The present invention relates generally to fluid dispensing devices, and more particularly to an automatic fluid dispensing apparatus providing a universal hub and sensor assembly that accommodates a wide variety of styles and designs of fluid dispensing heads.
Modern washroom facilities, such as those found in commercial, industrial and residential facilities, provide automatically actuated flushing devices, fragrance dispensers, water controls, drying devices, door operators and hand soap dispensing devices. The purpose is to provide a sanitary and substantially germ free and odor free environment that eliminates the necessity of the user of the washroom facility touching any of the permanent fixtures of the washroom. In this regard, automatic liquid dispensers have been developed to automatically dispense a liquid soap solution into the hands of a user without requiring the user to touch the liquid dispenser structure. Examples of such devices are shown in U.S. Pat. Nos. 6,467,651 and 6,651,851.
In presently marketed liquid dispenser devices, such as liquid soap dispensers and other liquid and fluid dispensers, a hub assembly extends upward from the countertop surface in which a sink and a water supply faucet are installed. A partially rotatable spout, or a non-rotatable spout, is attached to the hub assembly to convey liquid through the hub and spout, and to the user.
When an automatic fluid dispenser such as presently marketed is installed, the hub assembly connecting the spout to a pump and fluid source must specifically match the attachment configuration of the dispensing head or spout. Thus, when a new dispensing head of a different style or manufacturer, or of an updated model of the same manufacturer, is desired to be installed, a new hub assembly must be installed. Since the hub assembly in an automatic fluid dispensing system includes electronic sensing devices, replacement of the hub can be a difficult and expensive proposition, if possible at all.
Therefore, it is an object of the present invention to provide a universal hub for an automatic fluid dispensing device, which hub can be adapted to work with only one or with a plurality of dispensing heads or spouts for the delivery of the fluid to a user. The present invention, in one example, contemplates a hub assembly for a dispensing head that can form an attachment with a plurality of fluid dispensing spout devices, either fixed or rotating top, that are supplied by various manufacturers. In the alternative, the present invention can be adapted to provide a unique pattern of attachment elements between a fluid dispenser hub assembly and a specific fluid dispensing head assembly such that only the fluid dispensing head of a specific manufacturer can be installed on the hub assembly.
A further object of the present invention is to provide universal hub embodiments that are suitable for attachment to a variety of partially rotatable and non-rotatable fluid dispensing heads.
These and other inventive features of the present invention will become apparent upon reading the following detailed description in conjunction with the attached drawing. In the drawing figures, which are merely illustrative and are not intended to limit the scope of the invention defined in the attached claims:
Referring to
Inlet conduit 20 extends through the hollow interior of externally threaded hollow shank 26. Shank 26 is firmly secured, such as by an internally threaded nut or mounting disc (not shown) to countertop 28, such as typically found in a residential, commercial or industrial kitchen or washroom, as will be described. It is also to be understood that fluid dispensing system 10 can be utilized to dispense any type of liquid or fluid, such as soap, detergent, lotion, sanitizers, and the like.
A fluid dispensing head and sensor hub assembly 30 is mounted to hollow shank 26, the hub assembly 30 including a rotatable or non-rotatable top 32 having a hollow fluid dispensing spout 34 extending therefrom for delivery of fluid to a user. The hub assembly 30 also includes a fixed body 36 beneath the top 32, with a sensor lens 38 located in the fixed body below the spout 34. As will be described, an electronic sensor is located behind lens 38, which sensor is electrically connected by electrical cord 40 to an actuating mechanism 42 of pump assembly 16. The electrical cord 40 extends from the sensor behind lens 38 through the hollow portion of shank 26, and adjacent inlet conduit 20. When a user places their hands beneath spout 34, the sensor behind lens 38 senses the placement of the hands, and a signal is sent through cord 40 to actuating mechanism 42. Self-priming pump assembly 16 is then operated to transmit a predetermined portion of liquid or fluid through inlet conduit 20, through spout 34, and into the hands of the user. As will be explained, the inlet conduit 20, in one embodiment, forms part of a fluid conveyance path and is connected to a hollow bolt assembly in fixed body 36 through which fluid is transmitted to spout 34.
Referring to
Referring to
Fixed body 36 has a hollow interior 47 and an upper cap portion 54. The underside of cap portion 54 faces downward in the hollow interior chamber 47 of fixed body 36. Sensor assembly 56 includes a sensor housing 58 to which an electronic sensor 60 is mounted. Sensor assembly 56 includes mounting flanges 62 having slots or apertures 64, the slots or apertures 64 adapted to receive fasteners such as screws 66. Screws 66 extend through slots or apertures 64, and the screws are threaded into the underside of upper cap portion 54 to securely mount the sensor 60 in chamber 47 adjacent sensor lens 38 in the fixed body 36. A gasket 68 is provided between the sensor 60 and sensor lens 38.
A hollow bolt assembly 70 is rotatably mounted through aperture 72 in upper cap portion 54 of fixed body 36. An axially extending channel 71 (
Bolt assembly 70 also includes an upper hollow shaft portion 78 having an externally threaded portion 80 and at least one aperture 82 communicating between the hollow interior portion of bolt assembly 70 and the exterior outer surface of shaft portion 78. An O-ring seal 84 extends around threaded portion 80.
Upper shaft portion 78 of bolt assembly 70 extends outward from aperture 72 in cap portion 54. Top 32 has a substantially hollow, U-shaped interior with an internally threaded coupling (not shown) extending downward from the inside surface of upper plate 84. The internally threaded coupling is adapted to connect with externally threaded cap portion 80 of bolt 70, thus securing top 32 to bolt 70. In an embodiment, as bolt 70 rotates through its limited arc, top 32 and spout 34 likewise rotate through the same limited arc.
A bearing washer 86 is located between surface 88 of upper cap portion 54 and top 32 to provide a rotating interface between rotating top 32 and fixed body 36. An O-ring seal 90 is interposed between the interior of top 32 and upper portion 78 of bolt 70 to prevent liquid dispensed through aperture 82 from migrating into fixed body 36. Additionally, a pin 92 extends through aperture 94 in bearing washer 86. Pin 92 is adapted to contact a pair of stop surfaces (not shown) to limit the rotation of top 32 and bolt 70 through a pre-determined arc, which is one hundred twenty degrees in the illustrated embodiment. It is also understood that in a further embodiment, the top 32 and spout 34 in the illustrated embodiment can be fixed against rotation relative to fixed body 36.
In operation, referring to the embodiment disclosed in
A feature of the present invention is to provide for the replacement of rotating or stationary top 32 on fixed body 36 and bolt assembly 70. To remove top 32 from bolt assembly 70, a pronged tool is applied to the bottom of bolt 70 (
Additionally, a feature of the present embodiment of the invention shown in
A second fixed body 36 forming part of a fluid dispenser head is then attached to shank hub 44 after cord 40 has been attached to a sensor assembly 56 in the second fixed body. The apertures in the bottom portion of the second fixed body are arrayed in the same predetermined pattern as the apertures 52 in shank hub 44. The top of second fixed body is attached to the mounting portion of cap portion 80 on bolt 70. Screws 50 are next inserted into and rotated in apertures 52 to secure the base portion 46 of the second fixed body to shank hub 44. Shank 26 is then inserted back into the aperture (not shown) in countertop 28, and the nut holding shank 26 to the countertop is re-installed via the threads on shank 26. The apparatus with the second fixed body is then ready for normal operation.
Referring to
Hub spacer 102 comprises a pair of internally threaded tubes 112 to which sensor assembly 56 is mounted to hub spacer 102 by means of screws 114. A gasket 68 (
Fixed body 104, as previously stated, is attached to hub spacer 102 by means of screws 108. A hollow spout (not shown) extends outward in a substantially radial direction from fixed body 104. Inlet conduit 20 extends through the hollow center of shank 26, through hub spacer 102 and fixed body 104 to a spout aperture assembly designated 114. Liquid, in this embodiment, is conveyed through a path defined by inlet conduit 20 direct to the hands of the user. Also, in this embodiment as in the first embodiment, an electrical cord 40 transmits a signal from sensor assembly 56 to actuating mechanism 42 (
Additionally, fixed body 104 includes an aperture 116 through which outer sensor lens 38 protrudes in a non-rotatable embodiment of the structure of
As seen in
In the embodiment of
In the embodiment of
The foregoing description of a preferred embodiment of the invention has been presented for purposes of illustration and description, and is not intended to be exhaustive or to limit the invention to the precise form disclosed. The description was selected to best explain the principles of the invention and practical application of these principles to enable others skilled in the art to best utilize the invention in various embodiments and various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention not be limited by the specification, but be defined by the claims set forth below.
Number | Date | Country | Kind |
---|---|---|---|
11674952 | Feb 2007 | US | national |
This patent claims the benefit of a prior filed provisional application No. 60/773,503 filed Feb. 14, 2006, to the extent allowed by law.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US07/04207 | 2/14/2007 | WO | 00 | 1/30/2009 |
Number | Date | Country | |
---|---|---|---|
60773503 | Feb 2006 | US |