The present invention relates to a method, and an apparatus exploiting said method, for continuous correlation of sound to light and light to sound.
Since ancient times, it has been a desire and need of humankind to associate colors and sounds and pursue its benefits. Even today, such efforts remain intuitive and subjective with one thing in common: they reflect a need of humankind but are not capable of being consistently applied to all colors and sounds humans can see and hear. This is a result of the lack of science in these efforts. If a universal correlation had been found, then the entire audible range could correlate to the visible range without any human intervention or modification. Such a correlation must be seamless in order to have a continuous dialogue between light and sound to address human needs.
Current continuations of intuitive and subjective efforts are exemplified in several patents, which all rely on a user dependent relationship. At best, an association, not a correlation is made relative to a reference sound frequency or color.
U.S. Pat. No. 6,686,529 B2 (2004) employs an equation to convert one signal of the audible frequency into a signal of a visible frequency, which involves a reference visible frequency (Fl, fl) to be inputted by the user and employs arbitrary color harmony schemes. In addition, the method involves selection of a reference color from a table or a scale degree-dividing rate and modifies frequencies to fit the audible and visible ranges. Hence, this method proposes a user input dependent color and sound conversion criterion rather than a universal correlation equation.
Another prior art document, namely U.S. Pat. No. 4,378,466 (1983) discloses a method for conversion of acoustic signals into visual signals, wherein each audio frequency is assigned a respective color hue. This method also involves an artificial assignment procedure among colors and sounds.
A sound-picture converter is explained in Japanese Patent 63,184,875, (1988) wherein each element picture is allowed to correspond to a tone color, and each element of the picture is converted to sound based on the said correspondence. A similar converter is disclosed in another Japanese Patent 3,134,697 (1991).
A PCT application no. WO 81/00637 (1981) discloses a visual method of representing sound by color, consisting of a subjective division of the color spectrum into twelve hues and correlating each of the twelve notes of the musical octave with each hue in such a way that degrees of consonance and dissonance between notes are claimed to correlate with that between the corresponding colors.
Japanese Patent 01,091,173 A2 (1989) allows MIDI (Musical Instrument Digital Interface) signals of a music piece to be displayed on a TV (cathode ray tube) screen in terms of pictures of four basic types of musical instruments, i.e. piano, strings, horns, and rhythm instruments. An electronic circuit processes the MIDI signals to display the corresponding musical instrument pictures simultaneously with the music. This patent simply allocates MIDI signals to their corresponding music instrument displays and does not involve a color sound correlation whatsoever.
Japanese Patent 22,000,734 A2 (2002) describes a musical therapy support device, which accompanies a screen output for the music being played by processing its MIDI signals. This device is not based on any scientific color-sound correlation.
Japanese Patent 04,170,574 A2 (1992) describes a method for playing a color-classified instrument by a color-classified score. According to this patent, different colors are assigned to different notes of music, and a music instrument with colored keys is played accordingly. The color assignment in this patent does not involve any scientific color-sound correlation.
U.S. Pat. No. 6,515,210 B2 (2003) issued to Shibukawa discloses a musical score displaying apparatus and method for a keyboard with a color monitor. On the color monitor, a prearranged color appears indicating which key to be pressed in performing a music piece.
In U.S. Patent Application 2004/0061668 A1, Lin describes a LED (Light Emitting Diode) based lighting apparatus operated in synchronism with the music played. This apparatus is primarily intended for entertainment where LED colors and brightness change with the frequency of sound. In this apparatus, the LED color and brightness selection were arbitrarily.
In U.S. Patent Application 2003/0117400 A1, Steinberg et al. disclose an apparatus which utilizes a color palette to display musical notation on a color monitor or display screen with various combinations of user selected and adjusted colors, shapes, patterns etc.
In U.S. Patent Application 2004/0074376 A1, Varme discloses a system to colorize musical scores through a septuary system of colors based on an arbitrarily selected master color matrix.
U.S. Pat. No. 5,998,720 (1999) issued to Beatty discloses a music teaching system and method comprising at least two musical instruments. Each musical instrument has a mechanism for producing a musical note when the means is activated. Each such mechanism is marked by a color corresponding to the particular musical note produced by the mechanism. In this method, the color sound association was determined arbitrarily simply to allow students with color-coded hand bells to follow color-coded cards displayed by the teacher.
U.S. Pat. No. 5,931,680 (1999) issued to Semba discloses an apparatus for displaying beat marks corresponding to the number of beats per measure during a performance by a musical instrument karaoke apparatus. Color of each displayed beat marks change color in synchrony with the timing of beats. The color change method does not involve a scientific color-sound correlation; instead, colors simply change with a predetermined direction with the tempo of music.
In U.S. Patent Application 2004/0007118 A1, Holcombe describes a method of music notation, which assigns distinct colors to the twelve notes of the C major scale. Color boxes are embedded in the conventional notation sheets. In this method, the color assignments have been arbitrarily selected.
U.S. Pat. No. 6,660,921 B2 (2003) issued to Deverich discloses a method for teaching stringed instrument students how to play sheet music by using colored fingering numbers. In this method, “easily identifiable” distinct colors were arbitrarily assigned to particular notes.
The common denominator of all the above prior art is the fact that the color sound associations were made arbitrarily and none of them agree with another. Furthermore, the direct correlation between the replication pattern of octaves in music and the replication of spectral colors with different shades was neither recognized nor fully utilized.
None of the documents in the prior art disclose a scientific and natural correlation between sound and light; instead, they stem from intuitive and artificial conversions.
On the other hand, in the human brain, the color response subfields are arranged from low frequency (red) to high frequency (violet). Similarly, each subfield in the human brain for sound responses is arranged from low to high frequency. This indicates that there is a natural correlation between the biological sequencing of light and sound waves, which was failed to be disclosed in prior art documents. If a color sound correlation is to be used for human oriented applications, it must represent and appeal to this natural correlation. However, up to present such a natural correlation was deemed impossible.
The object of the present invention is to establish a direct and unique correlation between the wavelengths of visible light and audible sound in a seamless, continuous, and objective manner.
Another object of the present invention is to effectively recognize and utilize the natural human color and sound cognitions.
Still another object of the present invention is to provide a natural correlation between wavelengths of sound and light.
Still another object of the present invention is to develop a mutual sound and light correlation method and apparatus that is universal, i.e. that can be applied to all wavelengths of light and sound, without any user intervention or dependency.
The aforementioned objects are mainly achieved through a method utilizing a continuous function, which seamlessly correlates wavelengths of light to sound and sound to light.
According to present invention, a method based on a universal equation, which correlates sound and light waves continuously and seamlessly for the first time, is disclosed. Within this method, the entire audible sound range mutually correlates to the entire visible light range without any human intuition, subjective inputs, or reference point selections. This method uniquely recognizes the natural correlation in the human brain.
The invented method is also utilized in a light and sound correlation apparatus wherein the wavelength of light and/or sound is input and the wavelength of correlating sound and/or light is output along with other relevant data.
A plurality of embodiments for human needs is possible thanks to the special attributes of the invention, e.g. human cognition oriented, continuous, and seamless. Examples to these embodiments include innovative solutions for the hearing or visually impaired as well as providing creative devices in music education.
In an aspect of the invention, the method is utilized for producing a 3-D color sound correlation display apparatus for illustrative and educational purposes, which comprises layers of color chromaticity diagrams for different perceived brightness of colors superimposed with the continuously correlating sound data. This diagram can be in any physical or electronic format.
In another aspect of the invention, the method was utilized for producing a color and sound correlation slide rule apparatus for referral, animation, illustration, and education purposes, which comprises a combination of moving and stationary parts. The slide rule apparatus audibly and/or visually shows the color and sound correlation in any input order.
In still another aspect of the invention, the method and apparatus is utilized for generating sound and light correlation of music. A new CMIDI (Color MIDI) file generating apparatus establishes a dynamic coupling among sound and light data. Sounds of each instrument or voice per each time increment are coupled with correlating light data. This file is an array of color and sound data, which can be output to any storage, retrieval, printing, transmitting, display, or animation device, depending on the desired form of output.
In still another aspect of the invention, the method and apparatus is utilized to provide a visual orchestration apparatus where the sounds produced by instruments are dynamically displayed with colors on an instrument layout. This layout has at least two dimensions and maps at least one music instrument, voice, and/or sound sources. The present invention, which consists of a continuous correlation between sound and light, can colorize all sounds. Hence, a visual orchestration of any combination of instruments and/or sounds sources are possible.
In still another aspect of the invention, the method and apparatus is utilized to produce an art composer apparatus, which generates orchestral sounds correlated with colors in a visual image. An art composer apparatus comprises color inputs for each incremental grid surface area of the image. The color inputs corresponding to each grid surface area are assigned to orchestral instruments and processed by a light and sound correlation apparatus.
In another aspect of the invention, a method and apparatus that produces sound data incorporating three-dimensional spatial information of an object is provided. The spatial information of an object is derived from the fact that the shades of colors change with depth. This apparatus is especially designed for individuals with William's Syndrome who have exceptional music ability but poor perception of depth.
In another aspect of the invention, a visual orchestration apparatus is utilized to provide a color language apparatus to aid perception of music played on any AV (audio-visual) apparatus, such that in analogy to sign language, a hearing impaired can visually follow sounds in a music performance on a TV screen, on which a picture in picture box dynamically displays the visual orchestration simultaneously with the main broadcast.
The file of this patent contains some drawings in color. Copies of this patent with color drawings will be provided in the national phase if requested.
The above object, and other features and advantages of the present invention will become more apparent after a reading of the following detailed description when taken in conjunction with the accompanying drawings, in which:
In an aspect of this invention, there is provided a method comprising a power ratio between sound wavelengths (λs) and light wavelengths (λp) that is proportional to a unique correlation number k,
such that λs can be any wavelength of sound and λp can be any wavelength of light. The variable a is a term that relates sound wavelengths to an octave system and r is a number that represents the perceived brightness of light. Powers of the ratio m and n are numbers between 0.2≦m≦2and 0.2≦n≦2.
As another aspect of this invention, k is the only consistent correlation number that is unique among all wavelength combinations of note sounds and colors and reveals a continuous, seamless, and mutual correlation between light and sound. The correlation number k is related to a ratio of light and sound velocities.
This method eliminates imposing any harmony that is based on human experience or choice, and thus brings complete universality and objectivity. Hence, the method based on this equation eliminates all concerns regarding any need for subjective inputs, references, selections, and user-based options.
In an aspect of this invention, a is correlated to a number O′ which relates any sound to an octave:
Here, φ is the Golden Ratio and O′ is given by:
In the above equations, b, d, and e are numbers between −5≦b≦5, 0.05≦d≦40, and 0.1≦e≦1.
In an aspect of this invention, r is correlated to O′ as given:
Where c is a number between −2≦c≦2.
Hence, the present method uniquely and seamlessly correlates any light wavelength to a sound wavelength as:
And the present method uniquely and seamlessly correlates any sound wavelength to a light wavelength as:
Hence, in its most basic form, the present method comprises the following steps:
In another embodiment (
An apparatus exploiting the present method may be any device capable of performing above calculations (
The inputs to the apparatus may be realized through any interface, such as a keyboard, keypad, a mouse, a device measuring wavelength of sound and/or light, a touch-screen, a graphics interface, sensor, light and sound transducer measurement device, etc.
The outputs from the apparatus may be in the form of a sound and/or light generator and/or graphics generator, e.g. full-light spectrum lamp(s), an LCD screen, monitor, TV, loudspeakers, electronic piano, keyboard, etc. and any other suitable device.
Various embodiments of the present method and apparatus are possible, only a few of them being mentioned here for the sake of illustration.
In one embodiment of the invention (
In one embodiment of the invention, a new CMIDI (Color Musical Instrument Digital Interface) file generating apparatus establishes a dynamic coupling among sound and light data (
In another embodiment (
To illustrate, the main orchestral sections on a standard orchestral layout are digitally identified with numbers 1 to 7 (
In still another embodiment (
In still another embodiment of the invention, an apparatus, which produces sound data incorporating three-dimensional spatial information of an object, is developed. The spatial information is derived from the fact that the shades of colors change with depth. As the user, moves the pointer (131) across the image (132) of the three-dimensional object, the wavelength of light is calculated at every point of the displayed image and this data is simultaneously input into the light and sound correlation apparatus. The light and sound correlation apparatus generates sound data. This sound data is played using any sound generation apparatus (133) such as loudspeakers, etc. This apparatus is especially designed for individuals with William's Syndrome who have exceptional music ability but poor perception of depth. The sound generated gives a virtual perception of the depth of the image. It is possible to apply this embodiment in the form of a physical three-dimensional object, which is covered with a network of color-coded pressure sensors. As the user touches the object and moves his finger on the object, a correlating sound is generated to inform him/her about the depth of the object. This object may as well be an elastic blanket to be wrapped on various other objects the user might like to recognize by the light and sound correlation.
In another aspect of the invention, an apparatus is developed to provide a color language for the hearing impaired (
From the descriptions above, a number of additional advantages become evident:
The accuracy and precision of the present method and apparatus are compatible with the the auditory and visual sensitivity of humans thanks to the continuous nature of the disclosed function, which provides a seamless and continous correlation between light and sound. Based on the continous color and sound correlation disclosed, the natural correlation in the human brain has been recognized and the correlation between depth of sounds and the depth of vision provides a superior combination of auditory and visual senses in the visual orchestration apparatus.
The present method and apparatus gives a one-to-one relationship to all sound and light wavelengths. In terms of music, this continuous function means a hypothetical piano with infinitesimally small half steps and additional octaves. The present method and apparatus can be applied to string instruments, such that the continous range of note sounds are represented with a continous light and sound correlation. Based on the continous color and sound correlation disclosed, a music composition written in one music system can be transferred to another music system such as from monophonic to polyphonic or vice versa.
In addition, the present method and apparatus are applicable at any ambient conditions with the same accuracy and precision because k is a number which can be proportionated to sound velocity. This is especially important in colorization of orchestration, because exact performance of instruments depend on ambient conditions. This method can accommodate and compensate changes in instrument performance and the medium. Provided that the correlation is based on wavelenghts, this method also eliminates the effect of the transmitting medium between the points of source and perception.
To summarize, the present invention discloses a direct and unique proportion between the wavelengths of visible light and audible sound that is seamless and continuous. The main strength of the present invention lies in the fact that it provides a universal correlation between wavelengths of sound and light. It can be applied to all wavelengths of light and sound, without any user intervention or dependency. Hence, it effectively utilizes the human color and sound cognitions without bias. This invention provides a universal method and apparatus capable of mutually correlating sound and light waves seamlessly, which satisfies long-felt human needs. As such, it will have many implications in science, engineering, medicine, art, music, education, and aiding the impaired. According to Harvard Dictionary of Music, “the physical and psychological relationship between colors and sound seems to be existent but quite difficult to obtain and characterize.” Finally, this invention has achieved the impossible.
While my above description contains many specifities, these should not be construed as limitations to the scope of the invention, but rather as an exemplification of various embodiments thereof. Many other variations are possible. Accordingly, the scope of the invention should be determined not by the embodiments illustrated, but by the appended claims and their legal equivalents.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB04/51476 | 8/17/2004 | WO | 2/21/2006 |
Number | Date | Country | |
---|---|---|---|
60495971 | Aug 2003 | US |