This disclosure directs itself to a system for mounting pickup transducers in a string instrument. In particular, the disclosed mounting system permits the number and/or type of pickup transducers to be selectively installed in the string instrument and subsequently changed to a different number of pickup transducers and/or types of pickup transducers. Further, the disclosed mounting system includes a multiplicity of exchangeable body blocks configured for releasable mounting within a receiving cavity formed in the body of the string instrument. More in particular, at least one of the exchangeable body blocks is a transducer receiving block. The transducer receiving block has an opening that is configured for receiving at least one pickup transducer of a particular type. Still further, the multiplicity of exchangeable body blocks may include at least one spacer block configured to fill at least one space within the receiving cavity of the string instrument. Additionally, any portion of transducer receiving blocks and/or spacer blocks are replaceable by other transducer receiving blocks with a different number or type of pickup transducer and/or other spacer blocks.
Electric string instruments, such as electric guitars, electric basses, electric violins, etc., use at least one pickup transducer to convert the vibration of instrument's strings into electrical impulses. The most commonly used pickups use the principle of direct electromagnetic induction, although other types, such as piezoelectric, optoelectronic, acoustic, etc. are also in use to produce electrical impulses from the instrument's string vibrations. Because of their natural inductive qualities, all magnetic pickups tend to pick up ambient electromagnetic interference (EMI) from electrical power wiring in the vicinity of the electric string instrument, such as the wiring in a building. The EMI from a 50 or 60 Hz power system can result in a noticeable “hum” in the amplified audio output from the audio transducer, particularly with poorly shielded single-coil pickups. Double-coil “humbucker” pickups were invented as a way to overcoming the problem of unwanted ambient hum sounds. humbucker pickups have two coils arranged to be of opposite magnetic and electric polarity so as to produce a differential signal. As ambient electromagnetic noise affects both coils equally and since they are poled oppositely, the noise signals induced in the two coils are cancelled out. The two coils of a humbucker are often wired in series to give a fuller and stronger sound, but may be wired in parallel and still provide the hum-cancelling property of the series arrangement. The parallel arrangement results in a brighter sound, since it passes higher frequency components of the sound that would otherwise be suppressed in the series arrangement, but at the cost of a lower output voltage, as with a single-coil pickup.
The exemplary conventional electric string instrument 10a shown in
The electric guitar 10b, shown in
Another conventional electric guitar variation is shown in
As previously noted, the bridge 11 being an anchor point for the strings 21, limits the displacement of the strings 21 adjacent thereto, and thereby, higher frequency components of the sound are transduced by the pickup transducer 26, and to a lesser degree, depending on its distance from the bridge 11 the adjacent humbucker pickup transducer 28b. The other humbucker pickup transducer 28a, on the other hand, is located in proximity to the proximal end of the neck 14, the end of the neck where it joins the instrument body 16. As the neck region is relatively a substantial distance from the anchor points 11 and 13, of the strings 21, the strings 21 are able to vibrate with greater amplitude and thereby are able to produce lower frequency components of the sound.
The same basic string instrument, differing only in the use of different a number of pickup transducers, and/or a different type of pickup transducer, and/or variations in pickup transducer mounting locations relative to the anchor points of the strings, including orienting a portion of one or more pickup transducers so that individual string sensors for some strings are spaced form the string anchor points differently than other of individual string sensors thereof, produces different sounding instruments. Electric string instruments are typically manufactured to utilize a specific number and particular types of pickup transducers at predetermined locations.
While it is sometime possible to add additional pickup transducers by creating the necessary opening(s) in the instrument body, it is then not possible or at least, not practical to change the locations of the pickup transducers to adjust or later change the sound of the instrument. Similarly, while it is usually possible to enlarge a pickup transducer opening in the instrument body, it is generally not possible or at least, not practical to fill the enlarged opening intended for a humbucker pickup transducer or a pair of collocated or offset single coil pickup transducers to then accept a smaller single coil pickup transducer. Where a pickguard of the string instrument extends to and surrounds the pickup transducer opening to function as a bezel, replacement pickguards with differently configured openings may be provided to correspond to a change in size/configuration of one or more pickup transducer openings in the instrument body, where such is possible. However, changing the spacing of a pickup transducer relative to the end of the neck 14 where it is joined to the instrument body 16 is not easily accomplished, even with the availability of a “virgin” pickguard into which new openings can be formed.
Musicians often like to experiment with different sounding instruments or have preferences for particular sounding instruments for use with different genre of music. To accommodate this need, it has been common for such musician to own multiple electric string instruments of a particular type, each with a different pickup transducer configuration. While that solution works well for those musicians that frequently change between different sounding instruments, it is an expensive solution for those who change less frequently or who are just experimenting to find a preferred sound.
A universal pickup transducer mounting system for a string instrument is provided. The string instrument has a body, a longitudinally extended neck with a head at a first end thereof and an opposing second end connected to the body. A bridge is affixed to the body at a location longitudinally displaced from the second end of the neck, and a plurality of strings extend between the bridge and head, and are laterally spaced from one another. The mounting system includes a receiving cavity formed in the body that extends longitudinally therein, between the bridge and the second end of the neck. The receiving cavity is disposed in aligned relationship with the plurality of strings and has a width at least as wide as a lateral spacing between endmost strings of the plurality of strings and a length defined between opposing longitudinal ends thereof. Further, the mounting system includes a multiplicity of exchangeable body blocks disposed in the receiving cavity and configured for releasable mounting therein. The multiplicity of exchangeable body blocks includes at least one transducer receiving block that has an opening formed therein configured for receiving at least one pickup transducer therein. The at least one transducer receiving block is mountable within the receiving cavity to locate the at least one pickup transducer at a user selected longitudinal position relative to the second end of the neck and the bridge.
From another aspect, a method of making a string instrument with a universal pickup transducer mounting system is provided. The method includes providing an instrument body that has a neck mounting portion and a bridge mounting portion at a location longitudinally spaced from the neck mounting portion. The method further includes forming a longitudinally extended receiving cavity in the instrument body between the neck and bridge mounting portions. Further, the method includes providing a multiplicity of exchangeable body blocks configured for replaceable mounting within the receiving cavity. The multiplicity of exchangeable body blocks includes a plurality of transducer receiving blocks each having at least one opening formed therein for receiving at least one of a plurality of different pickup transducers therein. Still further, the method includes installing a pickup transducer in one of the transducer receiving blocks, and installing the one of the transducer receiving blocks at any of a plurality of positions within the receiving cavity to thereby locate the pickup transducer at a selected longitudinal spacing relative to the neck and bridge mounting portions.
From yet another aspect, a universal pickup transducer mounting system for an electric string instrument is provided. The electric string instrument includes an instrument body having a neck extending longitudinally from one end thereof and a bridge affixed to the body at a location longitudinally displaced from the neck. The mounting system includes a longitudinally extended receiving cavity formed in the instrument body at a location disposed between the neck and the bridge of the electric string instrument. Further, the mounting system includes a multiplicity of exchangeable body blocks configured for removable mounting within the receiving cavity. The multiplicity of exchangeable body blocks includes a plurality of transducer receiving blocks configured for receiving at least one type of a plurality of types of pickup transducers within an opening formed therein. A portion of the plurality of transducer receiving blocks is mounted within the receiving cavity at selected longitudinal positions relative to the neck and the bridge and relative to one another. Any of the mounted transducer receiving blocks is replaceable with other of the plurality of transducer receiving blocks configured for receiving a different type, number or combination of the type and number of pickup transducers.
Additionally, from still a further aspect, a universal pickup transducer mounting system for an electric string instrument is provided. The electric string instrument has an instrument body with a longitudinally extended cavity formed therein between a neck extending longitudinally from the instrument body and a bridge affixed to the instrument body at a location longitudinally displaced from the neck. The receiving cavity has a length defined between opposing longitudinal ends thereof. The mounting system includes a multiplicity of exchangeable body blocks configured for mounting within the cavity at user selected positions. The multiplicity of exchangeable body blocks includes a plurality of transducer receiving blocks configured for receiving at least one of a plurality of types of pickup transducers within an opening formed therein and a plurality of spacer blocks. At least one of a combination of a portion of the plurality of multiple transducer receiving blocks or a combination of at least one of the plurality of transducer receiving blocks and at least one of the plurality of spacer blocks are mounted within the cavity. Any of the multiplicity of exchangeable body blocks is at least replaceable with other of the exchangeable body blocks to change at least one of a type of pickup transducer disposed in cavity, a number of pickup transducers, a position of at least one pickup transducer relative to the bridge and proximal end portion of the neck, or a combination thereof.
Referring to
The universal pickup transducer mounting system 100 includes a multiplicity of exchangeable body blocks 140 configured for mounting within a receiving cavity 110 formed in an instrument body 160. As will be described in following paragraphs, exchangeable body blocks 140 provide a unique arrangement of pickup transducer receiving blocks 120 and spacer blocks 130 to fill the receiving cavity 110 formed in the instrument body 160 in any of a multiplicity of pickup transducer configurations for the electric string instrument 10. A portion of the multiplicity of exchangeable body blocks 140 installed in the receiving cavity 110 may include at least one of any of a plurality of transducer receiving blocks 120. A portion of the multiplicity of exchangeable body blocks 140 installed in the receiving cavity 110 may further include at least one of any of a plurality of spacer blocks 130.
The unique arrangement of pickup transducer receiving blocks 120 and spacer blocks 130 further provides the ability to easily change pickup transducer configurations for the electric string instrument 10, including the ability to change the type and number of pickup transducers mounted within the receiving cavity 110. The type of pickup transducer, as used herein, is intended to encompass the sensing technology of the transducer, the sensor configuration and/or number of sensors of the transducer, and attributes of the transducer, including size, brand, color, electrical characteristics, and the like. The number of pickup transducers mounted within the receiving cavity 110 using the pickup transducer receiving blocks 120 is easily increased, limited only by the longitudinal extent of the receiving cavity 110, or decreased, replacing selected pickup transducer receiving blocks 120 with one or more of the spacer blocks 130. The spacer blocks 130 may be used to space a respective one of the pickup transducer receiving blocks 120 from the bridge end of the receiving cavity 110, from the neck end of the receiving cavity 110, from another of the pickup transducer receiving blocks 120, as well as used to fill the space of a respective one of the pickup transducer receiving blocks 120 that is being removed from the receiving cavity 110.
As shown in
The instrument body 160 is formed with a receiving cavity 110 in the front side 19 thereof. Receiving cavity 110 extends longitudinally from a location adjacent to the proximal end portion 30 of the neck 14, to a location adjacent to the bridge 11, so that distance between the opposing ends thereof defines the length of the receiving cavity 110. The overall longitudinal extent of the receiving cavity 110 is dependent on the size of the instrument body 160 for the particular electric string instrument 10 and particularly the longitudinal distance between the location of the bridge mounting holes 15 and the neck mounting joint 23 of the instrument body 160, shown in
The rear side 20 of instrument body 160 has two cavities, the control mounting cavity 24 and a pickup wiring access cavity 116. The wiring opening 111 is a through opening that extends from the receiving cavity 110 to the pickup wiring access cavity 116. To accommodate electrical connections between the pickup transducer connection wiring that is passed from the receiving cavity 110 to the wiring access cavity 116, with the control devices disposed in the control cavity 24, a pickup wiring passage 118 is formed to extend between the wiring access cavity 116 and control mounting cavity 24 for connection to the appropriate control devices mounted therein. The controls, which provide such functions as volume, tone, coil polarity, blending of the transducer outputs, transducer selection, etc. are mounted so that their respective shafts or operating levers pass through the openings 17. Subsequent to the controls and pickup transduces being mounted and the wiring connections made, the cavities 24 and 116 are closed by corresponding removable cover plates, not shown.
Universal pickup transducer mounting system 100, as shown in
As previously discussed, the longitudinally extended receiving cavity 110 is formed in the front side 19 of instrument body 160 in spaced relationship between the neck mounting joint 23 and the bridge mounting holes 18, resulting in the receiving cavity 110 being likewise longitudinally spaced between the proximal end portion 30 of the neck 14 and the bridge 11. For a string instrument 10, such as a guitar, it is common for at least three of the exchangeable body blocks 140 to be accommodated within the receiving cavity 110, depending on the size of string instrument 10 and the corresponding size of the receiving cavity 110.
The exchangeable body blocks 140 installed in the receiving cavity 110 may all be pickup transducer receiving blocks 120 or a combination of pickup transducer receiving blocks 120 and spacer blocks 130. However, it should be understood this disclosure encompasses system 100 having as few as a single exchangeable body block 140 installed in the receiving cavity 110 in the form of a pickup transducer receiving block 120, as well as encompassing multiple exchangeable body blocks 140 installed in the receiving cavity 110 that includes a single transducer receiving block 120 and may further include one or more spacer blocks 130. By the arrangement provided by universal pickup transducer mounting system 100, the mounting location, type, brand and/or technology of any mounted pickup transducer is easily changed and that change is just as easily reversed or subsequently changed further to a different mounting location, type, brand and/or technology of pickup transducer. Accordingly any of magnetic, piezoelectric, optoelectronic and the like pickup transducer can be easily interchanged without having to modify the physical structure of the instrument body 160.
The exchangeable body blocks 140 are selectively mountable within the receiving cavity 110 and include pickup transducer receiving blocks 120, and may further include spacer blocks 130. It should further be understood this disclosure encompasses system 100 having a multiplicity of exchangeable body blocks 140 that provides a greater number of exchangeable body blocks 140 than are mountable within the receiving cavity 110 to allow a user to reconfigure and or exchange the exchangeable body blocks 140. Thus, the number of pickup transducer receiving blocks 120 and/or spacer blocks may be of greater number then are mountable together within the receiving cavity 110.
Each of the pickup transducer receiving blocks 122, 124, 126, 128 respectively include a respective pickup receiving opening 1225, 1245, 1265, 1285 that is configured to mate with a particular type and/or brand of pickup transducer or number of pickup transducers. The transducer receiving blocks may also have an opening configured to accommodate alternative pickup transducer mounting configurations, such as an orientation of the pickup transducer with respect to the lateral span of the plurality of strings, as exemplified by pickup transducer receiving block 126 having an opening 1265 configured to incline the pickup transducer installed therein so that a pickup coil at one end thereof is closer to the bridge 11 or the proximal end portion 30 of the neck 14 than a pickup coil at the opposing end of that pickup transducer, as exemplified in
Where the number of pickup transducer receiving blocks 120 being used do not fill all of the longitudinal space within the receiving cavity 110, one or more spacer blocks 130 are usable to fill the gaps adjacent the pickup transducer receiving blocks 120. Spacer blocks 130 may be provided in incremental widths, such as the wide spacer block 132 having a width equal to the widest of the pickup transducer receiving blocks 120, which may be the humbucker pickup transducer receiving block 122 or may be a receiving block 124 for a multiple pickup transducer arrangement, often referred to as an offset or split coil pickup transducer configuration. The widest spacer block 132 may be considered to be a “standard width” spacer block. The widest of the pickup transducer receiving blocks 120 may also be considered to be a “standard width” pickup transducer receiving block, which is of a width equal to that of the “standard width” spacer block. What could be considered a medium width spacer block 134 may be a half width spacer block (half the width a standard width spacer block 132), and the more narrow spacer block 136 may be a quarter width spacer block (one quarter the width of a standard width spacer block 132). These spacer block widths are exemplary and other incremental width sizes may be included in the assortment of spacer blocks 130 that may be included in the multiplicity of exchangeable body blocks 140 of system 100, or substitute for those exemplary spacer blocks disclosed herein.
Both the pickup transducer receiving blocks 120 and the spacer blocks 130 are removably mounted to the mounting rails 112 and 114 within the receiving cavity 110. Spacer blocks 130 are mounted within the receiving cavity 110 in the same manner as that of the pickup transducer receiving blocks 120. The pickup transducer receiving blocks 120 and the spacer blocks 130 may be provided with through holes for passage of fasteners therethrough to be engaged to the mounting rails 112 and 114. Such fasteners may be conventional threaded fasteners or quick release quarter-turn fasteners. Other securement devices that firmly, but releasably secure the exchangeable body blocks 140 to the mounting rails 112 and 114 directly or to intermediate members that are in turn coupled to mounting rails 112 and 114 may also be used. The exchangeable body blocks 140 may alternately be frictionally held within the receiving cavity 110 or compressively clamped therein by a trim plate (not shown) that frames the opening of the receiving cavity 110 and overlays end portions of the exchangeable body blocks 140.
As will be discussed in following paragraphs, Each of the different exemplary pickup transducer receiving blocks 122, 124, 126, and 128 may be provided with a corresponding plug 1222, 1242, 1262 and 1282 disposed in the corresponding opening 1225, 1245,1265 and 1285 into which the transducer is to be installed. The plug 1222, 1242, 1262 and 128 is held within the respective opening by at least one breakaway tab, so that the plug is easily removed prior to installation of the associated pickup transducer therefor and installation of the pickup transducer receiving blocks 122, 124, 126, and 128 in the receiving cavity 110. The exemplary assortment of pickup transducer receiving blocks 120 with the plugs removed are shown in
Referring now to
The pickup transducer receiving block 126 for use with a single pickup transducer is illustrated in
As shown in
In
In
In
Advantageously, as the forgoing illustrates, the relative positions of the pickup transducers may subsequently be changed in the finished guitar by simply rearranging the plurality of exchangeable body blocks 140 and/or using spacer blocks 130 of different incremental widths to change the relative spacing of the pickup transducer receiving blocks 120 within the receiving cavity 110. The advantages of system 100 is further demonstrated by the ease an electric string instrument 10 can be adapted to use pickup transducers of different sizes and or types, including transducers using different sensing technologies. The ability to easily use pickup transducers of different sizes, types or sensing technology, makes use of system 100 advantageous for application in an electric string instrument 10 that uses a single pickup transducer receiving block 120 and is encompassed by the inventive concepts disclosed herein.
The descriptions above are intended to illustrate possible implementations of the present invention and are not restrictive. While this invention has been described in connection with specific forms and embodiments thereof, it will be appreciated that various modifications other than those discussed above may be resorted to without departing from the spirit or scope of the invention. Such variations, modifications, and alternatives will become apparent to the skilled artisan upon review of the disclosure. For example, functionally equivalent elements may be substituted for those specifically shown and described, and certain features may be used independently of other features, and in certain cases, particular locations of elements may be reversed or interposed, all without departing from the spirit or scope of the invention as defined in the appended Claims. The scope of the invention should therefore be determined with reference to the description above, the appended claims and drawings, along with their full range of equivalents.
The present disclosure claims priority from U.S. provisional patent application No. 62/776,775, filed Dec. 7, 2018, the entirety of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4425831 | Lipman | Jan 1984 | A |
5252777 | Allen | Oct 1993 | A |
5767432 | Randolph | Jun 1998 | A |
5929362 | Oteyza | Jul 1999 | A |
6043422 | Chapman | Mar 2000 | A |
6046397 | Rose | Apr 2000 | A |
6111184 | Cloud | Aug 2000 | A |
6911590 | Childress | Jun 2005 | B2 |
8829318 | DeLaFrance | Sep 2014 | B1 |
20030164080 | Childress | Sep 2003 | A1 |
20050211051 | Petersen | Sep 2005 | A1 |
20060054009 | Redard | Mar 2006 | A1 |
20080141841 | Van Ekstrom | Jun 2008 | A1 |
20080141851 | Ekstrom | Jun 2008 | A1 |
20090025543 | Swartz | Jan 2009 | A1 |
20090183626 | Salehi | Jul 2009 | A1 |
20110290099 | Franklin | Dec 2011 | A1 |
20120312146 | Bekerman | Dec 2012 | A1 |
20140373703 | Whorton | Dec 2014 | A1 |
20150059560 | Perea Torres | Mar 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
62776775 | Dec 2018 | US |