to slightly decrease. When there is a cable 170 in the external seal 350, the jacket of the cable 170 compresses by the deformation of the external seal 350, hermetically sealing the region between the cable jacket and inner annulus of the external seal 350. The tip 356 of the external seal 350 is beveled to enable the seal 350 to easily slide into the axial aperture of the gland nut 360. The tip 356 extends slightly above the gland nut 360 to provide tension relief to the cable 170.
The bottom of the seal 350 is flared to form a continuous surface for the gland nut 360 to compress. The flared section 352 of the external seal 350 is filleted to inhibit stress concentrations so as to obviate tearing from pulling the seated cable 170. Once the assembly is installed, the flared section 352 compresses between the gland nut 360 and the stabilizing washer 340. The compressed flared section 352 acts a spring-mass-dampening system to enable the internal structure to be resilient to degradation and fatigue failure, initiated from external vibrations.
At least one stabilizing washer 340, and preferably a pair of these, is also used by all three concepts. The washers 340 have the same inner diameter as the uncompressed external environmental seal 350 and outer diameter as the inner diameter of the swage tube 310. The stabilizing washer 340 performs several functions: such as to reduce the pressure placed on the external and internal environmental seals 350, 320 by the retainer 330. When the gland nut 360 is tightened to seat the system, the load transmits through the external environmental seal 350 to the stabilizing washer 340 through the retainer 330 back through another stabilizing washer 340 and divides into the internal environmental seal 320 and swage tube 310. The curve arrow 440 indicates the general load path. The small downward arrows indicate the applied load from tightening the gland nut 360, and the small upward arrows show the reaction load when the lower seal is pressed inward.
Another function of the stabilizing washer 340 is to perform cable centering.
The centering feature is critical to the proper function of the various designs and is provided via the stabilizing washers 340, the environmental seals 320, 350 and the gland nut 360. The stabilizing washer 340 and retainer 330 provide a centering load to the cable 170 enabling the diaphragm 420 in any of the three proposed designs to deform in a symmetric way. Absent this centering component, the cable 170 would experience “rolling” within the diaphragm structure leading to incomplete or sub-optimal ohmic contact of the diaphragm with the cable shield. This type of rolling is depicted for the “snowflake” diaphragm design (shown for the tube 530 in
The retainer or conductive spacer 340 performs three primary functions; it provides for consistent contact pressure between the diaphragm 420, the stabilizing washer 340 and the interior of the swage tube 310 enhancing ohmic response; providing for a minimum component mechanical volume for the diaphragm under deformation providing for optimal structural integrity. The retainer 330 provides for the shaping and controlled deformation of the diaphragm 510 during installation to ensure optimal ohmic contact between the diaphragm 510 and an interior surface 910 in
The internal environmental seal 320 will compress when coming in contact with the inner surface of the swage tube 310. The compression causes a deformation of the internal environmental seal 320, reducing the inner diameter of the cable opening. A cable 170 that extends within the opening experiences a compressive load, sealing both the interface between the cable 170 and the internal seal 320, and the swage tube 310 and the external seal 350.
Due to the torsional flexibility of the adapter 610, the “snowflake” design can be adapted to a variety of cable sizes. The conventional Skintop® employs a flexible diaphragm similar in concept to the “snowflake” design. Significant physical differences can be noted between the conventional and exemplary “snowflake” designs are manifest in the function of the diaphragms.
The resultant structural loading for the SkinTop® design imposes the requirement of stiffer materials and shorter finger lengths, thereby limiting its range of applicable cable sizes, as compared to the “snowflake” embodiment. The smallest clamping diameter for the “snowflake” design is limited only by the resolution of the stamping and is likely to be less than 0.04 inches and maximum variation is limited by the maximum cable size that can be transited by the swage tube 310. The “snowflake” diaphragm is non-load bearing, this feature being ascribed to different components described in detail below. This enables the “snowflake” to be composed of non-structural materials such as foil laminates and to have finger lengths that extend fully to the center of the diaphragm.
For the first or “snowflake” embodiment, the design unique component is the conductive diaphragm or adapter 610, which operates in conjunction with the retainer 330. The adapter 610 constitutes an electrically conductive circular disc. The radial slots 650 starting from the center 630 of the adapter 610 and extending outwards toward the circular periphery or rim 640. These form the flexible fingers that slide over the shield of a cable 170. There are also shorter conductive fingers on the perimeter of the diaphragm to enable the adapter 610 to deform and fit snugly into the swage tube 310 despite mild variation in the tube diameter providing optimal ohmic contact with the inner surface (910) of the swage tube 310.
Because the diaphragm 510 is non-load bearing, this component can be made from a variety of very thin materials, so long as the material's elastic deformation range is adequate to support the installed component (under load) without yielding to plastic deformation, and possesses electrically conductive characteristics. Foil covered plastic sheets could be used in this particular design. This design characteristic renders the “snowflake” and the other embodiments unique.
A second design feature of the “snowflake” design is the utilization of a split-ring topography. The split 670 enables the (deformed) adapter 710 to be removed or replaced after a cable 170 has been terminated to the equipment interface. This is a unique feature of all three designs, implemented in consideration of the difficulty and considerable cost of repairing a cable shield ground adapter on an installed system. This design feature is not found in any conventional configuration.
A third feature of the “snowflake” design is the ability to stack multiple adapters 710 within the swage tube 310, further enhancing the ohmic path from the cable shield to the inner surface (910) of the swage tube 310. With each doubling in the number of adapters 710 in the stack, the ohmic path reduces by the same factor. The stacking could be arranged on either side of the conductive retainer 340 or with adapters 710 in direct contact, such as a stack of coins.
The spacer or retainer 330 may serve two purposes. The retainer 330 mechanically responds to form a load path to transmit the compressive force developed by the tightening of the gland nut 360. The distribution of force over the diaphragm's periphery 640 helps seat the diaphragm 510 within the stuffing tube bowl 315 ensuring optimal ohmic contact between the diaphragm 510 and the inner wall 910 of the swage tube 310. The second purpose of the retainer 330 is to reduce the ohmic path to the swage tube 310, by providing a larger contact area.
For the second embodiment, the unique component of the “roll-o-dex” design is the electrically conductive adapter 1310, being constructed from a single piece of conductive material. The adapter 1310 is not load-bearing, and therefore a thin conductive material can be used for its construction. The tabs 1330 and 1340 are bent in alternating opposing directions, being repeated for all tabs. The “roll-o-dex” adapter 1310 is designed to elastically deform into an annular shape with the pointed tabs 1330 facing toward the central axis cavity 1360 of the roll. The adapter 1310 can be placed inside the retainer 330 and unfurl thereby securing itself inside the retainer 330. The unique feature of the “roll-o-dex” design is that the adapter 1310 can be stacked as a doublet using the retainer 330 to hold the pair in place. This increases the surface contact area between the adapter 1310 and the interior surface 910 of the swage tube 310, thereby providing an enhanced ohmic grounding path.
The outer flexible finger tabs 1340 (in
The conducting retainer 330 serves three functions. First, the retainer 330 acts to form a load path to transmit the compressive force developed by the tightening of the gland nut 360. The distribution of force over the peripheral rim 640 of the diaphragm facilitates seating the adapter 1310 within the stuffing tube bowl 315 ensuring optimal ohmic contact between the (deformed) diaphragm 710 and the inner surface 910 of the swage tube 310.
The second function of the retainer 330 is to hold the “roll-o-dex” adapter 1310 into an annular shape. The foil strip 1210 is rolled into an annular cylindrical adapter 1310 and inserted into the retainer 330. This retainer-adapter sub-assembly is then placed inside of the swage tube 310 through which the cable 170 can be inserted. The third purpose is to reduce the ohmic path to the swage tube 310, by providing a larger contact area.
Installation of the grounding sleeve 2710 is accomplished by wrapping the sheet around the circumference of a shielded and jacketed cable 170. The toothed strip 2610 is wrapped Such that the teeth 2620 and 2630 can pierce the cable jacket and form an annulus about the cable 170. The sleeve 2710 is then secured into place either through the use of a crimping tool or a separate retaining ring or strap. That retaining ring can be conductive or non-conductive depending on its size and location relative to the anticipated contact point of the adapter 2310, which can be installed over the sleeve 2710 to complete a grounding path between the conduit shield 2930 and the inner surface 910 of the swage tube 310.
The grounding sleeve 2710 can be easily removed and replaced and provides a method whereby the cable jacket need not be cut to allow the adapter 2310 to gain good ohmic contact with the cable shield. The accidental cutting of the shield through poor installation practices constitutes one of the primary causes of installation related failures. Another cause is poor environmental protection of the cable shield which results in a significant amount of corrosion of the cable shield, which can be obviated by the interior seal 350.
The conductive adapter 2310 for the “lantern” design constitutes a cut sheet with two parallel border strips 2120 and 2125 that in rolled-form produce corresponding parallel rings 2320 and 2325. These rings 2320 and 2325 are connected together by a number of ribs 2340, and also include tabs 2330 cut orthogonal to the borders. The ribs 2340 and tabs 2330 can be scored for controlled deformation of the sheet 2110.
The conductive adapter 2310 is designed to elastically deform into an annular cage form. The strip 2110 (cut from a metal sheet) can be rolled along an axis parallel to the slats 2140 to form the annular cage structure for insertion between and secured by two conductive retainers 330. Tabs 2130 cut into the strip 2110 are bent outward to secure the strip 2110 now rolled into the adapter 2310 and to prevent the conductive retainers 330 from slipping toward the center of the adapter 2310 under compressive loads. The ribs 2340, when compressed, bend along the scoring marks creating contact fingers that simultaneously extend radially inward and outward as inner edges 2250 and outer edges 2260 while compressing the cage structure. This enables the ribs 2340 to concurrently center themselves on the shield of the cable 170 and within the swage tube 310. The simultaneous extension allows this adapter 2310 to accommodate the widest variety of cables and tube sizes.
An additional feature that can be implemented on the “lantern” design is the addition of “teeth” to the inner finger contacts. As the inner finger edges 2250 extend and make contact with the cable 170, the teeth 2910 pierce the cable jacket to make ohmic contact with the conductive cable shield 2930. This implementation of the “lantern” design provides a unique means by which a cable 170 can be grounded without physically cutting away part of the jacket. Removing the necessity to cut away the jacket obviates exposure of the cable shield to the most common source of shield damage. Additionally, this method reduces the areal (i.e., bounded space) exposure of the cable shield to environmental factors that lead to degradation of the ohmic contact between the cable 170 and the ground adapter 2310.
The retainers 330 are designed to have an outer diameter to match the inner diameter of the swage tube 310, which should match the diameter of the adapter 2310 when properly deformed. The retainers 330, when compressed serve as a load path for the compressive load imparted by the gland nut 360 when tightened. This also serves to stabilize the adapter 2310 upon full compression.
Commercial Potential: The commercial potential for the ground shield adapter described within broad and global in nature. The designs can be used for commercial as well as naval ship construction. Due to the inherent design tolerance for either Society of Automotive Engineers (SAE) or metric dimensions for swage tubes 310, the design can be utilized for both domestic and foreign ship construction. Although designed with maritime applications in mind, the designs can also be utilized for general construction practices where swage tubes or breach type fittings might be required for facility cable penetrations that require grounding, stabilization, or weather sealing.
Reason: The United States Navy utilizes hundreds of topside components that require electrical power or signal connections to systems internal to the ship via cable. Because of the complex and system hostile EM environment the connecting cables must be protected from unwanted EM coupling to the signal or power cable. The cables therefore are protected from the EM environment by a conductive cable shield grounded via a CSGA to the ship's bulkhead.
Current CSGA technologies utilized by the Navy are difficult to manufacture due to machining, difficult to install, repair and replace due to design characteristics, have relatively short service life due to poor environmental design, and are very expensive (approximately $300.00 per unit in quantity). The Navy also currently purchases CSGAs in multiple sizes due to the conventional CSGAs inability to adapt to multiple swage tube sizes or cable diameters. This significantly increases acquisition, logistics and design costs. The strategic goal of the proposed design is to provide the Navy a cost efficient technology that can significantly reduce total ownership costs via acquisition maintenance and logistics across the fleet.
Advantages: The new designs utilize relatively few parts with most components being common to all three designs with the exception of the grounding diaphragm. Common components include environmental seals that also perform as stabilizing structural components for cable centering and conductive spacers that perform diaphragm deformation control functions. The grounding diaphragm itself is a cut stamped component made out of conductive sheeting.
The sheeting can be any useable conductive material depending on application such as brass, copper, stainless steel, aluminum or carbon impregnated sheeting. The required thickness of the sheeting depends on the design. The exemplary designs also utilize all components of the stuffing tube assembly. This includes the brass gland nut used as an integrating component and currently unused for shielded cable applications due to design characteristics of conventionally available CSGAs. Conventionally, CSGA assembly discards the gland nut, resulting in waste higher incurred costs to the Navy.
Alternatives include: [1] Use of conventional CSGA designs examples of which are described within this disclosure. [2] Use of a grounding technology proposed by Northrop Grumman Ship Builders (NGSB) known for its use of Double Optimized Braid (DOB) Cable Shielding. This material approach uses bronze or brass wool as the material matrix that provides grounding between the cable shield and the swage tube. The material has a relatively high surface area to volume ratio that lends concern to issues of corrosion and loss of effective grounding. This wool greatly simplifies replacement of the grounding material.
Cut-less Cable Shield Grounding Sleeve: The Cut-less Cable Shield Grounding Sleeve is a device whereby a typical cable shield ground adapter can be provided good ohmic contact with a cable shield without removal of the cable protective jacket. The exemplary device described herein is formed from a single sheet stamping 2610 of an appropriate conductive material such as copper, stainless steel or aluminum. The sheet can be stamped so that at least two rows of small teeth 2620 and 2630 protrude on one side. These teeth, in the exemplary implementation, can be arranged in orthogonal directions to provide stability for the collar when the sheet's ends 2640 and 2650 join together, and the resulting sleeve 2710 is properly installed.
Testing of correctly installed conventional CSGAs in stuffing tube installations has yielded an average direct current (DC) resistance of approximately 10 milliohms (mΩ). Testing of early prototypes of the new exemplary CSGA design has yielded an average DC resistance of 7 mΩ or less based on design tested. Early results indicate that the DC resistance of the new design is at least comparable to conventional designs.
Dimensions of exemplary stuffing or swage tubes 310 are available from Research Tool & Die Works in Carson, Calif. For example, the D-size stuffing tube, as indicated in http://www.rtnd.com/catalog/4-8.pdf, includes an inner diameter of 1¼″, and a throat length of 1⅝″. The proposed diameter of the first embodiment would be slightly larger to ensure a circumferential contact by an interference fit with the inside of the swage tube 310.
The length of the second and third embodiments would match the circumference of the inner ring, 330. This exemplary ring has a diameter that is approximately ¼″ less than the diameter of the swage tube 310. The particular dimensions identified herein represent explanatory examples and are not limiting. Thus, other stuffing tube and conduit sizes can be contemplated within the spirit of the claims. MIL-S-24235/2C provides the military standard dimensions for electrical cable packaging MIL-S-24235, available at http://dornequipment.com/milspecs/pdf/24235-2C.pdf.
While certain features of the embodiments of the invention have been illustrated as described herein, many modifications, substitutions, changes and equivalents will now occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the embodiments.
Pursuant to 35 U.S.C. §119, the benefit of priority from provisional application 61/628,298, with a filing date of Oct. 11, 2011, is claimed for this non-provisional application.
The invention described was made in the performance of official duties by one or more employees of the Department of the Navy, and thus, the invention herein may be manufactured, used or licensed by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.
Number | Date | Country | |
---|---|---|---|
61628298 | Oct 2011 | US |