N/A
N/A
N/A
1. Field of the Invention
This invention relates to the field of oilfield equipment, and in particular to a system and method for the conversion of a conventional annular blow-out preventer (BOP) between an open and non-pressurized mud-return system and a closed and pressurized mud-return system for managed pressure drilling or underbalanced drilling.
2. Description of the Related Art
Marine risers extending from a well head on the floor of the ocean have traditionally been used to circulate drilling fluid back to a drilling structure or rig through the annular space between the drill string and the internal diameter of the riser. The riser must be large enough in internal diameter to accommodate the largest drill string that will be used in drilling a borehole. For example, risers with internal diameters of 19½ inches (49.5 cm) have been used, although other diameters can be used. An example of a marine riser and some of the associated drilling components, such as shown herein in
The marine riser is not generally used as a pressurized containment vessel during conventional drilling operations. Pressures contained by the riser are generally hydrostatic pressure generated by the density of the drilling fluid or mud held in the riser and pressure developed by pumping of the fluid to the borehole. However, some remaining undeveloped reservoirs are considered economically undrillable using conventional drilling operations. In fact, studies sponsored by the U.S. Department of the Interior, Minerals Management Service and the American Petroleum Institute have concluded that between 25% and 33% of all remaining undeveloped reservoirs are not drillable using conventional overbalanced drilling methods, caused in large part by the increased likelihood of well control problems such as differential sticking, lost circulation, kicks, and blowouts.
Drilling hazards such as gas and abnormally pressured aquifers relatively shallow to the mud line present challenges when drilling the top section of many prospects in both shallow and deep water. Shallow gas hazards may be sweet or sour and, if encountered, reach the rig floor rapidly. Blowouts at the surface have occurred due to lack of time to close the rigs BOP. If sour, even trace amounts of such escaping gasses create health, safety and environmental (HSE) hazards, as they are harmful to humans and detrimental to the environment. There are U.S. and Canadian regulatory restrictions on the maximum amount of exposure workers can have to such gases. For example, the Occupational Safety and Health Administration (OSHA) sets an eight-hour daily limit for a worker's exposure to trace amounts of H2S gas when not wearing a gas mask.
Pore pressure depletion, narrow drilling windows due to tight margins between formation pressure and fracture pressure of the open hole, growing requirement to drill in deeper water, and increased drilling costs indicate that the amount of known reservoirs considered economically un-drillable with conventional drilling operations will continue to increase. New and improved techniques, such as managed pressure drilling and underbalanced drilling, have been used successfully throughout the world in certain offshore drilling environments. Managed pressure drilling has recently been approved in the Gulf of Mexico by the U.S. Department of Interior, Minerals Management Service, Gulf of Mexico Region. Managed pressure drilling is an adaptive drilling process that does not invite hydrocarbons to the surface during drilling. Its primary purpose is to more precisely manage the wellbore pressure profile while keeping the equivalent mud weight above the formation pressure at all times, whether circulating or shut in to make jointed pipe connections. To stay within the drilling window to a deeper depth with the mud in the hole at the time, for example to drill a deeper open hole perhaps to eliminate need for another casing string, the objective may be to drill safely at balance, nearer balanced, or by applying surface backpressure to achieve a higher equivalent mud weight (EMW) than the hydrostatic head of the drilling fluid. Underbalanced drilling is drilling with the hydrostatic head of the drilling fluid and the equivalent mud weight when circulating designed to be lower than the pressure of the formations being drilled. The hydrostatic head of the fluid may naturally be less than the formation pressure, or it can be induced.
These new and improved techniques present a need for pressure management devices, such as rotating control heads or devices (referred to as RCDs) and rotating marine diverters. RCDs, similar to the one disclosed in U.S. Pat. No. 5,662,181, have provided a dependable seal between a rotating tubular and the marine riser for purposes of controlling the pressure or fluid flow to the surface while drilling operations are conducted. Typically, an inner portion or member of the RCD is designed to seal around a rotating tubular and rotate with the tubular using internal sealing element(s) and bearings. Additionally, the inner portion of the RCD allows the tubular to move axially and slidably through the RCD. The term “tubular” as used herein means all forms of drill pipe, tubing, casing, drill collars, liners, and other tubulars for oilfield operations as are understood in the art.
U.S. Pat. No. 6,913,092 B2 proposes a seal housing comprising a RCD positioned above sea level on the upper section of a marine riser to facilitate a closed and mechanically controlled pressurized system that is useful in underbalanced subsea drilling. An internal running tool is proposed for positioning the RCD seal housing onto the riser and facilitating its attachment thereto. A remote controlled external disconnect/connect clamp is proposed for hydraulically clamping the bearing and seal assembly of the RCD to the seal housing.
It has also been known to use a dual density fluid system to control formations exposed in the open borehole. See Feasibility Study of a Dual Density Mud System For Deepwater Drilling Operations by Clovis A. Lopes and Adam T. Bourgoyne, Jr., ©1997 Offshore Technology Conference. As a high density mud is circulated to the rig, gas is proposed in the 1997 paper to be injected into the mud column in the riser at or near the ocean floor to lower the mud density. However, hydrostatic control of formation pressure is proposed to be maintained by a weighted mud system, that is not gas-cut, below the seafloor.
U.S. Pat. No. 6,470,975 B1 proposes positioning an internal housing member connected to a RCD below sea level with a marine riser using an annular blowout preventer (“BOP”) having a marine diverter, an example of which is shown in the above discussed U.S. Pat. No. 4,626,135. The internal housing member is proposed to be held at the desired position by closing the annular seal of the BOP so that a seal is provided between the internal housing member and the inside diameter of the riser. The RCD can be used for underbalanced drilling, a dual density fluid system, or any other drilling technique that requires pressure containment. The internal housing member is proposed to be run down the riser by a standard drill collar or stabilizer.
U.S. Pat. No. 7,159,669 B2 proposes that the RCD held by an internal housing member be self-lubricating. The RCD proposed is similar to the Weatherford-Williams Model 7875 RCD available from Weatherford International, Inc. of Houston, Tex.
U.S. Pat. No. 6,138,774 proposes a pressure housing assembly containing a RCD and an adjustable constant pressure regulator positioned at the sea floor over the well head for drilling at least the initial portion of the well with only sea water, and without a marine riser.
Pub. No. US 2006/0108119 A1 proposes a remotely actuated hydraulic piston latching assembly for latching and sealing a RCD with the upper section of a marine riser or a bell nipple positioned on the riser. As best shown in FIG. 2 of the '119 publication, a single latching assembly is proposed in which the latch assembly is fixedly attached to the riser or bell nipple to latch an RCD with the riser. As best shown in FIG. 3 of the '119 publication, a dual latching assembly is also proposed in which the latch assembly itself is latchable to the riser or bell nipple, using a hydraulic piston mechanism.
Pub. No. US 2006/0144622 A1 proposes a system for cooling the radial seals and bearings of a RCD. As best shown in FIG. 2A of the '622 publication, hydraulic fluid is proposed to both lubricate a plurality of bearings and to energize an annular bladder to provide an active seal that expands radially inward to seal around a tubular, such as a drill string.
Marine BOP diverters are used in conventional hydrostatic pressure drilling on drilling rigs or structures. Manufacturers of marine BOP diverters include Hydril Company, Vetco Gray, Inc., Cameron, Inc., and Dril-Quip, Inc., all of Houston, Tex. When the BOP diverter's seals are closed upon the drill string, fluid is safely diverted away from the rig floor. However, drilling operations must cease because movement of the drill string will damage or destroy the non-rotating annular seals. During normal operations the diverter's seals are open. There are a number of offshore drilling circumstances, not related to well control, where it would be advantageous to rotate and move the drill string within a marine diverter with closed seals. Two examples are: 1) slow rotation to prevent the drill string from sticking when circulating out riser gas, which in deep wells can take many hours, and 2) lifting the drill string off the bottom to minimize annulus friction pressure after circulating out riser gas and before resuming drilling operations. Being able to drill with a closed seal would also allow drilling ahead with a managed back-pressure applied to the annulus while maintaining a more precise well bore pressure profile.
A marine diverter converter housing for positioning with an RCD, as shown in
The above discussed U.S. Pat. Nos. 4,626,135; 5,662,181; 6,138,774; 6,470,975 B1; 6,913,092 B2; and 7,159,669 B2; and Pub. Nos. U.S. 2006/0108119 A1 and U.S. 2006/0144622 A1 are incorporated herein by reference for all purposes in their entirety. With the exception of the '135 patent, all of the above referenced patents and patent publications have been assigned to the assignee of the present invention. The '135 patent is assigned on its face to the Hydril Company of Houston, Tex.
While drilling rigs are usually equipped with an annular BOP marine diverter used in conventional hydrostatic pressure drilling, a need exists for a system and method to efficiently and safely convert the annular BOP marine diverters between conventional drilling and managed pressure drilling or underbalanced drilling. The system and method would allow for the conversion between a conventional annular BOP marine diverter and a rotating marine diverter. It would be desirable for the system and method to require minimal human intervention, particularly in the moon pool area of the rig, and to provide an efficient and safe method for positioning and removing the equipment. It would further be desirable for the system to be compatible with a variety of different types and sizes of RCDs and annular BOP marine diverters.
A system and method is disclosed for converting between an annular BOP marine diverter used in conventional hydrostatic pressure drilling and a rotating marine diverter using a rotating control device for managed pressure drilling or underbalanced drilling. The rotating control device may be clamped or latched with a universal marine diverter converter (UMDC) housing. The UMDC housing has an upper section and a lower section, with a threaded connection therebetween, which allows the UMDC housing to be configured to the size and type of the desired annular BOP marine diverter housing. The UMDC housing can be positioned with a hydraulic running tool so that its lower section can be positioned with the annular BOP marine diverter.
A better understanding of the present invention can be obtained with the following detailed descriptions of the various disclosed embodiments in the drawings:
Generally, the present invention involves a system and method for converting between an annular BOP marine diverter (FD, D) used in a conventional open and non-pressurized mud return system for hydrostatic pressure drilling, and a rotating marine diverter, used in a closed and pressurized mud-return system for managed pressure or underbalanced drilling, using a universal marine diverter converter (UMDC) housing, generally indicated as 24, 24A, 24B, 24C, and 24D in
Exemplary prior art drilling rigs or structures, generally indicated as FS and S, are shown in
A marine riser FR extends between the top of the BOP stack FB and to the outer barrel OB of a high pressure slip or telescopic joint SJ located above the water surface with a gas handler annular BOP GH therebetween. The slip joint SJ may be used to compensate for relative movement of the drilling rig FS to the riser FR when the drilling rig FS is used in conventional drilling. A BOP marine diverter FD is attached to the inner barrel IB of the slip joint SJ under the rig deck or floor FF. Tension support lines T connected to a hoist and pulley system on the drilling rig FS support the upper portion of the riser FR.
In
RCD 10 may be radially clamped with clamp 16 to upper section 26. RCD 10 has a lower stripper rubber seal 14 and an upper stripper rubber seal, which is not shown, but disposed in pot 10A. It should be understood that different types of RCDs (7, 10, 100) may be used with all the embodiments of the UMDC housing (24, 24A, 24B, 24C, 24D) shown in
Continuing with
An elastomer layer or coating 35 may be laid or placed radially on the outer surface of cylindrical insert 34 so that the annular elastomer packer seal 43 engages layer 35. Holding member 37 may be removed from cylindrical insert 34. It is also contemplated that layer 35 may be a wrap, sleeve, molding, or tube that may be slid over cylindrical insert 34 when holding member 37 is removed. Layer 35 may be used with any embodiment of the UMDC housing (24, 24A, 24B, 24C, 24D) of the present invention. Other materials besides elastomer are contemplated for layer 35 that would similarly seal and/or grip. It is contemplated that materials resistant to solvents may be used, such as for example nitrile or polyurethane. It is further contemplated that materials that are relatively soft and compressible with a low durometer may be used. It is also contemplated that materials with a high temperature resistance may be used. Layer 35 seals and grips with the annular elastomer packer seal 43, or such other annular seal as is used, including conventional inflatable active seals (42, 64) as discussed below in detail. It is contemplated that elastomer layer 35 may be ½ inches (1.3 cm) thick, although other thicknesses are contemplated as well and may be desired when using different materials. Such a layer 35 is particularly useful to prevent slippage and to seal when an elastomer seal, such as elastomer packer seal 43, is used, since the surface area of contact between the seal 43 and the insert 34 or the layer 35 is relatively small, such as for example eight to ten inches (20.3 to 25.4 cm). It is further contemplated that an adhesive may be used to hold the wrap, sleeve, molding, or tube layer 35 in position on cylindrical insert 34. It is also contemplated that layer 35 may be a spray coating. It is contemplated that the surface of layer 35 may be gritty or uneven to enhance its gripping capability. It is also contemplated that layer 35 may be vulcanized. The internal diameter 36 of the cylindrical insert 34 and/or holding member 37 varies in size depending on the diameter of marine housing 38. It is contemplated that the internal diameter 36 may be from eleven inches to thirty-six inches (27.9 to 91.4 cm), with twenty-five inches (63.5 cm) being a typical internal diameter. However, other diameters and sizes are contemplated, as well as different configurations referenced herein.
As best shown in
While RCD 7 has only a lower stripper rubber seal 14 (and no upper stripper rubber seal), it should be understood that different types of RCDs (7, 10, 100) may be positioned in UMDC housing 24A, including RCDs (7, 10, 100) with dual stripper rubber seals with either or both passive or active seals. Seal 14 seals the annulus AB between the drill pipe tubular 12 and the UMDC housing (24, 24A, 24B, 24C, 24D). Flange 1 of lower section 2 of UMDC housing 24A may rest on marine housing 80, and be sealed with radial seal 82. It is contemplated that flange 1 may overhang the outside diameter of marine housing 80. UMDC housing 24A may be positioned with marine housing 80 with a conventional annular elastomer packer seal 43 of the BOP marine diverter, such as described in U.S. Pat. No. 4,626,135, which annular elastomer packer seal 43 is moved by annular pistons P. Annular seal 43 compresses on cylindrical insert 88 and seals the annular space A between cylindrical insert 88 and marine diverter housing 80. Although an annular elastomer packer seal 43 is shown, other conventional passive and active seal configurations, some of which are discussed below, are contemplated. UMDC housing 24A of
Outlets (39, 40) in marine diverter housing 80 allow return flow of drilling fluid when the pistons P are raised as shown in
Remaining with
Outlets (126, 128) in marine diverter housing 118 allow return flow of drilling fluid. It is contemplated that the inside diameters of outlets (126, 128) may be 16 to 20 inches (40.6 to 50.8 cm). However, other opening sizes are contemplated as well. It is contemplated that one outlet, such as outlet 128, may lead to a remotely operated valve and a dump line, which may go overboard and/or into the sea. The other outlet, such as outlet 126, may lead to another valve and line, which may go to the rig's gas buster and/or mud pits. However, other valves and lines are contemplated as well. The driller or operator may decide which valve is to be open when he closes seal 120 upon an inserted drill string tubular. It is contemplated that there may be safeguards to prevent both valves from being closed at the same time. It is also contemplated that most often it would be the line to the gas buster that would be open when seal 120 is closed, most commonly to circulate out small kicks, or to safely divert gas that has disassociated from the mud and cuttings in the riser system. It is further contemplated that the above described operations may be used with any embodiment of UMDC housing (24, 24A, 24B, 24C, 24D). The inserted UMDC housing (24, 24A, 24B, 24C, 24D) with RCD (7, 10, 100) allows continuous drilling while circulating out gas that does not amount to a significant well control problem. In potentially more serious well control scenarios and/or where the rig's gas buster may not be able to handle the flow rate or pressures, it is contemplated that the returns may be also directed to the diverter's dump line.
On the left side of the vertical axis, elastomer packer seal 43 has further compressed inflatable annular elastomer seal 42, as annular pistons P are raised further. Inflatable annular elastomer seal 42 has been inflated to a predetermined pressure. Elastomer packer seal 43 and inflatable seal 42 seal the annular space A between cylindrical insert 52 and the marine diverter housing 60. As can now be understood, it is contemplated that either the inflatable annular elastomer seal 42 or an annular elastomer packer seal 43, or a combination of the two, could position UMDC housing 24C and seal the annular space A, as is shown in the embodiment in
Turning to
It is contemplated that the outer surface of cylindrical metal insert (34, 52, 72, 88, 108), particularly where it has contact with annular seal (42, 43, 64, 120), may be profiled, shaped, or molded to enhance the seal and grip therebetween. For example, the outer surface of the metal cylindrical insert (34, 52, 72, 88, 108) may be formed uneven, such as rough, knurled, or grooved. Further, the outer surface of cylindrical insert (34, 52, 72, 88, 108) may be formed to correspond to the surface of the annular seal (42, 43, 64, 120) upon which it would be contacting. It is also contemplated that a layer 35 of elastomer or a different material could also be profiled, shaped, or molded to correspond to either the outer surface of the cylindrical metal insert (34, 52, 72, 88, 108) or annular seal (42, 43, 64, 120), or both, to enhance the seal and grip. Further, it is contemplated that the surface of annular seal (42, 43, 64, 120) may be formed uneven, such as rough, knurled, or grooved, to enhance the seal and grip.
Turning to
It should now be understood that the UMDC housing (24, 24A, 24B, 24C, 24D) of the present invention can be received in a plurality of different marine housings (38, 60, 70, 80, 118). It should be understood that even though one UMDC housing (24, 24A, 24B, 24C, 24D) is shown in each of
A running tool may be used to install and remove the UMDC housing (24, 24A, 24B, 24C, 24D) and attached RCD (7, 10, 100) into and out of the marine housing (38, 60, 70, 80, 118) through well center FC, as shown in
As can now be understood, the UMDC housing (24, 24A, 24B, 24C, 24D) of the present invention with an attached RCD (7, 10, 100) can be used to convert any brand, size and/or shape of marine diverter (FD, D, 38, 60, 70, 80, 118) into a rotating diverter to enable a closed and pressurized mud-return system, which results in enhanced health, safety, and environmental performance. Nothing from the marine diverter (FD, D, 38, 60, 70, 80, 118) has to be removed, including the top of the marine diverter. The UMDC housing (24, 24A, 24B, 24C, 24D) with an attached RCD (7, 10, 100) allows many drilling operations to be conducted with a closed system without damaging the closed annular seal (42, 43, 64, 120). The UMDC housing (24, 24A, 24B, 24C, 24D) and attached RCD (7, 10, 100) may be installed relatively quickly without modifications to the marine diverter, and enables a closed and pressurized mud-return system. The outside diameter of the circumferential flange (1, 32, 58, 76, 116) of the UMDC housing (24, 24A, 24B, 24C, 24D) is preferably smaller than the typical 49½ inch (1.26 m) inside diameter of an offshore rig rotary table. Because the cylindrical insert (34, 52, 72, 88, 108) spans the length of the seals (42, 43, 64, 120), a tubular 12 may be lowered and rotated without damaging the marine diverter sealing elements, such as seals (42, 43, 64, 120), thereby saving time, money, and increasing operational safety.
RCD (7, 10, 100) bearing assembly designs may accommodate a wide range of tubular sizes. It is contemplated that the pressure rating of the RCD (7, 10, 100) attached with the UMDC housing (24, 24A, 24B, 24C, 24D) may be equal to or greater than that of the marine diverter (FD, D, 38, 60, 70, 80, 118). However, other pressure ratings are contemplated as well. The UMDC housing (24, 24A, 24B, 24C, 24D) with attached RCD (7, 10, 100) may be lowered into an open marine diverter (FD, D, 38, 60, 70, 80, 118) without removing seal (42, 43, 64, 120). The installation saves time, improves safety, and preserves environmental integrity. The UMDC housing (24, 24A, 24B, 24C, 24D) of the present invention may be used, among other applications, in (1) offshore managed pressure drilling or underbalanced drilling operations from a fixed platform or a jack-up rig, (2) drilling operations with shallow gas hazards, (3) drilling operations in which it is beneficial to conduct pipe or other tubular movement with a closed diverter system, and (4) drilling operations with simultaneous circulation of drilled cuttings gas.
Method of Use
A conventional annular BOP marine diverter (FD, D, 38, 60, 70, 80, 118), including, but not limited to, the diverters (FD, D) as configured in
On the drilling rig, RCD (7, 10, 100) may be clamped with clamp (16, 130) or latched with latching assembly 6 to the desired UMDC housing (24, 24A, 24B, 24C, 24D). The RCD (7, 10, 100) and UMDC housing (24, 24A, 24B, 24C, 24D) may be lowered through the well center (FC, C) with a hydraulic running tool or upon a tool joint as previously described, and positioned with the conventional annular BOP housing (38, 60, 70, 80, 118). When the flange (1, 32, 58, 76, 116) of the UMDC housing (24, 24A, 24B, 24C, 24D) engages the top of the conventional annular BOP housing (38, 60, 70, 80, 118), the running tool is disengaged from the RCD (7, 10, 100)/UMDC housing (24, 24A, 24B, 24C, 24D). If an inflatable seal (42, 64) is used, it is inflated to a predetermined pressure to hold the UMDC housing (24, 24A, 24B, 24C, 24D) with the conventional annular BOP housing (38, 60, 70, 80, 118). If the annular elastomer packer seal 43 is left in place, it may be moved upwardly and inwardly with annular pistons P to hold the UMDC housing (24, 24A, 24B, 24C, 24D). As has been previously described with
After the UMDC housing (24, 24A, 24B, 24C, 24D) is secured, drilling may begin. The tubular 12 can be run through well center (FC, C) and then through the RCD (7, 10, 100) for drilling or other operations. The RCD 10 upper seal and/or lower (14, 102) stripper rubber seal rotate with the tubular and allow the tubular to slide through, and seal the annulus AB between the tubular and UMDC housing (24, 24A, 24B, 24C, 24D) so that drilling fluid returns (shown with arrows in
The foregoing disclosure and description of the invention are illustrative and explanatory thereof, and various changes in the details of the illustrated apparatus and system, and the construction and the method of operation may be made without departing from the spirit of the invention.
Number | Name | Date | Kind |
---|---|---|---|
517509 | Williams | Apr 1894 | A |
1157644 | London | Oct 1915 | A |
1472952 | Anderson | Nov 1923 | A |
1503476 | Childs et al. | Aug 1924 | A |
1528560 | Myers et al. | Mar 1925 | A |
1546467 | Bennett | Jul 1925 | A |
1560763 | Collins | Nov 1925 | A |
1700894 | Joyce et al. | Feb 1929 | A |
1708316 | MacClatchie | Apr 1929 | A |
1769921 | Hansen | Jul 1930 | A |
1776797 | Sheldon | Sep 1930 | A |
1813402 | Hewitt | Jul 1931 | A |
2038140 | Stone | Jul 1931 | A |
1831956 | Harrington | Nov 1931 | A |
1836470 | Humason et al. | Dec 1931 | A |
1902906 | Seamark | Mar 1933 | A |
1942366 | Seamark | Jan 1934 | A |
2036537 | Otis | Apr 1936 | A |
2071197 | Burns et al. | Feb 1937 | A |
2124015 | Stone et al. | Jul 1938 | A |
2126007 | Guiberson et al. | Aug 1938 | A |
2144682 | MacClatchie | Jan 1939 | A |
2148844 | Stone et al. | Feb 1939 | A |
2163813 | Stone et al. | Jun 1939 | A |
2165410 | Penick et al. | Jul 1939 | A |
2170915 | Schweitzer | Aug 1939 | A |
2170916 | Schweitzer et al. | Aug 1939 | A |
2175648 | Roach | Oct 1939 | A |
2176355 | Otis | Oct 1939 | A |
2185822 | Young | Jan 1940 | A |
2199735 | Beckman | May 1940 | A |
2211122 | Howard | Aug 1940 | A |
2222082 | Leman et al. | Nov 1940 | A |
2233041 | Alley | Feb 1941 | A |
2243340 | Hild | May 1941 | A |
2243439 | Pranger et al. | May 1941 | A |
2287205 | Stone | Jun 1942 | A |
2303090 | Pranger et al. | Nov 1942 | A |
2313169 | Penick et al. | Mar 1943 | A |
2325556 | Taylor, Jr. et al. | Jul 1943 | A |
2338093 | Caldwell | Jan 1944 | A |
2480955 | Penick | Sep 1949 | A |
2506538 | Bennett | May 1950 | A |
2529744 | Schweitzer | Nov 1950 | A |
2609836 | Knox | Sep 1952 | A |
2628852 | Voytech | Feb 1953 | A |
2646999 | Barske | Jul 1953 | A |
2649318 | Skillman | Aug 1953 | A |
2731281 | Knox | Jan 1956 | A |
2746781 | Jones | May 1956 | A |
2760750 | Schweitzer et al. | Aug 1956 | A |
2760795 | Vertson | Aug 1956 | A |
2764999 | Stanbury | Oct 1956 | A |
2808229 | Bauer et al. | Oct 1957 | A |
2808230 | McNeil et al. | Oct 1957 | A |
2846178 | Minor | Aug 1958 | A |
2846247 | Davis | Aug 1958 | A |
2853274 | Collins | Sep 1958 | A |
2862735 | Knox | Dec 1958 | A |
2886350 | Horne | May 1959 | A |
2904357 | Knox | Sep 1959 | A |
2927774 | Ormsby | Mar 1960 | A |
2929610 | Stratton | Mar 1960 | A |
2962096 | Knox | Nov 1960 | A |
2995196 | Gibson et al. | Aug 1961 | A |
3023012 | Wilde | Feb 1962 | A |
3029083 | Wilde | Apr 1962 | A |
3032125 | Hiser et al. | May 1962 | A |
3033011 | Garrett | May 1962 | A |
3052300 | Hampton | Sep 1962 | A |
3096999 | Ahlstone et al. | Jul 1963 | A |
3100015 | Regan | Aug 1963 | A |
3128614 | Auer | Apr 1964 | A |
3134613 | Regan | May 1964 | A |
3176996 | Barnett | Apr 1965 | A |
3203358 | Regan et al. | Aug 1965 | A |
3209829 | Haeber | Oct 1965 | A |
3216731 | Dollison | Nov 1965 | A |
3225831 | Knox | Dec 1965 | A |
3259198 | Montgomery et al. | Jul 1966 | A |
3268233 | Brown | Aug 1966 | A |
3285352 | Hunter | Nov 1966 | A |
3288472 | Watkins | Nov 1966 | A |
3289761 | Smith et al. | Dec 1966 | A |
3294112 | Watkins | Dec 1966 | A |
3302048 | Gray | Jan 1967 | A |
3313345 | Fischer | Apr 1967 | A |
3313358 | Postlewaite et al. | Apr 1967 | A |
3323773 | Walker | Jun 1967 | A |
3333870 | Watkins | Aug 1967 | A |
3347567 | Watkins | Oct 1967 | A |
3360048 | Watkins | Dec 1967 | A |
3372761 | van Gils | Mar 1968 | A |
3387851 | Cugini | Jun 1968 | A |
3397928 | Galle | Aug 1968 | A |
3400938 | Williams | Sep 1968 | A |
3401600 | Wood | Sep 1968 | A |
3405763 | Pitts et al. | Oct 1968 | A |
3421580 | Fowler et al. | Jan 1969 | A |
3443643 | Jones | May 1969 | A |
3445126 | Watkins | May 1969 | A |
3452815 | Watkins | Jul 1969 | A |
3472518 | Harlan | Oct 1969 | A |
3476195 | Galle | Nov 1969 | A |
3481610 | Slator et al. | Dec 1969 | A |
3485051 | Watkins | Dec 1969 | A |
3492007 | Jones | Jan 1970 | A |
3493043 | Watkins | Feb 1970 | A |
3503460 | Gadbois | Mar 1970 | A |
3522709 | Vilain | Aug 1970 | A |
3529835 | Lewis | Sep 1970 | A |
3561723 | Cugini | Feb 1971 | A |
3583480 | Regan | Jun 1971 | A |
3587734 | Shaffer | Jun 1971 | A |
3603409 | Watkins | Sep 1971 | A |
3621912 | Wooddy, Jr. | Nov 1971 | A |
3631834 | Gardner et al. | Jan 1972 | A |
3638721 | Harrison | Feb 1972 | A |
3638742 | Wallace | Feb 1972 | A |
3653350 | Koons et al. | Apr 1972 | A |
3661409 | Brown et al. | May 1972 | A |
3664376 | Watkins | May 1972 | A |
3667721 | Vujasinovic | Jun 1972 | A |
3677353 | Baker | Jul 1972 | A |
3724862 | Biffle | Apr 1973 | A |
3741296 | Murman et al. | Jun 1973 | A |
3779313 | Regan | Dec 1973 | A |
3815673 | Bruce et al. | Jun 1974 | A |
3827511 | Jones | Aug 1974 | A |
3847215 | Herd | Nov 1974 | A |
3868832 | Biffle | Mar 1975 | A |
3872717 | Fox | Mar 1975 | A |
3924678 | Ahlstone | Dec 1975 | A |
3934887 | Biffle | Jan 1976 | A |
3952526 | Watkins et al. | Apr 1976 | A |
3955622 | Jones | May 1976 | A |
3965987 | Biffle | Jun 1976 | A |
3976148 | Maus et al. | Aug 1976 | A |
3984990 | Jones | Oct 1976 | A |
3992889 | Watkins et al. | Nov 1976 | A |
3999766 | Barton | Dec 1976 | A |
4037890 | Kurita et al. | Jul 1977 | A |
4046191 | Neath | Sep 1977 | A |
4052703 | Collins, Sr. et al. | Oct 1977 | A |
4053023 | Herd et al. | Oct 1977 | A |
4063602 | Howell et al. | Dec 1977 | A |
4087097 | Bossens et al. | May 1978 | A |
4091881 | Maus | May 1978 | A |
4098341 | Lewis | Jul 1978 | A |
4099583 | Maus | Jul 1978 | A |
4109712 | Regan | Aug 1978 | A |
4143880 | Bunting et al. | Mar 1979 | A |
4143881 | Bunting | Mar 1979 | A |
4149603 | Arnold | Apr 1979 | A |
4154448 | Biffle | May 1979 | A |
4157186 | Murray et al. | Jun 1979 | A |
4183562 | Watkins et al. | Jan 1980 | A |
4200312 | Watkins | Apr 1980 | A |
4208056 | Biffle | Jun 1980 | A |
4216835 | Nelson | Aug 1980 | A |
4222590 | Regan | Sep 1980 | A |
4249600 | Bailey | Feb 1981 | A |
4281724 | Garrett | Aug 1981 | A |
4282939 | Maus et al. | Aug 1981 | A |
4285406 | Garrett et al. | Aug 1981 | A |
4291772 | Beynet | Sep 1981 | A |
4293047 | Young | Oct 1981 | A |
4304310 | Garrett | Dec 1981 | A |
4310058 | Bourgoyne, Jr. | Jan 1982 | A |
4312404 | Morrow | Jan 1982 | A |
4313054 | Martini | Jan 1982 | A |
4326584 | Watkins | Apr 1982 | A |
4335791 | Evans | Jun 1982 | A |
4336840 | Bailey | Jun 1982 | A |
4337653 | Chauffe | Jul 1982 | A |
4345769 | Johnston | Aug 1982 | A |
4349204 | Malone | Sep 1982 | A |
4353420 | Miller | Oct 1982 | A |
4355784 | Cain | Oct 1982 | A |
4361185 | Biffle | Nov 1982 | A |
4363357 | Hunter | Dec 1982 | A |
4367795 | Biffle | Jan 1983 | A |
4378849 | Wilks | Apr 1983 | A |
4383577 | Pruitt | May 1983 | A |
4384724 | Derman | May 1983 | A |
4386667 | Millsapps, Jr. | Jun 1983 | A |
4387771 | Jones | Jun 1983 | A |
4398599 | Murray | Aug 1983 | A |
4406333 | Adams | Sep 1983 | A |
4407375 | Nakamura | Oct 1983 | A |
4413653 | Carter, Jr. | Nov 1983 | A |
4416340 | Bailey | Nov 1983 | A |
4423776 | Wagoner et al. | Jan 1984 | A |
4424861 | Carter, Jr. et al. | Jan 1984 | A |
4427072 | Lawson | Jan 1984 | A |
4439068 | Pokladnik | Mar 1984 | A |
4440232 | LeMoine | Apr 1984 | A |
4441551 | Biffle | Apr 1984 | A |
4444250 | Keithahn et al. | Apr 1984 | A |
4444401 | Roche et al. | Apr 1984 | A |
4448255 | Shaffer et al. | May 1984 | A |
4456062 | Roche et al. | Jun 1984 | A |
4456063 | Roche | Jun 1984 | A |
4457489 | Gilmore | Jul 1984 | A |
4478287 | Hynes et al. | Oct 1984 | A |
4480703 | Garrett | Nov 1984 | A |
4484753 | Kalsi | Nov 1984 | A |
4486025 | Johnston | Dec 1984 | A |
4497592 | Lawson | Feb 1985 | A |
4500094 | Biffle | Feb 1985 | A |
4502534 | Roche et al. | Mar 1985 | A |
4509405 | Bates | Apr 1985 | A |
4524832 | Roche et al. | Jun 1985 | A |
4526243 | Young | Jul 1985 | A |
4527632 | Chaudot | Jul 1985 | A |
4529210 | Biffle | Jul 1985 | A |
4531580 | Jones | Jul 1985 | A |
4531591 | Johnston | Jul 1985 | A |
4531593 | Elliott et al. | Jul 1985 | A |
4531951 | Burt et al. | Jul 1985 | A |
4533003 | Bailey et al. | Aug 1985 | A |
4540053 | Baugh et al. | Sep 1985 | A |
4546828 | Roche | Oct 1985 | A |
4553591 | Mitchell | Nov 1985 | A |
D282073 | Bearden et al. | Jan 1986 | S |
4566494 | Roche | Jan 1986 | A |
4575426 | Littlejohn et al. | Mar 1986 | A |
4595343 | Thompson et al. | Jun 1986 | A |
4597447 | Roche et al. | Jul 1986 | A |
4597448 | Baugh | Jul 1986 | A |
4610319 | Kalsi | Sep 1986 | A |
4611661 | Hed et al. | Sep 1986 | A |
4615544 | Baugh | Oct 1986 | A |
4618314 | Hailey | Oct 1986 | A |
4621655 | Roche | Nov 1986 | A |
4623020 | Nichols | Nov 1986 | A |
4626135 | Roche | Dec 1986 | A |
4630680 | Elkins | Dec 1986 | A |
4632188 | Schuh et al. | Dec 1986 | A |
4646826 | Bailey et al. | Mar 1987 | A |
4646844 | Roche et al. | Mar 1987 | A |
4651830 | Crotwell | Mar 1987 | A |
4660863 | Bailey et al. | Apr 1987 | A |
4688633 | Barkley | Aug 1987 | A |
4690220 | Braddick | Sep 1987 | A |
4697484 | Klee et al. | Oct 1987 | A |
4709900 | Dyhr | Dec 1987 | A |
4712620 | Lim et al. | Dec 1987 | A |
4719937 | Roche et al. | Jan 1988 | A |
4722615 | Bailey et al. | Feb 1988 | A |
4727942 | Galle et al. | Mar 1988 | A |
4736799 | Ahlstone | Apr 1988 | A |
4745970 | Bearden et al. | May 1988 | A |
4749035 | Cassity | Jun 1988 | A |
4754820 | Watts et al. | Jul 1988 | A |
4757584 | Pav et al. | Jul 1988 | A |
4759413 | Bailey et al. | Jul 1988 | A |
4765404 | Bailey et al. | Aug 1988 | A |
4783084 | Biffle | Nov 1988 | A |
4807705 | Henderson et al. | Feb 1989 | A |
4813495 | Leach | Mar 1989 | A |
4817724 | Funderburg, Jr. et al. | Apr 1989 | A |
4822212 | Hall et al. | Apr 1989 | A |
4825938 | Davis | May 1989 | A |
4828024 | Roche | May 1989 | A |
4832126 | Roche | May 1989 | A |
4836289 | Young | Jun 1989 | A |
4865137 | Bailey et al. | Sep 1989 | A |
4882830 | Carstensen | Nov 1989 | A |
4909327 | Roche | Mar 1990 | A |
4949796 | Williams | Aug 1990 | A |
4955436 | Johnston | Sep 1990 | A |
4955949 | Bailey et al. | Sep 1990 | A |
4962819 | Bailey et al. | Oct 1990 | A |
4971148 | Roche et al. | Nov 1990 | A |
4984636 | Bailey et al. | Jan 1991 | A |
4995464 | Watkins et al. | Feb 1991 | A |
5009265 | Bailey et al. | Apr 1991 | A |
5022472 | Bailey et al. | Jun 1991 | A |
5028056 | Bemis et al. | Jul 1991 | A |
5035292 | Bailey et al. | Jul 1991 | A |
5040600 | Bailey et al. | Aug 1991 | A |
5048621 | Bailey et al. | Sep 1991 | A |
5062450 | Bailey et al. | Nov 1991 | A |
5062479 | Bailey et al. | Nov 1991 | A |
5072795 | Delgado et al. | Dec 1991 | A |
5076364 | Hale et al. | Dec 1991 | A |
5082020 | Bailey et al. | Jan 1992 | A |
5085277 | Hopper | Feb 1992 | A |
5101897 | Leismer et al. | Apr 1992 | A |
5137084 | Gonzales et al. | Aug 1992 | A |
5147559 | Brophey et al. | Sep 1992 | A |
5154231 | Bailey et al. | Oct 1992 | A |
5163514 | Jennings | Nov 1992 | A |
5165480 | Wagoner et al. | Nov 1992 | A |
5178215 | Yenulis et al. | Jan 1993 | A |
5182979 | Morgan | Feb 1993 | A |
5184686 | Gonzalez | Feb 1993 | A |
5195754 | Dietle | Mar 1993 | A |
5213158 | Bailey et al. | May 1993 | A |
5215151 | Smith et al. | Jun 1993 | A |
5224557 | Yenulis et al. | Jul 1993 | A |
5230520 | Dietle et al. | Jul 1993 | A |
5243187 | Hettlage | Sep 1993 | A |
5251869 | Mason | Oct 1993 | A |
5255745 | Czyrek | Oct 1993 | A |
5277249 | Yenulis et al. | Jan 1994 | A |
5279365 | Yenulis et al. | Jan 1994 | A |
5305839 | Kalsi et al. | Apr 1994 | A |
5320325 | Young et al. | Jun 1994 | A |
5322137 | Gonzales | Jun 1994 | A |
5325925 | Smith et al. | Jul 1994 | A |
5348107 | Bailey et al. | Sep 1994 | A |
5375476 | Gray | Dec 1994 | A |
5427179 | Bailey et al. | Jun 1995 | A |
5431220 | Lennon et al. | Jul 1995 | A |
5443129 | Bailey et al. | Aug 1995 | A |
5495872 | Gallagher et al. | Mar 1996 | A |
5529093 | Gallagher et al. | Jun 1996 | A |
5588491 | Brugman et al. | Dec 1996 | A |
5607019 | Kent | Mar 1997 | A |
5647444 | Williams | Jul 1997 | A |
5657820 | Bailey et al. | Aug 1997 | A |
5662171 | Brugman et al. | Sep 1997 | A |
5662181 | Williams et al. | Sep 1997 | A |
5671812 | Bridges | Sep 1997 | A |
5678829 | Kalsi et al. | Oct 1997 | A |
5735502 | Levett et al. | Apr 1998 | A |
5738358 | Kalsi et al. | Apr 1998 | A |
5755372 | Cimbura | May 1998 | A |
5823541 | Dietle et al. | Oct 1998 | A |
5829531 | Hebert et al. | Nov 1998 | A |
5848643 | Carbaugh et al. | Dec 1998 | A |
5873576 | Dietle et al. | Feb 1999 | A |
5878818 | Hebert et al. | Mar 1999 | A |
5901964 | Williams et al. | May 1999 | A |
5944111 | Bridges | Aug 1999 | A |
6007105 | Dietle et al. | Dec 1999 | A |
6016880 | Hall et al. | Jan 2000 | A |
6017168 | Fraser, Jr. et al. | Jan 2000 | A |
6036192 | Dietle et al. | Mar 2000 | A |
6076606 | Bailey et al. | Jun 2000 | A |
6102123 | Bailey et al. | Aug 2000 | A |
6102673 | Mott et al. | Aug 2000 | A |
6109348 | Caraway | Aug 2000 | A |
6109618 | Dietle | Aug 2000 | A |
6112810 | Bailey et al. | Sep 2000 | A |
6120036 | Kalsi et al. | Sep 2000 | A |
6129152 | Hosie et al. | Oct 2000 | A |
6138774 | Bourgoyne, Jr. et al. | Oct 2000 | A |
6170576 | Brunnert et al. | Jan 2001 | B1 |
6202745 | Reimert et al. | Mar 2001 | B1 |
6209663 | Hosie | Apr 2001 | B1 |
6213228 | Saxman | Apr 2001 | B1 |
6227547 | Dietle et al. | May 2001 | B1 |
6230824 | Peterman et al. | May 2001 | B1 |
6244359 | Bridges et al. | Jun 2001 | B1 |
6263982 | Hannegan et al. | Jul 2001 | B1 |
6273193 | Hermann et al. | Aug 2001 | B1 |
6315302 | Conroy et al. | Nov 2001 | B1 |
6315813 | Morgan et al. | Nov 2001 | B1 |
6325159 | Peterman et al. | Dec 2001 | B1 |
6334619 | Dietle et al. | Jan 2002 | B1 |
6354385 | Ford et al. | Mar 2002 | B1 |
6361830 | Schenk | Mar 2002 | B1 |
6375895 | Daemen | Apr 2002 | B1 |
6382634 | Dietle et al. | May 2002 | B1 |
6386291 | Short et al. | May 2002 | B1 |
6413297 | Morgan et al. | Jul 2002 | B1 |
6450262 | Regan | Sep 2002 | B1 |
6454007 | Bailey | Sep 2002 | B1 |
6457529 | Calder et al. | Oct 2002 | B2 |
6470975 | Bourgoyne et al. | Oct 2002 | B1 |
6478303 | Radcliffe | Nov 2002 | B1 |
6494462 | Dietle | Dec 2002 | B2 |
6504982 | Greer, IV | Jan 2003 | B1 |
6505691 | Judge et al. | Jan 2003 | B2 |
6520253 | Calder | Feb 2003 | B2 |
6536520 | Snider et al. | Mar 2003 | B1 |
6536525 | Haugen et al. | Mar 2003 | B1 |
6547002 | Bailey et al. | Apr 2003 | B1 |
6554016 | Kinder | Apr 2003 | B2 |
6561520 | Kalsi et al. | May 2003 | B2 |
6581681 | Zimmerman et al. | Jun 2003 | B1 |
6607042 | Hoyer et al. | Aug 2003 | B2 |
RE38249 | Tasson et al. | Sep 2003 | E |
6655460 | Bailey et al. | Dec 2003 | B2 |
6685194 | Dietle et al. | Feb 2004 | B2 |
6702012 | Bailey et al. | Mar 2004 | B2 |
6708762 | Haugen et al. | Mar 2004 | B2 |
6720764 | Relton et al. | Apr 2004 | B2 |
6725951 | Looper | Apr 2004 | B2 |
6732804 | Hosie et al. | May 2004 | B2 |
6749172 | Kinder | Jun 2004 | B2 |
6767016 | Gobeli et al. | Jul 2004 | B2 |
6843313 | Hult | Jan 2005 | B2 |
6851476 | Gray et al. | Feb 2005 | B2 |
6877565 | Edvardsen | Apr 2005 | B2 |
6886631 | Wilson et al. | May 2005 | B2 |
6896048 | Mason et al. | May 2005 | B2 |
6896076 | Nelson et al. | May 2005 | B2 |
6913092 | Bourgoyne et al. | Jul 2005 | B2 |
6945330 | Wilson et al. | Sep 2005 | B2 |
7004444 | Kinder | Feb 2006 | B2 |
7007913 | Kinder | Mar 2006 | B2 |
7011167 | Ebner et al. | Mar 2006 | B2 |
7025130 | Bailey et al. | Apr 2006 | B2 |
7028777 | Wade et al. | Apr 2006 | B2 |
7032691 | Humphreys | Apr 2006 | B2 |
7040394 | Bailey et al. | May 2006 | B2 |
7044237 | Leuchtenberg | May 2006 | B2 |
7073580 | Wilson et al. | Jul 2006 | B2 |
7077212 | Roesner et al. | Jul 2006 | B2 |
7080685 | Bailey et al. | Jul 2006 | B2 |
7086481 | Hosie et al. | Aug 2006 | B2 |
7152680 | Wilson et al. | Dec 2006 | B2 |
7159669 | Bourgoyne et al. | Jan 2007 | B2 |
7165610 | Hopper | Jan 2007 | B2 |
7174956 | Williams et al. | Feb 2007 | B2 |
7178600 | Luke et al. | Feb 2007 | B2 |
7191840 | Pietras et al. | Mar 2007 | B2 |
7198098 | Williams | Apr 2007 | B2 |
7204315 | Pia | Apr 2007 | B2 |
7219729 | Bostick et al. | May 2007 | B2 |
7237618 | Williams | Jul 2007 | B2 |
7237623 | Hannegan | Jul 2007 | B2 |
7240727 | Williams | Jul 2007 | B2 |
7243958 | Williams | Jul 2007 | B2 |
7255173 | Hosie et al. | Aug 2007 | B2 |
7258171 | Bourgoyne et al. | Aug 2007 | B2 |
7278494 | Williams | Oct 2007 | B2 |
7278496 | Leuchtenberg | Oct 2007 | B2 |
7296628 | Robichaux et al. | Nov 2007 | B2 |
7308954 | Martin-Marshall | Dec 2007 | B2 |
7325610 | Giroux et al. | Feb 2008 | B2 |
7334633 | Williams et al. | Feb 2008 | B2 |
7347261 | Markel et al. | Mar 2008 | B2 |
7350590 | Hosie et al. | Apr 2008 | B2 |
7363860 | Wilson et al. | Apr 2008 | B2 |
7367411 | Leuchtenberg | May 2008 | B2 |
7380590 | Hughes | Jun 2008 | B2 |
7380591 | Williams | Jun 2008 | B2 |
7380610 | Williams | Jun 2008 | B2 |
7383876 | Gray et al. | Jun 2008 | B2 |
7389183 | Gray | Jun 2008 | B2 |
7392860 | Johnston | Jul 2008 | B2 |
7413018 | Hosie et al. | Aug 2008 | B2 |
7416021 | Williams | Aug 2008 | B2 |
7416226 | Williams | Aug 2008 | B2 |
7448454 | Bourgoyne et al. | Nov 2008 | B2 |
7451809 | Noske et al. | Nov 2008 | B2 |
7475732 | Hosie et al. | Jan 2009 | B2 |
7487837 | Bailey et al. | Feb 2009 | B2 |
7513300 | Pietras et al. | Apr 2009 | B2 |
7559359 | Williams | Jul 2009 | B2 |
7635034 | Williams | Dec 2009 | B2 |
7654325 | Giroux et al. | Feb 2010 | B2 |
7669649 | Williams | Mar 2010 | B2 |
7699109 | May et al. | Apr 2010 | B2 |
20010040052 | Bourgoyne et al. | Nov 2001 | A1 |
20030106712 | Bourgoyne et al. | Jun 2003 | A1 |
20030164276 | Snider et al. | Sep 2003 | A1 |
20030173073 | Snider et al. | Sep 2003 | A1 |
20040017190 | Graham et al. | Jan 2004 | A1 |
20040178001 | Bourgoyne et al. | Sep 2004 | A1 |
20050028972 | Wilson et al. | Feb 2005 | A1 |
20050151107 | Shu | Jul 2005 | A1 |
20050161228 | Cook et al. | Jul 2005 | A1 |
20050211429 | Gray et al. | Sep 2005 | A1 |
20050241833 | Bailey et al. | Nov 2005 | A1 |
20060037782 | Martin-Marshall | Feb 2006 | A1 |
20060102387 | Bourgoyne et al. | May 2006 | A1 |
20060108119 | Bailey et al. | May 2006 | A1 |
20060144622 | Bailey et al. | Jul 2006 | A1 |
20060157282 | Tilton et al. | Jul 2006 | A1 |
20060191716 | Humphreys | Aug 2006 | A1 |
20070051512 | Markel et al. | Mar 2007 | A1 |
20070095540 | Kozicz et al. | May 2007 | A1 |
20070163784 | Bailey et al. | Jul 2007 | A1 |
20080035377 | Sullivan et al. | Feb 2008 | A1 |
20080041149 | Leuchtenberg | Feb 2008 | A1 |
20080047449 | Wilson et al. | Feb 2008 | A1 |
20080059073 | Giroux et al. | Mar 2008 | A1 |
20080060846 | Belcher et al. | Mar 2008 | A1 |
20080105462 | May et al. | May 2008 | A1 |
20080110637 | Snider et al. | May 2008 | A1 |
20080169107 | Redlinger et al. | Jul 2008 | A1 |
20080210471 | Bailey et al. | Sep 2008 | A1 |
20080236819 | Foster et al. | Oct 2008 | A1 |
20080245531 | Noske et al. | Oct 2008 | A1 |
20080296016 | Hughes et al. | Dec 2008 | A1 |
20090025930 | Iblings et al. | Jan 2009 | A1 |
20090057012 | Williams | Mar 2009 | A1 |
20090057020 | Williams | Mar 2009 | A1 |
20090057021 | Williams | Mar 2009 | A1 |
20090057022 | Williams | Mar 2009 | A1 |
20090057024 | Williams | Mar 2009 | A1 |
20090057025 | Williams | Mar 2009 | A1 |
20090057027 | Williams | Mar 2009 | A1 |
20090057029 | Williams | Mar 2009 | A1 |
20090101351 | Hannegan et al. | Apr 2009 | A1 |
20090101411 | Hannegan et al. | Apr 2009 | A1 |
20090139724 | Gray et al. | Jun 2009 | A1 |
20090152006 | Leduc et al. | Jun 2009 | A1 |
20090166046 | Edvardsen et al. | Jul 2009 | A1 |
20090200747 | Williams | Aug 2009 | A1 |
20090211239 | Askeland | Aug 2009 | A1 |
20090236144 | Todd et al. | Sep 2009 | A1 |
20090301723 | Gray | Dec 2009 | A1 |
20100008190 | Gray et al. | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
2363132 | Sep 2000 | CA |
2447196 | Apr 2004 | CA |
0290250 | Nov 1988 | EP |
0290250 | Nov 1988 | EP |
0267140 | Mar 1993 | EP |
1375817 | Jan 2004 | EP |
1519003 | Mar 2005 | EP |
1659260 | May 2006 | EP |
2019921 | Nov 1979 | GB |
2067235 | Jul 1981 | GB |
2394741 | May 2004 | GB |
2449010 | Aug 2007 | GB |
WO 9945228 | Sep 1999 | WO |
WO 9950524 | Oct 1999 | WO |
WO 9950524 | Oct 1999 | WO |
WO 9951852 | Oct 1999 | WO |
WO 0052299 | Sep 2000 | WO |
WO 0052300 | Sep 2000 | WO |
WO 0250398 | Jun 2002 | WO |
WO 03071091 | Aug 2003 | WO |
WO 2006088379 | Aug 2006 | WO |
WO 2007092956 | Aug 2007 | WO |
WO 2008133523 | Nov 2008 | WO |
WO 2008156376 | Dec 2008 | WO |
WO 2009017418 | Feb 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20090101351 A1 | Apr 2009 | US |