Information
-
Patent Grant
-
6559387
-
Patent Number
6,559,387
-
Date Filed
Friday, September 1, 200024 years ago
-
Date Issued
Tuesday, May 6, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Reichard; Dean A.
- Lee; Jinhee J
Agents
- Fitch, Even, Tabin, Flannery
-
CPC
-
US Classifications
Field of Search
US
- 174 55 G
- 174 65 G
- 174 683
- 174 135
- 174 136
- 174 138 E
- 439 100
- 411 175
- 411 174
- 411 176
-
International Classifications
-
Abstract
A universal ground clamp having a clamping strap having a series of uniformly sized and spaced apertures to facilitate the installation of the clamp onto a wide range of structures of various shaped and sized cross-sections. A metal stud, through which the clamping strap is secured, includes a terminal portion adapted to accommodate and have secured therein a ground wire. A pair of curved plates supported upon the stud are used to form a tight clamping action of the strap about the structure to be grounded, without subjecting the strap to localized stresses or tearing, but permitting the strap to tightly encircle the structure. One of the curved plates is captivated on the strap with stops.
Description
FIELD OF THE INVENTION
The present invention relates to electrical grounding devices and, more particularly, to an universal clamp used in coupling rods, pipes or other structures of various cross-sections to ground mechanisms.
BACKGROUND OF THE INVENTION
In many instances, there is a need to provide an electrical coupling to structures of various sized and shaped cross-sections for grounding purposes. These instances include grounding of pipes, conduit, and other structures of mechanical and/or electrical systems to dissipate electrical charge to protect the systems and/or individuals who may come in contact with the components of such systems. Grounding clamps are commonly employed for these purposes.
Grounding clamps come in a variety of configurations and use various means for forming a conductive attachment. One type of clamp includes a metal strap with a plurality of holes, a metal stud, and conventional nuts to secure the strap about the periphery of the structure. More specifically, the metal strap encircles the structure and the threaded stud is inserted through two of the holes to secure the metal strap tightly around the periphery of the structure. The metal strap is drawn tightly around the periphery of the structure as the nut is tightened on the bolt. The clamp typically includes a ground terminal to which a wire is attached for connecting the clamp to a conventional ground mechanism, such as a ground rod. Strap type clamps accommodate different diameters of pipes or conduits or cross-sections of other shaped structures, such as boxes. This adaptability to a variety of structures eliminates the need for an inventory of grounding clamps that are specifically designed for a specified structure.
Strap-type clamps typically use nuts with sharp edges. These sharp edges are known to gouge the metal strap as the metal strap is tightened at the stud. This gouging causes creases and areas of weakness which severely shortens the overall life of the strap and can limit the effectiveness with which it conducts electricity.
One solution to gouging, or otherwise providing a non-destructive tightening of the strap, is disclosed in my U.S. Pat. No. 4,626,051, which discloses the use of two nuts, each having a smooth curved surface for engaging the strap. The curvature of the surface better accepts the angle of the metal strap as it leaves the various structures and attaches to the stud. While this advancement successfully prevents the gouging of the strap by eliminating the sharp edges of the engagement, one of the nuts must be removed from the stud during installation, and this leads to the possibility of losing the nut and/or lost time retrieving (if even possible) the lost nut. This situation is compounded by the fact that many installations are made in awkward and sometimes dangerous locations, such as those to suspended systems requiring installers to use scaffolding, catwalks and/or ladders to reach the suspended structures.
Thus, the present invention addresses the need for an entirely self contained universal clamp that eliminates loose parts.
SUMMARY OF THE INVENTION
The present invention relates to a universal ground clamp for structures with different cross-sectional shape. The clamp includes an elongated strap that is capable of extending around a structure. The strap defines at least two holes and has least one end stop. A securing stud is able to extend through at least two of the holes when the strap is encircled around a structure to tighten the strap. A first strap engaging plate is supported on the securing stud and has a curved surface to engage the strap with a smooth transition. A second strap engaging plate is slidingly supported on the strap and is maintained on the strap by at least one end stop of the strap. The second strap engaging plate has a curved surface to engage the strap with a smooth transition is configured to cooperate with the stud to tighten the clamp between the curved surface of the first strap engaging plate and the curved surface of the second strap engaging plate. A terminal ground wire attachment is provided on the securing stud.
The second strap engaging plate may define a slot through which the strap extends. The second securing plate may include a straight portion that includes the slot though which the strap extends. The second securing plate also may include a second curved portion to locate the slot of the straight portion so that the strap extends over the first curved portion.
The securing stud may include a threaded portion. Further, the second strap engaging plate may define an internally threaded bore that cooperates with the threaded portion of the securing stud to tighten the strap about a structure. The second securing plate also may include a curved portion that includes the curved surface that engages the strap and defines the internally threaded bore.
The at least one stop may be formed integral with the end of the strap. The at least one stop also may be formed from a portion of the strap being deformed to extend out of the plane of the strap.
The terminal ground wire attachment may be clamp. The terminal ground wire clamp may further include a first hole defined by the stud, a second hole defined by the stud that intersects the first hole, and a stud that inserts into the second hole to provide a clamping effect in the first hole.
DESCRIPTION OF THE DRAWINGS
FIG. 1
is an elevational view of an universal ground clamp embodying features of the present invention and being attached to a structure with a circular cross-section by way of example;
FIG. 2
is an exploded perspective view of the universal ground clamp of
FIG. 1
;
FIG. 3
is a bottom perspective view of the sliding nut of the universal ground clamp of
FIG. 1
;
FIG. 4
is a cross-sectional view of the sliding nut taken along line
4
—
4
of
FIG. 3
;
FIG. 5
is a side elevational view of the sliding nut captivated along the strap of the universal ground clamp of
FIG. 1
;
FIG. 6
is a plan view of the sliding nut captivated along the strap of the universal ground clamp of
FIG. 1
;
FIG. 7
is a partial cross-sectional view of the sliding nut captivated along the strap and taken along line
7
—
7
of
FIG. 6
;
FIG. 8
is an end elevational view of the strap of
FIG. 5
;
FIG. 9
is a plan view of the curved nut of the universal ground clamp of
FIG. 1
; and
FIG. 10
is a cross-sectional view of the curved nut taken along line
10
—
10
of FIG.
9
.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to
FIG. 1
, the present invention is shown embodied in an universal ground clamp
10
used as a coupling for attaching a ground to mechanical and/or electrical systems comprising conduits, pipes or other structures with various cross sectional shapes and sizes having conductive capacity. The purpose of attaching a ground clamp
10
is to aid in dissipating electrical charge from structural components of the system, primarily for the safety and protection of the system components not intended to carry electrical charge and those coming in contact with such components.
The universal ground clamp
10
includes a stud
12
, a curved nut
14
on the stud
12
, a terminal ground wire assembly
15
at the stud
12
, a strap
16
with end stops
11
, and a sliding nut
13
captivated on the strap
16
between the stops
11
. The end stops
11
prevent the nut
13
from sliding off the strap
16
, and, thus, eliminates the possibility of losing the nut
13
during installation of the clamp
10
.
Referring to
FIGS. 1 and 2
, the strap
16
is elongated to cover a range of different cross-sectional shapes and sizes. These shapes and sizes include circular, oval and even rectangular or square cross-sections. The length of the strap depends on the particular range of shapes and sizes to be accommodated. For example, with a reference to a circular cross-section, a strap length of about six inches covers a diameter range of three eighths of an inch to two inches, a strap length of about twelve inches covers a diameter of three eighths of an inch to three and five eighths inches, and a strap length of about fourteen inches covers a diameter range of about three eighths of an inch to four inches. For diameters larger than four inches, a longer strap can be used or two or more straps can be joined together to form one ground clamp.
The strap is made of any conductive material and suitable thickness that is sufficiently malleable to conform to the various shapes and sizes. For example, both thirty-two thousandths of an inch dead soft fully annealed copper and twenty-five thousandths of an inch pre-galvanized steel are both suitable thicknesses and materials to effectively conform to the various structures.
To accommodate different shapes and sizes, the strap
16
includes a plurality of spaced holes along a longitudinal centerline, as illustrated in
FIGS. 2 and 6
. The diameter of each hole may vary depending on the diameter of the shank portion
25
of the stud
12
. For example, the diameter of the holes maybe about two hundred and sixty-six thousandths of an inch to accommodate an outer diameter of the stud shank of about two hundred and fifty thousandths of an inch.
The holes
67
are generally spaced at equal distances from each other. The number of holes in the strap depends on the length of the strap. As the strap length is increased, the number of holes is increased. For example a strap having a length of about six inches may have fourteen holes, a strap having a length of nine and one-half inches may have twenty-three holes, and a strap having a length of twelve inches may have twenty-nine holes.
Alternate spacing may also be used to space the holes adjacent the ends of the strap. For example, the spacing between the end holes can be larger. That is, the distance between the first hole
61
and the second hole
62
and the distance between the last hole
69
and the next-to-last hole
68
, is larger. This enables the strap to be designed to fit a particular cross-section size at the lower end of the range for the particular clamp. In addition, for midrange sizes, the first segment of the strap is usually about the structure, and thus, there is no need for a hole in this area. For example, the spacing between the first hole
61
and second hole
62
may be about one-half of an inch, which may be the same as the distance between the second-to-last hole
68
and the last hole
69
, which may also be about one-half of an inch. The spacing between each intermediate hole
67
may be about four hundred thousandths of an inch.
The spacing of the holes is also related to the length of the stud
12
. In other words, the distance between each intermediate hole cannot be greater than the length of the shank portion
25
of the stud
12
. This relationship between the stud and the strap enables the clamp to accommodate intermediate cross-sections between the hole spacings.
As seen in
FIG. 2
, the stud
12
includes a hexagonally shaped head
27
and a shank portion
21
, which includes a short, non-threaded shank portion
23
and the longer threaded shank portion
25
. The non-threaded shank portion
23
is located adjacent the base
24
of the hexagonally shaped head
27
. The non-threaded shank portion, however, is optional. The threaded shank portion
25
extends below the non-threaded shank portion
23
and axially along the longitudinal axis of the stud
12
. The hexagonally shaped head
27
defines an internally threaded hole
28
coaxial with the longitudinal axis of the stud
12
, as part of the terminal ground wire assembly
15
.
The terminal ground wire assembly
15
includes a ground wire stud
51
with external threads configured to mate with internal threads
29
lining the threaded bore
28
. The head
27
of the stud
12
also defines a bore
80
that extends perpendicular to the longitudinal axis of the stud
12
and passes completely through the head
27
. The bore
80
is shaped to accept a stranded or solid ground wire
18
of various gauges, such as those in at least the range of fourteen to six AWG. The bore
80
may be round or elongated to accommodate larger diameter wires.
The threaded hole
28
forms a “T” with bore
80
. Thus, when the ground wire
18
is inserted into the bore
80
, the ground wire stud
51
is threaded into the threaded hole
28
until it engages the ground wire
18
. The combination of the ground wire stud
51
, the head
27
of the metal stud
12
, and the “T” configured bores
28
and
80
result in the use of compressive forces to secure the ground wire
18
to the stud
12
. By tending to eliminate the stresses, such as those applied when the ground wire is wrapped around a ground post, the conductive capacity of the ground wire
18
is less likely to be reduced because of the reduced chance for the wire to be frayed or split.
With reference to
FIGS. 5-8
, the strap
16
includes end stops
11
to captivate the sliding nut
13
to prevent inadvertent loss during installation of the clamp
10
. Although the strap
16
is illustrated with stops
11
at both ends, only the stop at the free end
11
a
of the strap is necessary. The use of stops at both ends, however, facilitates ease of assembly of the clamp because then the stud can be positioned at either end, and there will be not potential for the sliding nut to become separated from the strap during installation.
As illustrated, the stops
11
take the shape of a raised partial dimple. More specifically, each of the stops has a center portion
91
symmetrically curved about the longitudinal centerline of the strap
16
with a major radius of curvature
95
and a pair of smoother curved segments
96
extending from the center portion
91
to the sides of the strap
92
with a second radius of curvature. For example, the center portion may have a radius of the curvature of about one hundred thousandths of an inch and a depth of about one hundred thousandths of an inch (dimension Z). The secondary curved portions
96
may have a radius of curvature of about thirty-one thousandths of an inch. The foregoing described stop is only one example of a stop shape contemplated by the present invention. For example, the stop may be formed with a constant radius of curvature. The stop also may include multiple dimples. Although the dimple-type configuration is formed integral from the strap, such as by conventional stamping or metal bending techniques, the stops can also be formed using separate components. For example, small protrusions, rivets, screws, tabs, studs or any other obstruction at the end of the strap to prevent the release of the sliding nut could be used in accordance with the present invention.
Referring to
FIGS. 1
,
3
and
4
, the sliding nut
13
has a multiple curved shape with a first curved portion
32
, a second curved portion
36
, and a third generally straight portion
31
. The first curved portion
32
defines a threaded bore
33
that cooperates with the threaded shank portion
25
of the stud
12
. The straight portion
31
includes a slot
35
through which the strap
16
extends to allow the sliding nut
13
to slide along the strap
16
. The second curved portion
36
positions the slot
35
such that the strap
16
is above the bore
33
of the first curved portion
32
. This positioning enables a straight alignment with the holes of the strap
16
.
More specifically, the radius of curvature of the first curved portion
32
of the sliding nut
13
must be generous enough to contact the strap
16
coming off the structure in a manner to ensure a smooth transition so as not to create any localized stress points on the strap, such as sharp bends creating points of weakness. For example, the radius of curvature of the first curved portion may be two hundred and fifty thousandths of an inch for circular cross sections.
The bore
33
of the first curved portion
32
is centered about the peak. The internal threads
34
of the bore
33
extend between the convex side
37
to the concave side
38
and mate with the external threads
26
of the stud
12
. The slot
35
formed in the straight portion
31
extends between the sides
93
,
94
of the nut
13
. The slot width (dimension X) is to be greater than the thickness of the strap
16
, but less than the height of the stops
11
to allow the sliding nut
13
to slide freely along the strap
16
, but to prohibit passage of the stops
11
. For example, using a twenty-five thousandths of an inch or a thirty-two thousands of an inch thick strap, the slot height may be about eighty thousandths of an inch, where the stops have a height of about one hundred thousandths of an inch. The length (dimension Y) of the slot depends on the width of strap (dimension W). For example, the slot length may be seven hundred and sixty thousandths of an inch for a strap with a width of about six hundred thousandths of an inch.
With references to
FIGS. 1
,
2
,
9
and
10
, the curved nut
14
remains on the stud
12
. The curved nut
14
defines a central bore
45
to receive the shank portion
25
of the stud
12
. The curved nut
14
is placed on the stud
12
prior to the manufacturing of the stud
12
. Thus, the curved nut
14
is captivated longitudinally along the shank portion
25
at the non-threaded portion
23
of the stud
12
because the diameter of the central bore
45
is less than the outer diameter of the threaded shank portion
25
. The curved nut
14
is free to rotate about the non-threaded portion
25
to properly approach the strap
16
during installation. Alternatively, the central bore
45
may have internal threads
44
that mate with the external threads
26
of the stud
12
to thread the nut
14
onto the shank portion
25
until it is in position at the nonthreaded portion
23
for free rotation.
The curved nut
14
also includes a generally flat side
41
and a generally curved side
42
. The nut
14
is threaded onto the threaded shank portion
25
into position with the flat side
41
adjacent to the bottom
24
of the hexagonally shaped head
27
. When the flat side
41
of the curved nut
14
is adjacent to the bottom side
24
of the head
27
of the stud
12
, the curved nut
14
is free to rotate independently of the stud
12
. The curved side
42
facilitates the same smooth transition with the strap
16
as the first curved portion
32
of the nut
13
. The diameter of the curved nut
14
is large enough to reach the outer perimeter of the hexagonally shaped head
27
portion of the stud
12
. For example, the curved nut
14
may have a diameter of about two hundred and fifty thousandths of an inch at the flat side where the maximum cross dimension of the head
27
of the stud
12
is about one-half of an inch. If the curved nut
14
is substantially smaller than the head
27
of the stud
12
, then there is a possibility that the strap may be pinched or gouged during the transition from the pipe
17
to the stud
12
.
To install the ground clamp
10
, the strap
16
is wrapped around the structure, such as the illustrated conduit
17
. It is manually tightened around the structure until one of the holes of the strap
16
lines up with the stud
12
. The sliding nut
13
is then slid into position under the aligned hole. The stud
12
is then inserted through the hole and turned into the threaded hole
33
of the sliding nut
13
to draw the strap
16
tightly around the structure
17
. A conventional tool, such as a wrench, pliers, vice grips, may be used with the head
27
of the stud
12
as necessary to obtain the appropriate degree of tightness for the strap
16
about the structure. Next, the ground wire stud is turned to allow space for a ground wire to be inserted into bore
80
of the head
27
of the stud
12
. After insertion of the ground wire, the ground wire stud
15
is tightened down by rotation to clamp the wire in the bore
80
by compressive force. The ground wire is attached to an acceptable ground mechanism.
While the invention has been described in the specification and illustrated in the drawings with reference to preferred embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof Therefore, it is intended that the invention not be limited to the particular embodiments illustrated by the drawings and described in the specification as the best modes presently contemplated for carrying out this invention, but that the invention will include any embodiments falling within the description of the appended claims.
Claims
- 1. A universal ground clamp for structures with different cross-sectional shape, comprising:an elongated strap being capable of extending around a structure, the strap defining at least two holes and having at least one end stop; a securing stud to extend through at least two of the holes of the strap to be used to tighten the strap about the structure; a first strap engaging plate being supported on the securing stud and having a curved surface to engage the strap with a smooth transition; a second strap engaging plate being slidingly supported on the strap and maintained on the strap by at least one end stop of the strap, having a first curved portion defining a slot through which the strap extends and a second curved portion which is generally curved in an opposite direction of the first curved portion to engage the strap with a smooth transition and align the slot of the first curved portion so that the strap extends through the slot and over the second curved portion; and a terminal ground wire attachment on the securing stud.
- 2. The universal ground clamp of claim 1 wherein the second strap engaging plate defines a slot through which the strap extends.
- 3. The universal ground clamp of claim 2 wherein the first curved portion of the second strap engaging plate includes a straight portion that includes the slot through which the strap extends.
- 4. The universal ground clamp of claim 3 wherein the securing stud includes a threaded portion and the second strap engaging plate defines an internally threaded bore that cooperates with the threaded portion of the securing stud to tighten the strap about a structure.
- 5. The universal ground clamp of claim 4 wherein the second curved portion includes a curved surface that engages the strap and defines the internally threaded bore.
- 6. The universal ground clamp of claim 1 wherein the at least one stop is formed integral with an end of the strap.
- 7. The universal ground clamp of claim 6 wherein the at least one stop is formed from a portion of the strap being deformed to extend out of the plane of the strap.
- 8. The universal ground clamp of claim 1 wherein the at least one stop is formed integral with an end of the strap.
- 9. The universal ground clamp of claim 8 wherein the at least one stop is formed from a portion of the strap being deformed to extend out of the plane of the strap.
- 10. The universal ground clamp of claim 1 wherein the terminal ground wire attachment includes a wire clamp.
- 11. The universal ground clamp of claim 1 wherein the terminal ground wire clamp includes a first hole defined by the stud, a second hole defined by the stud that intersects the first hole, and a stud that inserts into the second hole to provide a clamping effect in the first hole.
- 12. The universal ground clamp of claim 1 wherein the terminal round wire attachment includes a wire clamp.
- 13. The universal ground clamp of claim 1 wherein the terminal ground wire clamp includes a first hole defined by the stud, a second hole defined by the stud that intersects the first hole, and a second stud that inserts into the second hole to provide a clamping effect in the first hole.
- 14. A universal ground clamp for structures with different cross-sectional shape, comprising:an elongated strap being capable of extending around a structure, the strap defining at least two holes and having at least one end stop; a securing stud to extend through at least two of the holes of the strap to be used to tighten the strap about the structure; a first strap engaging plate being supported on the securing stud and having a curved surface to engage the strap with a smooth transition; a second strap engaging plate being slidingly supported on the strap and maintained on the strap by at least one end stop of the strap, having a first curved surface to engage the strap with a smooth transition and defining a threaded bore on the first curved surface through which the securing stud is disposed, and being configured to cooperate with the stud to tighten the clamp between the curved surface of the first strap engaging plate and the curved surface of the second strap engaging plate; and a terminal ground wire attachment on the securing stud.
- 15. The universal ground clamp of claim 14 wherein the second strap engaging plate defines a slot through which the strap extends.
- 16. The universal ground clamp of claim 15 wherein the second strap engaging plate includes a straight portion that includes the slot through which the strap extends.
- 17. The universal ground clamp of claim 16 wherein the second strap engaging plate includes a second curved surface to which the slot of the straight portion is connected so that the strap extends through the slot and over the first curved surface.
- 18. The universal ground clamp of claim 17 wherein the securing stud includes a threaded portion that cooperates with the threaded portion of the bore to tighten the strap about a structure.
US Referenced Citations (9)