The disclosure relates to heat pump defrost controllers.
A heating, ventilation, and air conditioning (HVAC) system that includes a heat pump typically includes an indoor and an outdoor heat exchanger coil. The heat exchanger coil may have a liquid, such as a refrigerant, running through piping, and when operating, the piping has air flowing over it. Because heat only flows from a high energy region to a low energy reason, a heat exchanger coil may extract energy from the air flowing through the coil if the coil is cooler than the surrounding air. In cooling mode, for example in summer in the northern hemisphere, the heat pump may be configured to cause the indoor coil to be cooler than indoor air passing through the indoor coil to remove heat from the air and cool the indoor space. In heating mode, the heat pump may configure the outdoor heat exchanger coil to be cooler than the outdoor air passing through it to extract energy from the outdoor air, transfer it to the indoor coil, and heat the indoor space.
Ambient air contains moisture, which may condense on the cooler heat exchanger coil. If the heat exchanger coil is cold enough, this moisture may form ice. Ice build-up inhibits airflow through the coil. In heating mode, even at relatively warm outside air temperatures, ice may still form on the outside heat exchanger coil. The ice should be removed or the heat pump may fail to heat the indoor space.
In general, the disclosure is directed to a universal heat pump defrost controller device that is configured to determine when and for how long to cause a heat pump to enter defrost mode to remove ice from the outdoor heat exchanger coil. The defrost controller of this disclosure is configured to work with a variety of heat pumps which may implement a variety of defrost approaches. An example of defrost approach may include a timing cycle, which puts the heat pump in defrost mode periodically for a set time. Other examples of defrost approaches may include determining a temperature difference or a pressure difference between two or more areas of the heat pump and put the heat pump into defrost mode based on a temperature or pressure difference satisfying a predetermined threshold. Other examples of defrost approaches may include some combination of temperature or pressure sensing along with periodic timing.
The universal heat pump defrost controller of this disclosure is includes an intuitive display and user input with which a user may install the defrost controller on a heat pump and configure the controller to efficiently control the defrost cycle for a specific heat pump under specific conditions. A heat pump that does not defrost enough may limit air flow through the outdoor heat exchanger coil, reduce heat transfer efficiency and may cause stress on some heat pump components, such as the compressor. A heat pump that defrosts more than is needed uses additional energy, such as electricity, which may reduce the overall efficiency of the HVAC system as part of an overall system to control the environment of one or more spaces within a building. The universal heat pump defrost controller of this disclosure provides a defrost cycle control that is configurable to a particular heat pump approach, which may improve efficiency, equipment safety and reliability.
The details of one or more examples of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the disclosure will be apparent from the description and drawings, and from the claims.
In general, the disclosure is directed to a universal heat pump defrost controller device that is configured to determine when and for how long to cause a heat pump to enter defrost mode to remove ice from the outdoor heat exchanger coil. The defrost controller of this disclosure is configured to work with a variety of heat pumps which may implement a variety of defrost approaches. An example of a defrost approach may include a timing cycle, which puts the heat pump in defrost mode periodically for a set time. Other examples of defrost approaches include determining a temperature difference or a pressure difference between two or more areas of the heat pump and put the heat pump into defrost mode based on a temperature or pressure difference satisfying a predetermined threshold. Other examples of defrost approaches include some combination of temperature or pressure sensing along with periodic timing.
The universal heat pump defrost controller of this disclosure is includes an intuitive display and user input with which a user may install the defrost controller on a heat pump and configure the controller to efficiently control the defrost cycle. The universal heat pump defrost controller of this disclosure provides a defrost cycle control that is configurable to a particular heat pump approach, which may improve efficiency, equipment safety and reliability.
In some examples, the defrost controller on an existing heat pump installation may malfunction or fail. To replace a defective defrost controller, given the wide variety of heat pump models and manufacturers, a repair technician may either need to carry a large number and variety of replacement parts on the repair truck or delay a repair until the replacement model of defrost controller is delivered to the repair site. A repair technician may instead carry a few universal defrost controllers that can be used on a variety of heat pump models. Installing a replacement defrost controller may require a significant amount of field configuration to work properly with the existing heat pump. In some examples, even replacing a defrost controller with the exact replacement part may require a significant amount of field configuration to account for changes in climate from default settings for the defrost controller.
Heat pump controllers, and heat pumps, from different manufacturers may operate at different temperatures, place their sensors in different locations, and have differing rates of frost accumulation. The large amount of variation may require in depth knowledge by the repair technician to properly configure the heat pump controller. Some examples of existing heat pump controllers have no display and may either be non-configurable or offer very little configurability. Some examples of universal defrost controllers, while capable of replacing many models, may be difficult to setup or require a great amount of heat pump appliance knowledge to configure properly. In this disclosure a repair technician may also be referred to as an installer.
In contrast, the universal heat pump defrost controller of this disclosure includes a controllable display on the defrost controller and may also include wireless connectivity to configure the controller via communication with a computing device. For example, the defrost controller of this disclosure includes a display for showing operating temperatures, which may show the installer normal/current operating temperatures of the appliance to help in troubleshooting and configuration. The defrost controller of this disclosure may display key parameters, such as outdoor air temperature and outdoor coil temperature so the installer can easily see the operating conditions to help the installer troubleshoot a malfunctioning or poorly configured appliance.
Climate control system 100 is an example of a forced air system that may be used to control the temperature of an enclosed space, such as an office building, home, or other similar space. Example climate control system 100 includes a forced air heating, ventilation and air conditioning (HVAC) system 102, HVAC controller 116, thermostat 118, heat pump 130 and defrost controller 120.
HVAC system 102 is configured to draw return air 104 from one or more enclosed spaces, which may be indoor spaces. HVAC system 102 heats, cools or just circulates the air back to living spaces 106. HVAC system 102 includes a blower 112 mechanically connected to blower motor 114, heat exchanger 110, and one or more auxiliary heat exchangers 108. In this disclosure, for simplicity, the heated and cooled spaces will be referred to as living spaces.
Blower motor 104 drives blower 112 via a belt, or some other mechanical connection. Blower 112 forces air through heat exchanger 110, auxiliary heat exchanger 108 and to living spaces 106, which draws return air 104 from return air ducts in the living spaces.
Heat exchanger 110 is an indoor heat exchanger connected via plumbing to an outdoor heat exchanger in heat pump 130. In cooling mode, heat exchanger 110 transfers energy from the air to liquid refrigerant in the coils of heat exchanger 110, thereby cooling the air sent to living spaces 106. In heating mode, heat exchanger 110 transfers energy from outside air passed through the outdoor heat exchanger coil in heat pump 130 (not shown in
Auxiliary heat exchanger 108 is used to heat the air sent to living spaces 106 when heat pump 130 does not provide adequate heat, such as during a defrost cycle, or if the outside air temperature (OAT) is too cold for heat pump 130 to function. Examples of auxiliary heat exchanger 108 may include an electric heating unit, such as a resistance heater, a heat exchanger connected to a gas or other type of furnace.
In the example of
Defrost controller 120 is configured to operate with a variety of different heat pumps 130 operating in a variety of different climates. In some examples, defrost controller 120 may include one or more circuit boards, a display, input controls and a wireless communication interface. The one or more circuit boards may include a number of electrical connection terminals used to connect control or sensing signals between the components of heat pump 130 and defrost controller 120. Defrost controller 120 may also have connection terminals to communicate with HVAC controller 116 and/or directly with thermostat 118. Defrost controller 120 may also include one or more mounting tabs to mechanically secure defrost controller 120 to heat pump 130.
Defrost controller 120 may include one or more processors to execute the functions of the defrost controller. Examples of the one or more processors in defrost controller 120 may include any one or more of a microcontroller (MCU), e.g. a computer on a single integrated circuit containing a processor core, memory, and programmable input/output peripherals, a microprocessor (μP), e.g. a central processing unit (CPU) on a single integrated circuit (IC), a controller, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), a system on chip (SoC) or equivalent discrete or integrated logic circuitry. A processor may be integrated circuitry, i.e., integrated processing circuitry, and that the integrated processing circuitry may be realized as fixed hardware processing circuitry, programmable processing circuitry and/or a combination of both fixed and programmable processing circuitry.
In some examples, defrost controller 120 may initiate defrost in heat pump 130 based on defrost controller 120 operating in timing mode or demand mode. In one example of a timing mode, a first timer may measure an accumulated run time on the compressor, such as thirty, forty-five, ninety minutes or other configurable time interval. When the accumulated compressor run time reaches the configured time interval, the defrost controller initiates a defrost mode for a set length of time. The interval may be configured based on the model and type of heat pump as well as the location of the heat pump. For example, in dry, arid climate, the interval may be set longer than the interval in more humid regions. The installer may configure the time interval, the defrost mode run time and other timing using the display on defrost controller 120, or via a wireless or wired connection to a computing device.
Demand mode may be based on a pressure difference or a temperature difference. A pressure difference system may consider that that ice on the coil may result in an increase in the pressure differential across the outdoor heat exchanger coil. A defrost controller operating in pressure demand mode may compare the pressure on both sides (input and output) of the outdoor coil. When the difference between the two pressures reaches a preset level, defrost controller 120 may initiate a defrost.
In temperature demand mode, defrost controller 120 may measure the temperature of the piping in the outdoor heat exchanger coil of heat pump 130 as well as the outside air temperature. As ice builds up on the coil, the refrigerant may not absorb as much heat from the outdoor air and the coil gets colder. In other words, as ice accumulates, this ΔT may increases because the coil temperature drops. Processing circuitry of defrost controller 120 may initiate a defrost when the temperature sensors indicate a preset ΔT limit has been satisfied.
Measuring the temperature at different points on the coil may affect the temperature difference input and therefore the operation defrost controller 120. Many outside factors, such as wind, dirt, and mechanical problems may affect the control threshold. The demand mode configuration of defrost controller 120 of this disclosure determines when to initiate a defrost based on the configured temperature set point and other factors. For example, processing circuitry within defrost controller 120 may include instructions to automatically detect when heat pump 130 is in heating vs cooling mode. For example, by sensing the temperature of the heat pump coil, defrost controller 120 may determine if heat pump 130 is heating or cooling based on the temperature rise of the outdoor coil. An outdoor coil rising in temperature may indicate cooling mode. An outdoor coil dropping in temperature may indicate heating mode. Defrost functionality may be automatically enabled when coil temperature is detected in the applicable range. During setup of controller 120, an installer may configure defrost controller 120 the reversing valve system type for the particular heat pump 130. For example, heat pump 130 may energize the reversing valve when in cooling mode (O) or may energize the reversing valve when in heating mode (B).
In some examples, other timers may be used in demand mode. A minimum defrost interval timer may disable the temperature or pressure imitated defrost until a minimum interval from the previous defrost cycle has expired. A fail-safe timer may be incorporated to limit the maximum length of a defrost cycle. This timer may be used as a backup in case the coil sensor fails and does not terminate defrost.
Defrost controller 200 is configured with a square form factor, in which the vertical dimensions 232 are approximately equal to the horizontal dimensions 230. Also, the size of defrost controller 200 is small, when compared to other examples of defrost controllers. Defrost controller 200 is intended as a replacement for original equipment manufacturer (OEM) defrost controllers or other universal controllers. Other components and various wires and cable assemblies. It can be very difficult to find room to install any new devices or kits in an existing heat pump, such as heat pump 130 described above in relation to
The connectors on circuit board 222 are arranged to be all together and below control and indicator panel 234 of defrost controller 200. Control and indicator panel 234 may also be referred to as user interface 234. In some examples the connectors on circuit board 222, such as other connectors 214 may be spade connectors or other type of quick connect electrical connectors. Having all the connectors, each connector with a clear label, in one location below control and indicator panel 234, may provide advantages over other examples of defrost controllers that have difficult to read labels, and may have wiring connections coming from different locations and out of different directions from the circuit board. In contrast, the arrangement of the electrical connectors of defrost controller 200 may simplify installation and thereby reduce installation time, minimize confusion, rework and troubleshooting. In some examples, other connections 214 may include connections to power the reversing valve or to power the auxiliary heat or some portion of the auxiliary heat while the heat pump is in defrost. Defrost controller 200 may be configured to automatically turn on auxiliary heat when in defrost, or rely on the thermostat to call for auxiliary heat as needed.
Some examples of other connectors 214 may be seen in the table below
Air temperature sensor connector 218 may receive the OAT from a temperature probe (not shown in
Defrost controller 200 may be configured to automatically switch between operating modes. For example. In the event that the air temperature sensor fails, defrost controller 200 may be configured to automatically switch from temperature demand mode to timed mode. The air temperature sensor may fail for example, if the sensor becomes disconnected or damaged, such as because of weather. Processing circuitry within defrost controller 200 may detect the status of the air temperature sensor, or some other sensor, e.g. that the sensor is malfunctioning or providing signals that indicate a malfunction. Similarly, the processing circuitry may detect that a sensor has been disconnected or is in some other inactive status.
Relay 220 may control a fan or blower used to move outside air through the outside heat exchanger (not shown in
In some examples, the circuit board layout of defrost controller 200 may be configured to allow for a variety of configurations while maintaining a reduced cost when compared to other examples of defrost controllers. Circuit board 222 may include the main functions of defrost controller 200, such as the processor, display driver, and connections. To maintain a small form factor, a second circuit board (not shown in
Menu display 202 and setting display 204, in the example of
Indicator lights 206 may include one or more indicators that provide information to an installer. In the example of
In some examples defrost controller 200 may include an optical indicator 205. Examples of optical indicator 205 may include a QR code, barcode or similar optical indicator. In some examples, an installer may initiate a wireless connection with defrost controller 200 by reading optical indicator 205 using, for example a mobile computing device. Optical indicator 205 may provide connection and identification information for defrost controller 200 to a software product executing on the mobile computing device.
In operation, both menu display 202 and setting display 204 may depict either numbers or characters. In some examples, menu display 202 may depict the category or mode and setting display 204 may depict the value or setting of the category or mode. In other examples, menu display 202 and setting display 204 may be combined to display a set of characters or numbers. An installer may configure defrost controller to operate with a particular heat pump by selecting a category in menu display 202 by changing the value in menu display 202 with the controls, such as up button 208, down button 210 and select button 212. The installer may read the value of the selected category in setting display 204. The installer may further change the value of the selected category by pressing up button 208, down button 210 and select button 212 as appropriate. In some examples, pressing combinations of buttons, or pressing and holding one or more buttons for a selected period of time may perform other functions. For example, pressing an holding the select button for a period of time may reset a category value to a default value. In other words, processing circuitry in defrost controller 200 receives input from up button 208, down button 210 and select button 212 and causes menu display 202 and setting display 204 to depict the appropriate value. Some examples of categories that may be found in the table below.
Some other options that may be configured include:
In one example, menu display 202 and setting display 204 may be configured to blink, with blinking indicating which of the two is active. In this context, active means which of menu display 202 and setting display 204 corresponds to the parameter being changed, such as whether a category or menu level is being changed (e.g., menu display 202) or a value/setting for the category or menu level (e.g., setting display 204) is being changed. An installer may, for example, push the up/down buttons to choose which category they want to change (the left menu display 202 numbers will blink), and then press select to enter that menu level. The menu number on menu display 202 then stops blinking and the setting icon (setting display 202) starts blinking. The installer can then press the up/down arrows to adjust the setting (i.e. 30, 60, 90 minute timer, etc) for that menu item. The value for the menu item will be shown on setting display 202. By pressing select, the installer can lock in the setting and go back to the main menu. The installer can press and hold select to complete setup.
Defrost controller 200 may be configured to display the coil and air temperatures on the onboard display(s). It is also conceivable that the temperatures may be transmitted wirelessly through Bluetooth or WiFi for example, to be displayed or analyzed on a remote device. It is also conceivable that additional parameters be displayed such as refrigerant temperature delta across the coil, air temperature delta across the coil, refrigerant pressure, etc. Displaying temperatures helps the installer troubleshoot a malfunctioning or poorly configured appliance. Since the two key parameters (outdoor temperature and coil temperature) are displayed, the installer can easily see the operating conditions.
Defrost controller 300 includes control and indicator panel 334, relay 320, other connectors 314, and mounting tabs 240 and 242A and 242B. Control and indicator panel 334 includes menu display 302, setting display 304, and controls 308 as described above in relation to
As described above in relation to
Each mounting tab e.g. 240, 242A, 242B includes a thinned or weak region 245 to make it easier to remove one or more of the mounting tabs. In some examples region 245 may be scored or reduced in material thickness such as by a V-shaped or other shaped groove. A mounting tab that may interfere with installation may be broken off cleanly, in a manner that does not damage the housing 305 of the device, such as by using pliers or hands to bend the mounting tab. In this manner, defrost controller 300 may be securely mounted in a variety of heat pumps to withstand vibration that may be caused by the heat pump compressor, fan or other components, yet be compatible with the limited space available inside a heat pump. Thus, defrost controller 300 represents an example of a defrost controller that can include four mounting tabs connected to the housing 305. At the time of install, an installer may be able to easily remove any of the four mounting tabs in order to achieve a better placement or fit when mounting the defrost controller inside a heat pump.
In operation, processing circuitry within a defrost controller, such as defrost controller 200 described above in relation to
In some examples the location of the OEM sensor may be inaccessible or difficult to access. An installer may place the new coil sensor clip 502B on the coil loop nearest the expansion valve where refrigerant is entering the outside heat exchanger coil during the heating mode. This location may give the largest temperature difference between the air temperature and the coil temperature. The installer may utilize the configuration features of the defrost controller of this disclosure to configure the defrost controller for the new sensing setup.
Air temperature sensor 600 may include sensor 604 and connection 602. Connection 602 may be configured to mate with air temperature sensor connector 218 described above in relation to
Mode screen 700 shows that the defrost controller is indicating the heat pump is in OFF mode. Other examples of current mode of operation may include heat, cool, delay and other similar modes.
Outdoor air temperature screen 702 displays the sensed OAT, for example as sensed by air temperature sensor 600 described above in relation to
Coil temperature screen 704 displays the sensed outside heat exchanger coil temperature, for example as sensed by coil temperature sensor 500 described above in relation to
A defrost controller may be placed in TEST mode (802), which may be used for a variety of functions, including to verify the function of the compressor, fan, and reversing valve and similar tests. During configuration, an installer may verify or set the termination temperature (804), which is indicated by the category 2, and the value of 90 degrees.
In some examples, for values that require three digits, the category may shift to the left-most position in the menu display, and the remaining digits shown in both the menu display and settings display. For example, a termination temperature of 103 degrees may be displayed as shown by 806. In other examples, the defrost controller display may use two-digit hexadecimal numbering to indicate the value or the category. As shown by 808, the termination temperature is shown in hexadecimal 67, which is equivalent to decimal 103 degrees. In other examples, the seven-segment displays may indicate any fault codes, fault history, and similar indications.
The example of
This application claims the benefit of U.S. Provisional Application 62/781,551, filed Dec. 18, 2018, entitled “UNIVERSAL HEAT PUMP DEFROST CONTROLLER,” the entire content of which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62781551 | Dec 2018 | US |