The present invention relates to medical tools used in diagnostic and/or therapeutic procedures, and more specifically to an apparatus for enabling secure coupling of a variety of medical tool types to a medical device.
Many routine treatments employed in modern clinical practice involve percutaneous insertion of medical tools, such as needles and catheters, for biopsy, drug delivery and other diagnostic and therapeutic procedures. The aim of an insertion procedure is to place the tip of an appropriate medical tool safely and accurately in a target region, which could be a lesion, tumor, organ or vessel. Examples of treatments requiring insertion of such medical tools include vaccinations, blood/fluid sampling, regional anesthesia, tissue biopsy, catheter insertion, cryogenic ablation, electrolytic ablation, brachytherapy, neurosurgery, deep brain stimulation and various minimally invasive surgeries.
Guidance and steering of needles in soft tissue is a complicated task that requires good three-dimensional coordination, knowledge of the patient anatomy and a high level of experience. Therefore, image-guided automated (e.g., robotic) systems have been proposed for performing these functions. Among such systems are those described in U.S. Pat. No. 7,008,373 to Stoianovici, for “System and method for robot targeting under fluoroscopy”, U.S. Pat. No. 8,348,861 to Glozman et al, for “Controlled Steering of a Flexible Needle”, U.S. Pat. No. 8,663,130 to Neubach et al, for “Ultrasound Guided Robot for Flexible Needle Steering”, U.S. patent application No. U.S. Ser. No. 15/027,439 to Glozman et al, for “Gripper for Robotic Image Guided Needle Insertion” and co-owned International Patent Application No. PCT/IL2017/050584 to Arnold et al, for “Automated Insertion Device”.
Using an automated insertion device for manipulating a needle or other such medical instrument requires a holder apparatus which can grip the needle, typically the needle head, and couple it to the insertion device.
Co-owned U.S. patent application Ser. No. 15/531,435 to Galili et al, for “Insertion Guide”, discloses a device for insertion of a flexible needle or other insertable medical instrument into a tissue. The device incorporates a collapsible support guide, which supports that part of the needle which has not yet penetrated the tissue, thus preventing it from buckling. The device further includes an arrangement which pulls the needle from its proximal end to provide sufficient force for the penetration process. The collapsible support guide may be a telescopic support tube, or a pair of flexible strips connected along at least a portion of their length and enclosing the needle along its uninserted length in order to support it, with a mechanism, such as counter-rotating rollers, at the distal end of the device to peel the strips from the needle as it is inserted. The device disclosed in U.S. Ser. No. 15/531,435 includes a holder apparatus, which secures together the needle head and the collapsible support guide, for example, the pair of flexible strips, such that counter-rotation of the strips at the distal end of the device will result in pulling of the needle from its proximal end toward the subject's body.
Thus, there is a need for a holder apparatus which can be used in conjunction with a variety of needle types having different needle gauges and needle heads of different shapes and sizes, to avoid limiting the users to a single needle type or requiring them to carry multiple holders, each compatible with a specific needle type.
In addition to being adaptable to different needle types, there is a need for a holder apparatus that allows access to the needle head during the medical procedure, for instance, in order to remove the needle's core and insert a biopsy needle therethrough.
Further, in some cases after the needle has been inserted into the subject's body, the physician may prefer to leave only the needle in place for the remainder of the medical procedure and remove all other components which are coupled to the needle and which may obstruct his/her view or actions. Thus, there is further a need for a holder apparatus which is disconnectable and removable from the needle head.
The disclosures of each of the publications mentioned in this section and in other sections of the specification, are hereby incorporated by reference, each in its entirety.
The present disclosure describes a holder apparatus (also referred to hereinafter as “Needle Head Holder” or “NHH”) used in medical procedures for coupling and securing a needle, or any other similar medical instrument, to an automated medical device, such as an insertion device.
The disclosed holder apparatus has a novel structure, which may be adjustable or moldable, such that it enables the holder apparatus to be universal. It can be appreciated that the term “universal”, as used in the present disclosure, may not necessarily mean that the disclosed holder apparatus is compatible with all existing needle types, but that it is multi-compatible, i.e., it may be used with a variety of different needle types. Such variety of needle types may include needles of different gauges, having needle heads of different shapes and sizes. Thus, the user is not limited to a single needle type and/or required to carry multiple holders, each compatible with a specific needle type.
In some implementations, the holder apparatus may include at least one depression (or—socket), each being adapted to receive one or more needle head configurations. For example, each depression may correspond to the size and shape of a specific needle head configuration.
Once the needle is coupled to the holder apparatus, the holder apparatus is securely fastened to the needle head such that there is substantially no relative movement between the needle head and the holder apparatus.
In some implementations, the needle head holder may comprise a body portion for receiving the needle head, and a “door-like” side portion, which can be closed to secure the needle head therein. The side portion may be connected to the body portion of the NHH via a hinge such that it can be pivoted from an open position to a closed position, and vice versa. Alternatively, the side portion may be adapted to slide sideways using rail/s, for example. Once in the closed position, the coupling between the side portion and the body portion may be secured using a latch, a sliding pin, or any other suitable locking mechanism.
The needle head holder may further include a securing mechanism which can be adjusted, either manually or automatically, to the size and/or shape of the specific needle head in use, in order to efficiently secure the needle head to the needle head holder and allow use of a variety of needle types. In some implementations, the securing mechanism may include at least one semi-flexible gripper, such as a semi-annular gripper, which can be pushed open by the needle head as it is being inserted into the NHH by the user. In other implementations, the adjustable securing mechanism may include an inner layer of a moldable material, such as low-resilience polyurethane foam (or—“viscoelastic” polyurethane foam, memory foam), which can conform to the shape of the object pressed against it. Thus, insertion of the needle head into the NHH and/or locking of the NHH when in its closed state, presses the needle head against the moldable layer, resulting in the moldable layer assuming the shape of the needle head, such that there is substantially no relative movement between the needle head and the NHH.
In some implementations, the securing mechanism of the NHH may include a cover portion which can be moved in order to secure the needle head in the NHH. For example, the height of the cover portion relative to the base of the NHH may be adjustable, such that once the needle is in its proper position within the NHH, the cover portion is displaced toward the needle head until it contacts the proximal end of the needle head. The cover portion may be displaced toward the needle head using a sliding mechanism, for example, or a ratchet mechanism, which ensures that the cover portion cannot unintentionally move upwards and away from the needle head.
In some implementations, the securing mechanism may further include a tightening mechanism configured to tighten the grip of the NHH on the needle head. The tightening mechanism may be in the form of a rotatable knob and a rod passing through the NHH wall, such that rotation or pressing of the knob results in the rod pressing the needle head against the opposite inner wall of the NHH directly or against a moldable material disposed on at least the opposite inner wall.
Another exemplary tightening mechanism may include a zip-tie mechanism. The zip-tie mechanism may be combined with the cover portion of the NHH, such that once the needle head is properly positioned in the NHH, the cover portion is positioned over the needle head and a ridged strip of the cover portion is threaded through a dedicated locking member having an inner pawl. The strip is then pulled to tighten the grip of the cover portion on the needle head. In some implementations, the zip-tie mechanism may be provided unassembled, i.e., such that upon positioning of the needle head in the NHH, the user inserts the ridged strip into the locking member, thus closing the NHH, and he/she then pulls the strip to tighten the NHH's grip on the needle head.
In other implementations, the zip-tie mechanism may be provided pre-assembled, i.e., with the strip already inserted, to a certain extent, through the locking member. In such cases, the closing of the NHH may be achieved by means of a different mechanism, such as a snap-fit mechanism between two anchoring units at the distal end (or—base) of the NHH. Once the snap-fit connection is established, the user pulls the free end of the pre-inserted strip until the cover portion firmly secures the needle head in its position.
The needle head holder may be reusable such that a single holder may be used with different needles during a single procedure and/or during several medical procedures, or it may be disposable, such that it is discarded after a single use, so as to prevent possible cross-contamination between patients.
In some cases, for instance when a biopsy is performed, the procedure may require insertion of a hollow introducer with a solid core therein, the core is then removed and a biopsy needle is inserted. The disclosed needle head holder may be configured such that it allows access to the needle head during the procedure in order to remove the core and insert the biopsy needle into the patient's body through the introducer. In some implementations, the NHH may cover only the distal (lower) portion of the needle head, such that the proximal end of the needle head remains accessible during the medical procedure. In other implementations, as described hereinabove, the NHH may comprise a cover portion which is adjusted according to the height and/or shape of the needle head such that it maintains contact with the proximal end of the needle head and secures it in its place. The cover portion may be moved from its position, or even entirely removed from the needle head during the procedure, to allow the user access to the needle head. For example, the cover portion may be configured to be lifted from the needle head and then rotated sideways and away from the needle head, thus allowing access to the core and replacement of the core with a biopsy needle. In case a ratchet mechanism is employed, removal of the cover portion may require the user to disengage the locking pawl from the ratchet teeth, such as by pressing a release lever, prior to, and in some case also during, the removal of the cover portion from the needle head.
In some cases, once the needle is inserted into the target inside the patient's body, the physician/clinician may prefer to leave only the needle in place and disconnect it from the insertion device, since the insertion device may obstruct his/her view or actions. In some implementations, the NHH may be configured such that it can be disconnected from the insertion device while remaining coupled to the needle head. In other implementations, the NHH may be configured such that it can be de-coupled from the needle head while the needle remains in the patient's body. The NHH may be modular such that it can be disassembled in order to de-couple it from the needle head.
Implementations of the systems and devices described above may further include any of the features described in the present disclosure, including any of the features described hereinabove in relation to other system and device implementations.
One exemplary implementation of the present disclosure involves a device for securing a medical tool, selected from medical tools having different head member configurations (the term configuration as used throughout this disclosure including inter alia size and shape). Such a device may comprise two or more housing portions configured to receive a head member of any of these medical tools, and an adjustment mechanism configured to adjust at least one of the height and shape of at least a portion of the device according to at least one of the height and shape of the head member. At least one of the housing portions may be adapted for movement relative to at least another of the housing portions, to transition the device to at least one of from an open state to a closed state and from a closed state to an open state. When the two or more housing portions have received a head member and are in a closed state, and the adjustment mechanism has been activated, there is essentially no relative movement between the housing portions and the head member.
Such a device may further comprise a locking mechanism configured to lock together at least two of the housing portions when the device is in its closed state. Such a locking mechanism may comprise at least one of a latch, a locking pin and a snap-fit mechanism.
The adjustment mechanism of any of these implementations may comprise a ratchet mechanism. Such a ratchet mechanism may include ratchet teeth disposed on at least one of the housing portions, and a locking pawl in at least another of the housing portions, the locking pawl being configured to engage with the ratchet teeth. Such a device may further include a release member configured to disengage the locking pawl from the ratchet teeth. Any such ratchet mechanism may include an elongated element having ratchet teeth along at least a portion of its length and a receiving member having an opening for inserting a first end of the elongated element therethrough, and wherein the opening contains a pawl adapted to engage with the ratchet teeth of the elongated element upon insertion of the first end of the elongated element through the opening.
Alternatively, the adjustment mechanism may comprise a moldable material disposed on at least one of the two or more housing portions and configured to conform to the shape of at least a portion of the head member of the medical tool upon pressing of the head member against the moldable material. In another alternative implementation, the adjustment mechanism comprises a semi-flexible fastener coupled to an inner wall of at least one of the two or more housing portions.
In any of these implementations, at least two of the housing portions may be coupled together via a hinge, and at least one of the housing portions may include a cover element adapted to establish contact with the proximal end of the head member upon activation of the adjustment mechanism. The movement of any of the aforementioned housing portions may comprise at least one of linear movement and rotational movement. Any of these disclosed devices may further comprise one or more anchoring elements configured to attach a collapsible support guide of the medical tool to at least one of the housing portions.
Such a collapsible support guide may comprise a pair of flexible strips connected along at least a portion of their length and having a central channel therebetween adapted to receive and support the medical tool. Any of these implementations may further comprise a tightening mechanism configured to secure the grip of the two or more housing portions on the head member of the medical tool, and the housing portions may advantageously be configured to allow removal of at least a portion of the medical tool from the device.
Yet another implementation of the present disclosure involves a device for securing a medical tool, selected from medical tools having different head member configurations. Such a device may comprise a first housing portion configured to receive at least a portion of a head member of any of the medical tools and a second housing portion coupleable to the first housing portion, the second housing portion being adapted to move relative to the first housing portion, either from an open state of the device to a closed state of the device or vice versa, or both. The device may further comprise an adjustment mechanism configured to adjust either the height or the shape of at least a portion of the device, or both, according to either the height or shape, or both, of the head member.
Such a device may further comprise a locking mechanism configured to lock together the first and second housing portions when the device is in its closed state. In either of these implementations, the adjustment mechanism and/or the locking mechanism may comprise a ratchet mechanism.
Such a ratchet mechanism may include ratchet teeth disposed on one of the first and second housing portions, and a locking pawl configured to engage with the ratchet teeth and being part of the other of the first and second housing portions. Such a device may further comprise a release member configured to disengage the locking pawl from the ratchet teeth. Furthermore, the proximal end of the one of the first and second housing portions may comprise a depression configured to receive the locking pawl when the device is in its open state.
Alternatively, the ratchet mechanism may include an elongated element having ratchet teeth along at least a portion of its length and a receiving member having an opening for inserting a first end of the elongated element therethrough, and wherein the opening includes therein a pawl adapted to engage with the ratchet teeth of the elongated element upon insertion of the first end of the elongated element through the opening.
In some implementations, the locking mechanism may comprise a latch disposed on one of the first and second housing portions, and a corresponding notch formed in the other of the first and second housing portions. Alternatively, such a locking mechanism may comprise a locking pin and a channel for receiving the locking pin, wherein the channel is formed in two or more interlocking parts of the first and second housing portions, each of the first and second housing portions including at least one of the two or more interlocking parts, such that upon moving the second housing portion to the closed state of the device, the locking pin is inserted into the channel to lock together the first and second housing portions. In further implementations, such a locking mechanism may comprise a snap-fit mechanism.
In any such implementations, the adjustment mechanism may include moldable material disposed on at least one of the first and second housing portions and configured to conform to the shape of at least a portion of the head member of the medical tool upon pressing of the head member against the moldable material. Such moldable material may be disposed on an inner wall of at least one of the first housing portion and the second housing portion. Alternatively, the adjustment mechanism may comprise a semi-flexible fastener coupled to an inner wall of at least one of the first housing portion and the second housing portion. Such a semi-flexible fastener may be annular and may be adapted to expand to the width of the head member upon receiving the head member therein.
In a novel arrangement, such implementations may further comprise a tightening mechanism configured to secure the grip of the first and second housing portions on the head member of the medical tool. Such a tightening mechanism may include a rotatable knob.
In any of these implementations, at least one of the first and second housing portions may include a cover element adapted to establish contact with the proximal end of the head member, and the first and second housing portions may be configured to allow removal of at least a portion of the medical tool from the device, when the device is in its open state.
In such a device, the first housing portion may include a base adapted to support the distal end of the head member of the medical tool. Such a base may be comprised of two units configured for coupling to each other, and the coupling between the two units may be established via a snap-fit mechanism.
In any of these implementations, the movement of the second housing portion relative to the first housing portion may comprise at least one of linear movement and rotational movement, and one of the first and second housing portions may include at least one guiding groove disposed along at least a portion of its length, and the other housing portion may include at least one protruding element adapted to move within the at least one guiding groove upon moving the second housing portion relative to the first housing portion. Further, in any of these implementations, the second housing portion may comprise a protrusion, and a wall of the first housing portion may comprise a niche adapted to receive the protrusion, and the rotational movement may comprise pivoting of the second housing portion relative to the first housing portion, upon the protrusion being received within the niche. The protrusion may be further adapted to move along the wall of the first housing portion upon linearly moving the second housing portion relative to the first housing portion.
Any such devices may further comprise one or more anchoring elements configured to attach a collapsible support guide of the medical tool to at least one of the first and second housing portions. Such a collapsible support guide may comprise a pair of flexible strips connected along at least a portion of their length and having a central channel therebetween adapted to receive and support the medical tool. Furthermore, at least one of the first and second housing portions may include a cover element configured to establish contact with the proximal end of the head member and to maintain the head member concentric with the central channel. Such a cover element may be pyramid-shaped. Any such anchoring elements may comprise one or more anchoring pins and one or more corresponding sockets, and the collapsible support guide may comprise one or more openings at its proximal end, through which the one or more anchoring pins are adapted to pass prior to being received by the one or more corresponding sockets.
Yet another novel implementation of this disclosure involves a device for securing a medical tool, selected from medical tools having different head member configurations. Such a device may comprise a first housing portion configured to receive a head member of any of the medical tools, the first housing portion including ratchet teeth disposed along at least a portion of the length of a wall of the first housing portion, and a second housing portion coupled to the first housing portion and including a pawl configured to engage with the ratchet teeth, a release member configured to disengage the pawl from the ratchet teeth, and a cover element adapted to contact the proximal end of the head member. In such a device, the second housing portion may be adapted to be moved relative to the first housing portion from an open state of the device to a closed state of the device and, upon activation of the release member, from a closed state of the device to an open state of the device.
In such implementations, the movement of the second housing portion relative to the first housing portion may comprise at least one of linear movement and rotational movement. Any of these implementations may further comprise one or more anchoring elements configured to attach a collapsible support guide of the medical tool to at least one of the first and second housing portions. Such a collapsible support guide may comprise a pair of flexible strips connected along at least a portion of their length and having a central channel therebetween adapted to receive and support the medical tool. Such a device may further comprise a cover element configured to maintain the head member concentric with the central channel.
A novel method of the present disclosure is used to secure a first medical tool, selected from medical tools having different head member configurations. Such a method may comprise:
(i) inserting the first medical tool, having a first head member, into an opening in at least one of one or more housing portions of a holder device, until the distal end of the first head member is supported by at least one of the housing portions;
(ii) displacing at least one of the housing portions to transition the holder device from an open state to a closed state, and
(iii) adjusting at least one of the height and shape of at least a portion of the holder device according to at least one of the height and shape of the first head member, such that there is essentially no relative movement between the housing portions and the first head member.
Such a method may further comprise the steps of:
In either of these methods, the adjusting may be executed using a ratchet mechanism. Such methods may further comprise the step of securing the grip of the one or more housing portions on the first and/or second head member of the first medical tool, using a tightening mechanism. Additionally, such methods may further comprise the step of locking the holder device upon transitioning the holder device from the open state to the closed state.
One embodiment is a device for securing an ablation tool, the device comprising a backbone; and a securing portion for securing the ablation tool, including a body and a cover, the body configured to move from an upper position on the backbone to a lower position on the backbone, the cover configured, at the lower position of the securing portion, to affixedly receive a head member of the ablation tool, wherein the securing portion is adapted to transition the device at least one of from an open state to a closed state and from a closed state to an open state, and wherein, when said securing portion has received the head member and the device is in the closed state, there is essentially no relative movement between said device and the ablation tool.
In some embodiments, the cover is configured to snap onto the head member.
In some embodiments, a distal portion of the backbone is attached to a proximal portion of the needle.
In some embodiments, the cover has a groove that matches an outer surface of the head member.
In some embodiments, the cover affixedly receives the head member by means of an adaptor configured to fit between an inside wall of the cover and an outside surface of the head member. In some embodiments, the adaptor comprises two pieces, each of the two pieces surrounds substantially 180 degrees of the head member. In some embodiments, the adaptor comprises a first piece that surrounds the head member from one side and a second piece that locks the first piece on a second side.
In some embodiments, the backbone has a ratchet mechanism for locking the body at the lower position of the securing portion.
Another embodiment is a device for securing an ablation tool, the device comprising a securing portion for securing the ablation tool, including a body portion having an opening, and a cover configured to affixedly receive a head member of the ablation tool; a leg portion removably attachable to the securing portion; an upper portion projecting out of the opening in the body portion from above and configured to removably attach to a leg portion that is configured to fit into the opening from below, when the upper portion attaches to the leg portion, the cover simultaneously affixedly receives the head member, so as to transition the device from an open state to a closed state in which there is essentially no relative movement between the device and the ablation tool.
In some embodiments, a distal portion of the leg portion is attached to a proximal portion of the needle.
In some embodiments, the cover has a groove that matches an outer surface of the head member.
In some embodiments, the cover affixedly receives the head member by means of an adaptor configured to fit between an inside wall of the cover and an outside surface of the head member. In some embodiments, the adaptor comprises two pieces, each of the two pieces surrounds substantially 180 degrees of the head member. In some embodiments, the adaptor comprises a first piece that surrounds the head member from one side and a second piece that locks the first piece on a second side.
In some embodiments, the upper portion has a ratchet mechanism for locking the upper portion to the leg portion.
Another embodiment is a needle head holder device for securing an ablation tool, the device comprising a leg portion; a rotatable securing portion having a first portion pivotably connected to a proximal end of the leg portion and having a second portion configured to affixedly receive a head member of the ablation tool when the securing portion rotates closed; a third portion of the securing portion configured to affixedly attach to the proximal end of the leg portion through an opening in the first portion when the securing portion rotates closed.
Another embodiment is a needle head holder device for securing an ablation tool, the device comprising a leg portion; a rotatable securing portion having a body portion pivotably connected to a proximal end of the leg portion and having a cover configured to affixedly receive a head member of the ablation tool when the securing portion rotates closed; a cap portion configured to affixedly attach to the proximal end of the leg portion through an opening in the body portion when the securing portion rotates closed, when the securing portion rotates closed the cover simultaneously affixedly receives the head member so that there is essentially no relative movement between the device and the ablation tool.
In some embodiments, a distal portion of the leg portion is attached to a removable anchoring portion for alignment and securing of a proximal portion of the ablation needle shaft of the ablation tool.
In some embodiments, the cover has a grooved inner surface that matches an outer surface of the head member.
In some embodiments, the leg portion further comprises a protrusion at the proximal portion of the leg portion, the protrusion configured to restrict the rotating of securing portion
In some embodiments, the cover affixedly receives the head member by means of an adaptor configured to fit between an inside wall of the cover and an outside surface of the head member. In some embodiments, the adaptor comprises two pieces, each of the two pieces surrounds substantially 180 degrees of the head member. In some embodiments, the adaptor comprises a first piece that surrounds the head member from one side and a second piece that locks the first piece on a second side.
In some embodiments, the securing portion has a ratchet mechanism for locking the securing portion to the leg portion.
In some embodiments, the rotatable securing portion further comprises a locking pawl that is configured to engaged with a ratchet teeth of the cap portion to prevents unintentional movement of the securing portion. In some embodiments, the rotatable securing portion further comprises a release lever configured to release the locking pawl from the ratchet teeth, to enable movement of the securing portion relatively to the ablation tool.
Another embodiment is an adaptor configured to fit securely between a needle head member of an ablation tool and a cover of a securing portion of a needle head holder, the adaptor comprising one of the following: (A) (i) a first piece configured to surround about half of the needle head member, the first piece having an inner wall surface that matches a contour of an outer wall surface of the needle head member, the first piece also having an outer wall surface that matches a contour of an inner wall surface of a part of the securing member; and (ii) a second piece configured to affixedly lock to the first piece, wherein the first piece and the second piece, after being placed so as to surround the needle head member together, are configured to snap-fit together; or (B) a unitary piece configured to surround the needle head member on at least three sides, the unitary piece having an inner wall surface that matches a contour of an outer wall surface of the needle head member and an outer wall surface that matches a contour of an inner wall surface of a part of the securing member.
In some embodiments, the second piece is configured to surround about half of the needle head member, the second piece having an inner wall surface that matches a contour of an outer wall surface of the needle head member, the second piece also having an outer wall surface that matches a contour of an inner wall surface of a part of the securing member.
In some embodiments, the first piece and the second piece each have both a substantially horizontal groove and a substantially vertical groove.
In some embodiments, each of the first piece and the second piece are configured to surround the needle head member through substantially 180 rotational degrees,
In some embodiments, the second piece is configured to lock the first piece in place and block the needle head member on a side of the needle head member not surrounded by the first piece. In some embodiments, the first piece but not the second piece has both a substantially horizontal groove and a substantially vertical groove. In some embodiments, the second piece lacks a surface that conforms to an outer surface of the needle head member. In some embodiments, the second piece lacks a surface that conforms to an inner wall surface of the part of the securing member.
In some embodiments, the adaptor comprises the unitary piece configured to surround the needle head member on at least three sides, the unitary piece having an inner wall surface that matches a contour of an outer wall surface of the needle head member and an outer wall surface that matches a contour of an inner wall surface of a part of the securing member. In some embodiments, the unitary piece has both a substantially horizontal groove and a substantially vertical groove. In some embodiments, the unitary piece has an open side configured to allow the needle head member to be placed into and removed from the unitary piece.
Another embodiment is a method for securing an ablation tool, the method comprising inserting a proximal end of the ablation tool into an opening in a leg portion of a needle head holder, until the proximal end of the ablation tool is supported by the leg portion; rotating a securing portion of the needle head holder so that one portion of the securing portion snaps securely onto a proximal end of the leg portion while a second portion of the securing portion snaps into place onto a head member of the ablation tool to transition the needle holder device from an open state to a closed state.
In some embodiments, the moving of the securing portion includes rotating a cover.
It is to be understood that the terms proximal and distal as used in this disclosure have their usual meaning in the clinical arts, namely that proximal refers to the end of a device or object closest to the person or machine inserting or using the device or object and remote from the patient, while distal refers to the end of a device or object closest to the patient and remote from the person or machine inserting or using the device or object.
It is also to be understood that although some examples used throughout this disclosure relate to a needle, needle head and needle head holder, this is done for simplicity reasons alone, and the scope of this disclosure is not meant to be limited to a needle, but is understood to include any medical tool/instrument which is insertable into the subject's body for diagnostic and/or therapeutic purposes, including an introducer, catheter, cannula, port, surgical tool, fluid delivery tool, or any other such insertable tool.
Further, for simplicity reasons alone, the term “needle” may refer throughout this disclosure either to the needle body intended to be inserted into the body or to the needle together with the needle head.
In addition, the terms “user”, “doctor”, “physician”, “clinician”, “technician”, “medical personnel” and “medical staff” are used interchangeably throughout this disclosure and may refer to any person taking part in the performed medical procedure.
Some exemplary implementations of the methods and systems of the present disclosure are described with reference to the accompanying drawings. In the drawings, like reference numbers indicate identical or substantially similar elements.
In some implementations, the NHH 20 may a component of (or coupled to) an insertion module (not shown in
In some implementations, the NHH 20 may be disposable and the end effector 252 reusable, such that the medical device with its end effector 252 can be used repeatedly with new needle head holders and with new needles.
Reference is now made to
The NHH 40 may include a channel for receiving and enclosing at least the proximal portion of the needle therein. The channel may be located in either one of the receiving portion 410 or the securing portion 420, or it may be formed by the coupling of two corresponding grooves 414 and 424 in the receiving and securing portions 410 and 420, respectively, upon transitioning the NHH to the closed state, as shown in
As previously mentioned, the NHH 40 may be part of (or coupled to) an insertion module (not shown in
The needle head holder 50 may further include a tightening component 550, which secures the grip of the NEM 50 on the needle head (not shown in
Reference is now made to
As previously mentioned, the needle head holder may be part of (or coupled to) an insertion module, which in turn is coupled to an end effector of a device for inserting a medical tool into a subject's body.
The needle head holder 60 may comprise a receiving portion 610, which supports the distal end of the needle head 605 and anchors the proximal ends of the strips 652 thereto, and a securing portion 620, which is displaced by the user once the needle head 605 is in its proper position, until it establishes contact with the proximal end of the needle head 605 and secures it within the NHH 60. The receiving portion 610 and the securing portion 620 may be two separate pieces provided pre-assembled or configured for assembly by the user.
The body and anchoring portions 612, 614 may include a channel for enclosing the proximal end of the needle 600 therein. The channel may be located in one of the body or anchoring portions 612, 614, or it may be formed by corresponding grooves 6124, 6144 in the body and anchoring portions 612, 614, respectively, upon coupling of the two portions. In some implementations, the channel may be sized (e.g., its radius) to receive needles having a specific gauge. In other implementations, the NEM 60 is configured to receive a variety of needle types and the channel may be sized according to the largest needle gauge which can be used with the NEM 60. In some implementations, the proximal portion of the channel may have a conical shape in order to ease the insertion of the needle 600 into the central channel 6522 of the strips 652 through the receiving portion's channel. The proximal portion of the strips' central channel 6522 may also have a conical shape.
The anchoring portion 614 may further include one or more guides 6146 which the user places on the base 6125 of the body portion 612 and then slides them along the base 6125 until the anchoring pins 6142 are properly snapped into the sockets 6122. The guides 6146 assist in aligning the body and anchoring portions 612, 614, and establishing the snap fit connection between the two portions.
The coupling between the securing portion 620 and the body portion 612 of the receiving portion may be such that the two portions can be coupled and decoupled by the user, or it may be such that the two portions remain coupled at all times and cannot be disconnected from each other, however they can be moved and/or rotated relative to each other, while remaining coupled. The relative movement between the securing portion 620 and the body portion 612 may be enabled via a linear ratchet mechanism, such that movement of the securing portion 620 down the receiving portion 610, i.e., toward the needle head 605, is substantially unrestricted, and movement of the securing portion 620 in the opposite direction, i.e., upward and away from the needle head 605, is restricted and requires a releasing action to be enabled. Since, in some implementations, securing both the strips 652 and the needle head 605 to the NHH 60 is essential for successful insertion of the needle into the subject's body, as it operatively couples the needle to the strips 652, then if the grip of the needle head 605 is released, activation of the insertion mechanism may de facto disable the NHH 60. In such a case, activation of the insertion mechanism may result in displacement of only the strips 652 and the NHH 60 toward the subject's body, while the needle remains in its place.
In some implementations, the body portion 612 may include ratchet teeth 6126 having a slope in the forward (downward) direction, and the securing portion 620 may include a locking pawl (not shown in
The movement of the securing portion 620 along the body portion 612 may be solely linear or the body portion 612 may include an angular section, tilted or curved, at its proximal end 6128, such that when in the open state, the securing portion 620 is tilted and does not prevent or get in the way of inserting the needle into the NHH 60 and/or removing the needle's core from the NHH 60, for example. The body portion 612 may include one or more grooves 6127 to guide the movement of the securing portion 620 along the curved path, as will be described in detail hereinbelow with regard to
Moving the securing portion 620 along the body portion 612 enables adjustment of the height of the NHH 60, such that the NHH 60 can be used with a variety of needle types and other insertable medical tools, having needle heads of various lengths.
The body portion 612 may include a handle 6129 having a slit 6131 through which the release lever 6202 is passed. Gripping the handle 6129 may facilitate the user when pressing the release lever 6202 so as to release the locking pawl from the ratchet teeth 6126 and move the securing portion 620 upward and away from the needle head 605.
The securing portion 620 may include a cover element 6204 which maintains contact with the proximal end of the needle head 605 upon moving the securing portion 620 toward the needle head 605, such that the needle head 605 is effectively clamped between the base 6125 of the body portion 612 and the cover element 6204 of the securing portion 620. In some implementations, the cover 6204 may be shaped such that the needle head 605 is maintained concentric with the strips' central channel 6522 independently of the needle head's shape and size. For example, the cover 604 may be shaped as a pyramid having a longitudinal axis which is aligned with the longitudinal axis of the channel 6522, and a rectangle transverse cross-section, which is largest at its base and smallest at its top portion, such that the contact between the cover 6204 and the needle head 605 is realized via a plurality (in this case, four) of tangent points (or lines), and the inner shape of the cover 6204 need not necessarily correspond to the shape of one specific needle head shape. Such a pyramid shape, together with the capability to adjust the height of the securing portion 620 relative to the body portion 612, as will be described in detail hereinbelow, enables using the NHH 60 with a variety of different medical instruments. It can be appreciated, however, that the cover 6204 is not limited to a pyramid shape, and it may have any other shape having similar advantages, e.g., a dome shape, a cone shape.
In some implementations, the cover 6204 may further include one or more grooves 6208 for receiving corresponding protrusion/s in certain needle head types, such as for providing indication as to the orientation of the needle. For example, the location of a protrusion on the head of a beveled needle may correspond to the location of the tip of the bevel. Thus, in case the orientation of the needle is of significance to the procedure, or may influence it in any way, the position of the groove 6208 on the cover 6204 is such that needle head can only be placed in the NHH 60 in the desired orientation. The cover element 6204 may further include ridges/ribs 6205 for structural reinforcement.
Also shown in
In some cases, once the needle is inserted into the target inside the patient's body, the physician/clinician may prefer to leave only the needle in place and disconnect it from the insertion device, since the insertion device may obstruct his/her view or actions. In case the insertion device is body-mounted, the physician/clinician may wish to remove it from the patient's body altogether, while leaving the needle itself inside the patient's body. In such cases, the NHH may be configured such that the user can disconnect it from the insertion device, and the user can then remove the insertion device from the patient's body, while the NHH remains coupled to the needle head. Alternatively, the NHH may be configured such that it can be decoupled from the needle, so that the needle has no components attached to it for the remainder of the medical procedure. The NHH may be decoupled from the needle after it has been disconnected from the insertion device, or, in some implementations, the NHH may be separable into at least two parts, such that decoupling the NHH from the needle and removal of the insertion device can be executed in a single action, as described hereinafter.
Decoupling the NHH 60 from the needle may be achieved by disconnecting the body and anchoring portions 612, 614 from one another. In some implementations, the body portion 612 and/or the anchoring portion 614 may include a release member (not shown) to assist in the decoupling of the two portions. In other implementations, the body portion 612 and/or the anchoring portion 614 may be manufactured from a semi-flexible material, such that mutual pressing on the sides of the two portions enables pulling them apart. In further implementations, in which the NHH 60 is part of an insertion module, as shown in
Also shown in
The securing portion 620 may include a pin (or—protrusion) 6214, which allows the pivoting of the securing portion 620 at the proximal end of the body portion 612. In some implementations, the pin 6214 moves along the outer wall of the body portion 612 as the securing portion 620 is being moved linearly along the body portion. When the user wishes to open the NHH 60, he/she moves the securing portion upwards along the body portion 612, until the pin 6214 is received within a dedicated niche 6121 in the outer wall of the body portion 612, which may be formed by curving of the outer wall. The pin 6214 then serves as the rotation axis for the securing portion 620.
The body portion 612 may further include one or more grooves 6127 and the securing portion 620 may include one or more protrusions/pins 6215 fitted within the groove/s 6127, to guide the movement of the securing portion 620 along the curved path. The coupling between the receiving and the securing portions 610, 620 may be such that the two portions can be disconnected and reconnected by the user, or it may be such that the two portions can be displaced relative to each other but remain connected at all times. In the latter case, in order to prevent the securing portion 620 from disconnecting from the receiving portion 610 when the NHH 60 is in an open state, the body portion 612 of the receiving portion 610 may include a depression/gap 6123 which de facto serves as another ratchet tooth, similar to the ratchet teeth 6126, to capture the teeth 6212 of the locking pawl 6210 of the securing portion 620, in order to prevent its further movement away from the body portion 612.
The contact between the cover element 6204 and the proximal end of the needle head 605 may be such that the inner shape of the cover 6204 matches the outer shape of the needle head 605, or it may be via a plurality of tangent points or lines between the inner portion of the cover 6204 and the needle head 605, to accommodate different needle head shapes and sizes. The locations of the tangent points/lines may vary according to the shape and size of the needle head in use.
The securing portion 620 reaches its maximal open state when the teeth of the locking pawl are captured within the depression of the body portion, as shown hereinabove in
In some implementations, in order to avoid the need to open the NHH 60 to remove the core 6055, or access the needle head 605 for any other purpose, the cover 6204 may include a top/upper opening, which provides access to the needle head 605 even when the NHH 60 is closed. For example, the cover 6204 may have an annular shape (not shown). Maintaining the NHH 60 closed until completion of the medical procedure minimizes the risk of undesired needle movements throughout the procedure.
Alternative implementations of the needle head holder may be adapted to receive and support different types of medical instruments.
In some implementations, once the tape 8222 is engaged with the head member 8242, the zip-tie mechanism cannot be undone. In other implementations, the mechanism may include a releasing element (not shown), that can be used to release the tape 8222 from the head member 8242, either for loosening the grip of the NEM over the needle head 805 or to remove at least the cover portion 822 from the needle head and allow access to the needle head 805.
The cover and locking portions 822, 824 may be flexible, at least in part, so as to adjust according to the size and/or shape of the needle head 805 in use.
In some implementations, the cover portion 822 may include a rigid end 8224 which is inserted into a corresponding slot 8122 in the male unit 812 of the anchoring portion 810. One or more screws 8124 may then be used to tightly hold the rigid end 8224 against the opposite inner wall of the slot 8122 and prevent the disconnection of the cover portion 822 from the male unit 812. Similarly, the locking portion 824 may include a rigid section 8246, located between the head member 8242 and the tab 8244, which is inserted into a corresponding slot 8142 in the female unit 814 of the anchoring portion 810, and one or more screws 8144 may be used to tightly hold the rigid section 8246 against the opposite inner wall of the slot 8142 and prevent the disconnection of the locking portion 824 from the female unit 814. In other implementations, the cover portion 822 and the male unit 812 of the anchoring portion may be manufactured as a single integral unit, and the locking portion 824 and the female unit 814 of the anchoring portion 810 may be manufactured as a single integral unit.
The male and female units 812, 814 may include a channel for enclosing the needle therein. The channel may be located in one of the two units 812, 814, or it may be formed by corresponding grooves 8128, 8148 in the male and female units 812, 814, respectively, upon coupling of the two units. The channel may be sized to receive needles with a specific gauge or, in case the NEM 80 is configured to receive a variety of needles having needle heads of different shapes and sizes, it may be sized according to the largest needle gauge which can be used with the NEM 80.
In some implementations, the proximal portion of the channel may have a conical shape in order to ease the insertion of the needle into the central channel 8522 of the strips 852. The proximal portion of the strips' central channel 8522 may also have a conical shape.
In other implementations, the NHH 80 may be provided with the cover and locking portions 822, 824 coupled together, such that closing of the NHH 80 is done by coupling the male and female units 812 and 814.
Needle head holder 90 includes a backbone 91 and a securing portion 92 for securing a needle head member 910 of the ablation tool 900 by closing a securing portion 92 of the needle head holder on the needle head 910. Securing portion 92 includes a body portion 93 and a cover 94. The body 93 of securing portion 92 is configured to move from an upper position on the backbone 91 to a lower position on the backbone 91, for example by sliding from the position shown in
The cover 94 is configured, at the lower position of the securing portion 92, to affixedly receive a head member of the ablation tool. Typically, the cover 94 snaps onto the needle head member 910 and holds the needle head 910 tightly. As seen in
Closing of the securing portion 92 on the needle head member 910 may be carried out by sliding the securing portion 92 along the backbone 91 until a longitudinal axis of the ablation tool 900 is aligned with a longitudinal axis of the pair of flexible strips 920. The securing portion 92 is then linearly moved downwardly along the backbone 91 until the cover 94 contacts the proximal end of the needle head member 910 and the needle head member 910 is effectively clamped between the distal base portion 91a of the backbone 91 and the cover 94 of the securing portion 92 (and a proximal end of the ablation needle shaft is also secured between the distal base portion 91a and the anchoring portion 91c).
A release lever 95 (shown in
Securing portion 92 within the locking mechanism is adapted to transition the needle head holder 90 from an open state to a closed state and/or from a closed state to an open state. When cover 94 of securing portion 92 has received the needle head member 910 and the needle head holder 90 is in the closed state, there is essentially no relative movement between the needle head holder 90 and the needle head member 910. The needle head holder 90 and the ablation tool 90 are affixedly united. If they move, for example distally toward the patient then they move together as one.
Regarding backbone 91, its distal base portion 91a is also fixedly attached to a proximal portion of the ablation needle 900, for example by extending perpendicularly toward the needle 900 from the backbone 91. In some embodiment, distal portion 91a is also fixedly attached to a proximal portion of the ablation needle shaft by an anchoring portion 91c.
For this embodiment of the needle head holder 90, as well as for the embodiments described below, if an inside of cover 94 does not match the outer shape of needle head member 910, it is necessary in certain embodiments for an adaptor to be situated between the needle head member 910 and the securing portion 92, and in particular the cover 94, which in that case affixedly receives the head member 910 by means of an adaptor configured to fit between an inside wall of the cover and an outside surface of the needle head member 910. The cover is configured to hold and secure the needle head of the ablation tool within the needle head holder.
As shown in
Needle head holder 100 includes a securing portion 102 for securing the needle head member 910 of the ablation tool 900 therewithin, including a body portion 103 having an opening 103a, and a cover 104 configured to affixedly or rigidly receive a needle head member 910 of the ablation tool 900. Typically, the cover 104 snaps onto the needle head member 910 and holds the needle head 910 tightly. This embodiment of needle head holder 100 may utilize the cover 104 that may have a groove that matches an outer surface of needle head member 910. Needle head holder 100 may also include a leg portion 106 that is removable attachable—such as for example by snapping together—to the securing portion 102, as seen in
Needle head holder 100 also includes an upper portion 105 projecting out of the opening 103a in the body portion 103 of the securing portion 102 from above and configured to removably attach to the leg portion 106 that is configured to fit into the opening 103a from below. When the upper portion 105 of the securing portion 102 attaches to the leg portion 106, for example by snapping onto it, the cover 104 simultaneously affixedly or rigidly receives the needle head member 910 of the ablation needle 900. This has the effect of transitioning the needle head holder 100 from an open state to a closed state in which there is essentially no relative movement between the needle head holder 100 and the needle head member 910. According to some embodiments, this has the effect of transitioning the needle head holder 100 from an open state to a closed state in which there is essentially no relative movement between the needle head holder 100 and the ablation tool 900.
Closing of the securing portion 102 on the needle head member 910 may be carried out by sliding the securing portion 102 about a longitudinal axis of the leg 106 until its longitudinal axis is aligned with the longitudinal axis of the pair of flexible strips 920 and the of the insertion mechanism 960. The securing portion 102 is then linearly moved downwardly along the leg 106 until the cover 104 contacts the proximal end of the needle head member 910 and the needle head member 910 is effectively clamped between the base of the leg 106 and the cover 104 of the securing portion 102.
As can be seen from
A distal base portion 106a of the leg portion 106 may comprise a distal portion of the needle head member 910, for example by extending perpendicularly from leg portion 106 toward the ablation needle 900, as seen in
Another embodiment of a needle head holder 110 is shown in
In accordance with one non-limiting general description of the embodiment, as seen in
An additional element which may be considered to be a third portion of the securing portion 112, and which may for example be a pushable portion, may project through the opening in the first portion 113 of securing portion 112. The third portion (cap portion or pushable portion) may be configured to affixedly attach to the proximal end of the leg portion 116 through an opening in the first portion 113 when the securing portion 112 rotates closed. For example, in some implementations, needle head holder 110 may comprise a cap portion 115 or a pushable portion 115 that is configured to aligned into and pass through the opening 113a within the body portion 113 and to pivotably connected to the leg portion 116 at the proximal end 116b of the leg portion 116, so as to enable the securing portion 112 to rotate closed.
When the cap portion 115 fixedly attaches to the securing portion 112 the cover 114 simultaneously affixedly or rigidly receives the needle head member 910 of the ablation tool 900 so that there is essentially no relative movement between the needle head holder 110 and the needle head member 910. The cap portion 115 may affixedly attach to leg portion 116 by a rotation motion that results in cap portion 115 snapping in a rigid position in relation to leg portion 116. In some implementations, this may occur as a result of two parts of a ratchet mechanism or another mechanism snapping into place, for example a pawl of one part snapping into place between two teeth of another part.
In some implementations, the cap portion 115 may include ratchet teeth 115a, shown in
The cover 114 of securing portion 112 maintains contact with the proximal end of the needle head member 910 upon moving the securing portion 112 toward the needle head member 910, such that the needle head member 910 is effectively clamped between a base 118a of the leg portion 116 and the cover 114.
The cover 114 may further have a grooved inner surface 114a, as seen in
The body portion 113 proximal end may include handles 113b and 113c which may extend perpendicularly from a longitudinal axis of the opening 113a. Gripping the handles 113b-113c may facilitate a user when pressing the release lever 119 so as to release the locking pawl 119a from the ratchet teeth 115a and move the securing portion 112 upward and away from the needle head member 910.
As seen in
As shown in
According to some embodiments, as shown in
In all of the three versions, the adaptor (1200, 1300, 1400) is configured to fit securely between the needle head member 910 and part of the securing portion (92, 102, 112) of the needle head holder (90, 100, 110 respectively), for example a cover of the securing portion of the needle head holder. For example, the adaptor (1200, 1300, 1400) may snap-fit into position and rigidly hold the needle head member 910 in position relative to the needle head holder (90, 100, 110).
Another embodiment is an adaptor configured to fit securely between a needle head member and a cover of a securing portion of a needle head holder, as seen in
Accordingly, as seen in
Adaptor 1200 may have a second piece 1220 configured to surround about half of the needle head member 910, the second piece having an inner wall surface, for example a grooved inner wall surface 1222, that matches a contour of an outer wall surface 910a of the needle head member 910 or is at least configured to securely hold the outer wall surface 910a of head member 910, the second piece 1220 also having an outer wall surface 1224 that may match a contour of an inner wall surface (94a, 104a, 114a) of a part of the securing member (92, 102, 112). The first piece 1210 and the second piece 1220, after being placed so as to surround the needle head member 910 together, are configured to snap-fit together. When the first piece 1210 and the second piece 1220 are placed together they form an internal groove configured to receive the head member 910 of the ablation tool.
In some cases, the first piece 1210 and the second piece 1220 each have both a substantially horizontal groove and a substantially vertical groove.
In some cases, each of the first piece 1210 and the second piece 1220 are configured to surround the needle head member 910 through substantially 180 rotational degrees,
The second implementation is an adaptor, such as adaptor 1300 configured to fit securely between a needle head member 910 of an ablation tool 900 and a cover (94, 104, 114) of a securing portion (92, 102, 112) of a needle head holder (90, 100, 110), as shown in
The adaptor 1300 may include a first piece 1310 configured to surround about half the needle head member 910, the first piece 1310 having an inner wall surface 1312 that either matches a contour of an outer wall surface 910a of the needle head member 910 or is at least configured to securely hold the outer wall surface 910a of head member 910. The first piece 1310 may also have an outer wall surface 1314 that matches a contour of an inner wall surface (94a, 104a, 114a) of a part of the securing member (92, 102, 112).
Adaptor 1300 may also comprise a second piece 1320 configured to lock the first piece 1310 in place (for example using a locking element 1333) and block the needle head member 910 on a side of the needle head member 910 not surrounded by the first piece 1310.
In some cases, the first piece 1310 but not the second piece 1320 has both a substantially horizontal groove and a substantially vertical groove.
In some cases, the second piece 1320 lacks a surface that conforms to an outer surface 910a of the needle head member 910.
In some cases, the second piece 1320 lacks a surface that conforms to an inner wall surface (94a, 104a, 114a) of a part of the securing member (92, 102, 112). The part may be a cover (94, 104, 114).
The third implementation is an adaptor such as adaptor 1400 configured to fit securely between a needle head member 910 of an ablation tool and a cover of a securing portion of a needle head holder, as shown in
In some cases, the unitary piece 1410 has both a substantially horizontal groove 1416 and a substantially vertical groove 1418. In some cases, the unitary piece 1410 is sufficiently open—for example it is open on one side—to allow the needle head member 910 to be placed into and removed from the unitary piece 1410. In some embodiments, the unitary piece of adaptor 1400 configured to lock the needle head member 910 in place (for example using a locking element 1433).
One embodiment is a method 1500 for securing an ablation tool. Method 1500 may comprise a step 1510 of inserting an ablation needle head of the ablation tool into an opening of a needle head holder, until a proximal end of the ablation needle head is supported by a cover of a securing portion of the needle head holder and a distal end of the ablation needle head is supported by a leg portion base of the needle head holder. Method 1500 may also comprise a step 1520 of rotating the securing portion of the needle head holder so that one portion of the securing portion snaps securely onto a proximal end of the leg portion while a second portion of the securing portion snaps into place onto a head member of the ablation tool to transition the needle head holder from an open state to a closed state. In some versions, the moving of the securing portion includes rotating the securing portion to the leg portion.
It is appreciated by persons skilled in the art that the present invention is not limited by what has been particularly shown and described hereinabove. Rather the scope of the present invention includes both combinations and subcombinations of various features described hereinabove as well as variations and modifications thereto which would occur to a person of skill in the art upon reading the above description and which are not in the prior art.
This application is a continuation-in-part (CIP) of U.S. Ser. No. 17/722,922 filed on Apr. 18, 2022, which is a continuation of U.S. application Ser. No. 16/330,317 filed Mar. 4, 2019 (granted as U.S. Pat. No. 11,331,163), which is a National Phase of PCT Patent Application No. PCT/IL2017/051066 having International filing date of Sep. 24, 2017, which claims the benefit of priority of U.S. Provisional Application No. 62/495,759 filed on Sep. 23, 2016. The contents of the above applications are all incorporated by reference as if fully set forth herein in their entirety.
Number | Date | Country | |
---|---|---|---|
62495759 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16330317 | Mar 2019 | US |
Child | 17722922 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17722922 | Apr 2022 | US |
Child | 17836279 | US |