Universal power supply system

Information

  • Patent Grant
  • 8492927
  • Patent Number
    8,492,927
  • Date Filed
    Wednesday, December 28, 2011
    13 years ago
  • Date Issued
    Tuesday, July 23, 2013
    11 years ago
Abstract
A universal power supply system is used for at least one electric consumer. The supply system comprises at least one AC source and a cable connection connecting said AC source to said electric consumer. The AC source has associated therewith an AC/DC converter for converting the AC voltage into DC voltage. The DC voltage generated in this way is adapted to be transmitted to the electric consumer via the cable connection. To improve such a universal power supply in such a way that it is possible to provide a high and stable voltage without any additional components (such as additional heat dissipation components), the AC/DC converter comprises a plurality of AC/DC converter components which, on the input side thereof, are connected in parallel with the AC source and which, on the output side thereof are connected serially to the electric consumer.
Description
DESCRIPTION

The present invention relates to a universal power supply system for at least one electric consumer. The power supply system comprises at least one AC source and a cable connection connecting said AC source to said electric consumer. The AC source has associated therewith an AC/DC converter for converting the AC voltage into a DC voltage. The DC voltage generated in this way is adapted to be transmitted to the electric consumer via the cable connection.


In the case of electric consumers necessitating a high voltage and a high power, it turned out that the use of such a universal power supply system entails difficulties with respect to the generation and the stabilization of the voltage. In addition, if the AC/DC converter fails to operate, a supply of the electric consumer is no longer possible, since a redundancy with respect to the converter is normally dispensed with for reasons of costs.


Furthermore, when AC voltage is converted into DC voltage by means of such an AC/DC converter, the generation of a substantial amount of heat within comparatively close limits will have to be reckoned with due to losses of the converter. This heat must be dissipated so as to prevent damage being caused to the converter or to other components of the power supply system which are located adjacent said converter. The heat can be dissipated e.g. by active cooling systems, but this will entail additional structural components and costs.


It is therefore the object of the present invention to improve a universal power supply system of the type mentioned at the start in such a way that it is possible to provide a high and stable voltage, even in the case of high power requirements, in a reliable manner and at a reasonable price, without any additional components for e.g. heat dissipation being necessary.


In connection with the features of the generic clause of claim 1, this object is achieved in that the AC/DC converter comprises a plurality of AC/DC converter components which, on the input side thereof, are connected in parallel with the AC source and which, on the output side thereof, are connected serially to the electric consumer.


Due to this mode of connection of the AC/DC converter components, each of these components only serves to generate a certain percentage of the voltage on the consumer or output side of the AC/DC converter. If the DC voltage which is to be produced on the output side amounts e.g. to 6000 V, said DC voltage can be produced by e.g. 20 converter components having each an output voltage of 300 V. It is also possible to provide 30, 40 or 50 converter components, each of these converter components providing then a respective percentage of the DC voltage required on the output side.


In the simplest case, the converter components all have the same type of structural design so that, in the case of n converter components, each converter component produces the nth percentage of the necessary output voltage from the AC voltage applied to the input side.


In contrast to an AC/DC converter for producing e.g. 6000 V, such converter components are easy to handle and easy to maintain. The dissipation heat per converter component is here normally so low that separate cooling means can be dispensed with. If the converter components are arranged comparatively close to one another, simple cooling means conducting e.g. cooling air over the converter components will suffice even in the case of high power. In comparison with known converters, the costs for cooling this AC/DC converter are, however, reduced substantially.


If one of the converter components fails to operate, the output voltage will only be reduced by said nth part so that also the remaining n−1 converter components will still provide a sufficiently high voltage for the electric consumer. Only if a plurality of converter components fails to operate, it may prove to be necessary to replace said converter components, at least partially. In any case, if one or a plurality of converter components fails to operate, it is still guaranteed that the voltage supplied to the electric consumer will still be sufficiently high to permit operation thereof (redundancy).


A simple and reliable AC source can be seen in an embodiment in which said AC source is a 380 V three-phase power source.


A converter component of the type mentioned at the beginning can be defined e.g. by a linearly controlled converter component. Such converter components have, however, a comparatively low efficiency which is in most cases as low as 25 to 50%. It follows that, in the case of high power values in the kilowatt range, the dissipation power will normally at least correspond to the power delivered. This results not only in high energy losses but also in a cooling problem, even if a plurality of converter components is provided.


The dissipation power of the converter components can easily be reduced by implementing said converter components as switched mode (mains) power supplies. Such a switched mode power supply is provided with a switch causing said converter component to be connected to and separated from the mains e.g. in accordance with the mains voltage of 50 Hz.


The losses can be reduced still further when the switched mode power supply is clocked independently of the mains frequency of e.g. 50 Hz. Clock pulse control at higher frequencies is preferred in this connection.


Various realizations of such a clocked switched mode power supply are known. The first subdivision that can be carried out is a division into switched mode mains power supplies clocked on the secondary side and those clocked on the primary side. In both said fundamental versions, it is possible that a current flows constantly into a storage capacitor of the switched mode mains power supply or that a current is only discharged at certain time instances so that the converter in question is referred to as a feed forward converter or a fly-back converter. In order to obtain a compact and reliable component, the switched mode mains power supply according to the present invention can, for example, be implemented as a flyback converter. This flyback converter can preferably be clocked on the primary side so as to obtain a galvanic separation between the input and output sides, and it can be a single-phase or a push-pull converter. Single-phase converters are, in this context, advantageous insofar as they normally require only one power switch as a clock switching means. This power switch can be implemented e.g. as a power MOSFET or as a BIMOSFET. In addition, also thyristors may be used as clocked switching means especially when high power values in the kilowatt range are involved.


The above-mentioned switched mode mains power supplies have, especially in the case of higher power values, a plurality of advantages, such as a lower dissipation power, a lower weight, a smaller volume, no generation of noise, less smoothing outlay and a larger input voltage range. Switched mode mains power supplies and especially also flyback converters are used in a great variety of fields of application, such as microwave ovens, computers, electronic adapting equipment for fluorescent lamps, industrial and entertainment electronics, screens, cardiac defibrillators and the like. Flyback converters are also excellently suitable for use in fields of application where a high power is required on the output side.


A pulse width modulation means, in particular a pulse width modulation means which is adapted to be controlled or regulated, can be provided for activating the switching means of the flyback converter or of the switched mode mains power supply in a suitable manner. This pulse width modulation means is capable of producing a series of pulses which are adapted to be varied with respect to their width and/or height and/or frequency. A frequently used pulse modulation means is a pulse width modulation means. This pulse width modulation means produces a pulse width-modulated signal whose clock cycle ratio can be controlled in accordance with a measured actual value of the output voltage. The measured actual value of the output voltage can e.g. be subtracted from the desired value and this difference can be supplied via a control amplifier to the pulse width modulation means. Here, the output voltage of the control amplifier can be compared with a sawtooth voltage whose frequency determines the switching frequency or clocking of the switched mode mains power supply. Depending on the result of this comparison, the switching transistor is then switched on or off, whereby a desired output voltage can be adjusted.


In accordance with an advantageous embodiment, the maximum output voltage of the switched mode mains power supply is chosen such that it does not exceed a limit value below the breakdown voltage of a respective component of the switched mode mains power supply, especially of the switching means, so that a safety distance from the breakdown voltage is kept.


As has already been mentioned hereinbefore, the flyback converter belongs to the converters that are clocked on the primary side, i.e. it is galvanically separated between the input and the output.


In this connection, it may of advantage when the flyback converter provides a plurality of galvanically separated, controlled output voltages.


The clock frequency of the switching means can be in the kilohertz range and in particular in the hundred-kilohertz range so as to permit a sufficiently fast clocking of the switching means and, in this connection, a comparatively low dissipation power of the flyback converter. For example, flyback converters are known, which are clocked in the range of from 20 kHz to 200 kHz. Lower and higher clock frequencies are, however, possible as well.


In order to avoid, especially in the case of high power values, the necessity of providing separate cooling means for the converter components, said converter components can be arranged in spaced relationship with one another. The spatial distance is, however, so small that, normally, it corresponds only to the dimensions of one converter component.


A filter means can be arranged between the AC/DC converter and the electric consumer so that, if necessary, the DC voltage generated by the AC/DC converter can be smoothed still further.


In the case of certain electric consumers, it may prove to be advantageous when also a signal connection is provided in addition to a voltage supply. In order to avoid the necessity of providing an additional cable connection to the electric consumer for this purpose, a means for coupling data signals in/out can be connected to the cable connection, said means for coupling data signals in/out being especially located between the filter means and the electric consumer. This means for coupling data signals in/out can, on the one hand, be used for coupling respective data signals into the data connection for e.g. controlling the electric consumer or for supplying information thereto. In the opposite direction, data received from the electric consumer can be coupled out from the cable connection and used e.g. for monitoring the electric consumer by means of suitable units, such as computers and the like.


In this connection, it must betaken into account that data transmission on the basis of the output-side DC voltage can be effected with less interference and with a higher velocity than in cases in which the electric consumer is supplied with an AC voltage.


At least the AC source and/or the AC/DC converter and/or the means for coupling data signals in/out may have associated therewith a controller so that the various units of the power supply system according to the present invention can be monitored, controlled or, if necessary, regulated more effectively. This controller can e.g. also detect whether one of the converter components implemented as a flyback converter has failed. If such failure is detected, the other flyback converters can be activated such that they compensate for the failure of said one flyback converter in that a slightly higher output voltage is e.g. delivered by each of the other flyback converters.


The controller can also control the pulse width modulation means in this connection.


The controller can not only by used for monitoring purposes alone, but it is also possible to use it for establishing a communication connection between the respective units of the power supply system. This will be of advantage especially in cases in which the various units are arranged at comparatively large distances from one another and/or at inaccessible sites. With the aid of this communication connection, physical examination or maintenance can be limited to rare cases or to cases where the unit in question has to be replaced.


The cable connection may comprise at least one coaxial cable so that, even if high power is to be transmitted and if voltage and data are transmitted simultaneously, said cable connection can be established such that it has a small cross-section, whereby costs will be saved, especially in the case of long distances. Since the voltage transmitted through the coaxial cable is a DC voltage, only line losses will occur, whereas additional attenuation losses, which are caused by a transmission of AC voltages, are avoided.


In connection with the converter components and especially the flyback converters used as such components, attention should also be paid to the fact that each of each of said converter components should be adapted to be controlled or regulated separately with respect to its output voltage. The inputs of the converter components are arranged in parallel in each converter component so that the voltage supply and, consequently, current and power are fully separated. It follows that, irrespectively of the output voltage, also the total power of the system can be adapted according to requirements. A completely free selection of the power and of the output voltage is therefore possible. Due to the use of a plurality of converter components, an extremely exact and precise control of the output voltage as well as of the power are additionally obtained, since each converter component controls independently of the other components only its own range.


If one of the converter components fails to operate, the power supply is still guaranteed (redundancy), since the other converter components are activated in a suitable manner so that the power failure of the converter component that failed to operate will be compensated for on the output side. The respective range within which each of the still operative converter components has to be adjusted is extremely small, since a comparatively low increase in the voltage on the output side of the plurality of converter components will already lead to a substantially higher increase in the total output voltage.


In connection with each converter component and especially in connection with the flyback converter it is possible to dispense with additional components, i.e. to implement said converter components e.g. as integrated circuits comprising in addition to the actual flyback converter other elements, such as a power factor control means, an undervoltage detection means, an overvoltage monitoring means, a so-called “soft start” and the like.


It should also be pointed out that, due to the DC voltage transmitted on the output side to the electric consumer, thin line cross-sections are possible especially when a coaxial cable is used as a cable connection; these thin line cross-sections permit a substantial reduction of the cable connection costs. In particular when the distances to the electric consumer are in the kilometer range and when the distances amount to 50 kilometers and more, a substantial amount of costs will be saved, although the coaxial cable can simultaneously be used for transmitting data as well.


Expensive capacitors, such as electrolytic filter capacitors, are no longer necessary for smoothing the DC voltage on the output side. In addition, power factor correction can take place directly in the flyback converter; a suitable means for effecting this correction can be included in the flyback converter or rather in the integrated circuit thereof. The high clock frequency of the flyback converter simultaneously guarantees that the AC voltage on the input side is sampled in full width, whereby a high efficiency is obtained.





In the following, an advantageous embodiment of the present invention will be explained making reference to the figures added as drawings, in which:



FIG. 1 shows a schematic representation of an embodiment of the universal power supply system, and



FIG. 2 shows a schematic circuit diagram of an embodiment of a flyback converter docked on the primary side and used as a converter component.






FIG. 1 shows a schematic circuit diagram of an embodiment of the universal power supply system 1 according to the present invention. This universal power supply system comprises a 380 V three-phase AC power source 3. The AC voltage is adapted to be transmitted to an AC/DC converter 5 via a line 24. This AC/DC converter 5 is composed of a plurality of AC/DC converter components 6 which are connected in parallel to the line 24 via respective input terminals 23.


The AC/DC converter components 6 are defined by a switched mode power supply 7 and, in particular, by a flyback converter 8 clocked on the primary side and acting as a switched mode power supply 7.


On the output side, the various converter components 6 are serially connected to one another via respective output terminals 22 and they are connected to a coaxial cable 15 acting as a cable connection 4. Via said cable connection 4, an electric consumer 2 has electric power supplied thereto. Between the AC/DC converter 5 and the electric consumer 2, a means for coupling data signals in/out 13 is additionally connected to the cable connection 4. Said means for coupling data signals in/out 13 is used for feeding in respective data signals or for coupling out data signals that have been received from the electric consumer 2 or from units associated therewith. A filter means 12 can be arranged between the AC/DC converter 5 and the electric consumer 2 so that, if necessary, the DC voltage generated by the AC/DC converter 5 can be smoothed still further. The transmission of the data signals is also effected via the cable connection 4 implemented as a coaxial cable 15.


In FIG. 1, only one electric consumer 2 is shown. Normally, a plurality of electric consumers has supplied thereto electric power and also data via the cable connection 4 from the universal power supply system 1 according to the present invention. Such electric consumers are e.g. actuators located at sites which are far away and/or not easily accessible. The actuators control e.g. units of fluid lines, such as valves, shut-off devices, restrictors, pumps and the like, so that the flow of fluid into and along the fluid line is controlled and shut off in emergency cases, such as leakage, line fractures or the like, and so that also parameters of the fluid, of the fluid flow or of the respective units are monitored and controlled. The fluid is normally fed into the lines under high pressure from a respective fluid source and conducted along said lines e.g. from the bottom to the surface of the sea. Since such a fluid normally contains aggressive or environmentally noxious components, a power supply and remote control which can be effected with the aid of the universal power supply system 1 according to the present invention will be of great advantage.


The remote control of the respective actuators can in this connection be carried out via the communication connection established with the aid of the means for coupling data signals in/out 13.


All the units of the universal power supply system 1, including, if desired, the electric consumer 2, are adapted to be controlled and/or regulated by a controller 14. In addition, a relevant monitoring of parameters of the various units can be carried out. In FIG. 1, the controller 14 is connected to the various units via connections represented by broken lines, so as to control, regulate and/or monitor said units.


The switched mode power supplies 7 and flyback converters 8, respectively, can be implemented as integrated circuits. These integrated circuits directly comprise respective further units, such as power factor control means 16, undervoltage detection means 17 or overvoltage monitoring means 18. In order to simplify matters, these additional units are shown in FIG. 1 only in the case of one flyback converter 8; normally, they are, however, component parts of all flyback converters.



FIG. 2 shows a simplified embodiment for a flyback converter 8 acting as a switched mode power supply 7. The flyback converter 8 comprises a transmitter 19 consisting of a primary winding connected to the input terminal 23 and of a secondary winding connected to the output terminal 22. An effective magnetic coupling exists between these two windings. The transmitter acts as a magnetic energy storage. When a switching means 9 in the form of a power transistor 10 is closed, the current will increase in the primary winding and energy will be stored in the transmitter. When the switching means 9 is opened, the stored energy on the side of the secondary winding will be supplied to a smoothing capacitor 21 via a diode 20. The stored energy is fed in, in the form of an AC voltage, via the output terminal 22.


The respective flyback converters have their output terminals 22 serially connected to the cable connection 4, cf. FIG. 1.


For activating or clocking the switching means 9, i.e. the power transistor 10, a pulse width modulation means 11 is provided in the flyback converter 8. Said pulse width modulation means 11 produces a pulse width-modulated signal whose clock cycle ratio is controlled in accordance with the measured actual value of the output voltage. For this purpose, the actual value measured at the output of the flyback converter is subtracted from the respective desired value and this difference is supplied, via a control amplifier of the flyback converter, to the pulse width modulation means 11. Here, the output voltage of the control amplifier is compared with a sawtooth voltage whose frequency determines the clock frequency of the flyback converter. Depending on the result of this comparison, the switching means 9 is switched on or off and the desired output voltage is adjusted in this way.


For controlling the flyback converter, there are integrated circuits, which can be associated with or included in each of the flyback converters 8 according to FIG. 1. These integrated circuits also comprise the protection circuits, e.g. undervoltage detection means, overcurrent monitoring means, soft starting means and the like, which are required for operating the flyback converter.

Claims
  • 1. A universal power supply system for at least one electric consumer, comprising: at least one AC source;a cable connection connecting said AC source to said electric consumer; andan AC/DC converter for converting an AC voltage from the AC source into a DC voltage, said DC voltage being adapted to be transmitted to the electric consumer via the cable connection:wherein the AC/DC converter comprises a plurality of AC/DC converter components which, on the input side thereof, are connected in parallel with the AC source and which, on the output side thereof, are connected serially to the electric consumer; andwherein each AC/DC converter component is operable to control a power factor.
  • 2. The universal power supply system according to claim 1, wherein the AC source is a 380 V three-phase power source.
  • 3. The universal power supply system according to claim 1 wherein each AC/DC converter component is implemented as a switched mode power supply.
  • 4. The universal power supply system according to claim 3 wherein the switched mode power supply is clocked on a primary side of the switched mode power supply.
  • 5. The universal power supply system according to claim 4 wherein the switched mode power supply is implemented as a flyback converter.
  • 6. The universal power supply system according to claim 5 wherein the flyback converter comprises at least one switching transistor.
  • 7. The universal power supply system according to claim 6 wherein the at least one switching transistor is controlled by a pulse width modulator.
  • 8. The universal power supply system according to claim 7 wherein the output voltage of the switched mode power supply can be adjusted to any value up to a limit value below a breakdown voltage of the switching transistor of the switched mode power supply.
  • 9. The universal power supply system according to claim 5 wherein each flyback converter is adapted to supply an output voltage that is galvanically separated from an input voltage.
  • 10. The universal power supply system according to claim 3 wherein a clock frequency of the switch mode power supply is greater than one kilohertz and less than one megahertz.
  • 11. The universal power supply system according to claim 1 wherein the AC/DC converter components are arranged in spaced relationships with one another such that the AC/DC converter does not need cooling components.
  • 12. The universal power supply system according to claim 1 wherein a filter is arranged between the AC/DC converter and the electric consumer.
  • 13. The universal power supply system according to claim 12 further comprising a data coupler/decoupler located between the filter and the electric consumer, wherein the data coupler/decoupler is operable to couple data signals to the cable connection and decouple data signals from the cable connection.
  • 14. The universal power supply system according to claim 13 further comprising a controller associated with at least one of a group of power supply system components consisting of: the AC source;the AC/DC converter; andthe data coupler/decoupler.
  • 15. The universal power supply system according claim 14 wherein the controller is operable to establish communication between two or more components selected from the group consisting of the AC source, the AC/DC converter, the AC/DC converter components, a pulse width modulator associated with each AC/DC converter, and the filter.
  • 16. The universal power supply system according to claim 1 wherein the cable connection comprises at least one coaxial cable.
  • 17. The universal power supply system according to claim 1 wherein each individual AC/DC converter component is adapted to be regulated separately with respect to its output voltage.
  • 18. The universal power supply system according to claim 1 wherein each AC/DC converter component further comprises at least one unit selected from the group consisting of an undervoltage detector and an overvoltage monitor.
  • 19. The universal power supply system for at least one electric consumer, comprising: at least one AC source;a cable connection connecting said AC source to said electric consumer; andan AC/DC converter for converting an AC voltage from the AC source into a DC voltage, said DC voltage being adapted to be transmitted to the electric consumer via the cable connection;wherein the AC/DC converter comprises a plurality of AC/DC converter components which, on the input side thereof, are connected in parallel with the AC source and which, on the output side thereof, are connected serially to the electric consumer;wherein each AC/DC converter component is implemented as a switched mode power supply being clocked on a primary side of the switched mode power supply;wherein the switched mode power supply is implemented as a flyback converter comprising at least one switching transistor controlled by a pulse width modulator; andwherein the output voltage of the switched mode power supply can be adjusted to any value up to a limit value below a breakdown voltage of the switching transistor of the switched mode power supply.
Priority Claims (1)
Number Date Country Kind
201 15 471 U Sep 2001 DE national
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. application Ser. No. 10/489,573 filed Aug. 5, 2004, which is a U.S. National Phase Application of PCT/EP2002/010471 filed Sep. 18, 2002, which claims the benefit of German Patent Application No. 20115471.4 filed Sep. 19, 2001, all of which are incorporated herein by reference in their entireties for all purposes.

US Referenced Citations (124)
Number Name Date Kind
1979425 Van Der Woude Nov 1934 A
2119534 Lee Jun 1938 A
2387800 Leland et al. Oct 1945 A
2645450 Chessman Jul 1953 A
2953344 Yancey Sep 1960 A
3089509 Collins May 1963 A
3275737 Caller Sep 1966 A
3324741 Anderson Jun 1967 A
3353594 Lewis Nov 1967 A
3429341 Sochting Feb 1969 A
3452776 Chenoweth Jul 1969 A
3738183 Ball et al. Jun 1973 A
3771918 Winter Nov 1973 A
3782653 Jones Jan 1974 A
3818307 Untamo et al. Jun 1974 A
3865142 Begun et al. Feb 1975 A
3887898 Jones Jun 1975 A
3980808 Kikuchi et al. Sep 1976 A
4062057 Perkins et al. Dec 1977 A
4124884 Episcopo Nov 1978 A
4179944 Conner Dec 1979 A
4256065 Hirt Mar 1981 A
4290101 Hergenhan Sep 1981 A
4295552 Erlach Oct 1981 A
4309734 Warren Jan 1982 A
4346728 Sulzer Aug 1982 A
4350322 Mueller Sep 1982 A
4363975 Beattie Dec 1982 A
4378848 Milberger Apr 1983 A
4423747 Heiser Jan 1984 A
4436280 Geisow Mar 1984 A
4500832 Mickiewicz Feb 1985 A
4521642 Vives Jun 1985 A
4533987 Tomofuji et al. Aug 1985 A
4548383 Woelfges Oct 1985 A
4565213 Giebeler Jan 1986 A
4617501 Smith Oct 1986 A
4639714 Crowe Jan 1987 A
4725039 Kolchinsky Feb 1988 A
4745815 Klopfenstein May 1988 A
4771982 Bodine et al. Sep 1988 A
4788448 Crowe Nov 1988 A
4814963 Petersen Mar 1989 A
4814965 Petersen Mar 1989 A
4844554 Rojecki Jul 1989 A
4920811 Hopper May 1990 A
5031088 Tanaka Jul 1991 A
5038622 Tijmann Aug 1991 A
5055991 Carroll et al. Oct 1991 A
5105351 Harada et al. Apr 1992 A
5138249 Capel Aug 1992 A
5168422 Duncan Dec 1992 A
5195721 Akkerman Mar 1993 A
5210519 Moore May 1993 A
5230033 Soodak Jul 1993 A
5285563 Nove et al. Feb 1994 A
5297015 Miyazaki et al. Mar 1994 A
5301096 Klontz et al. Apr 1994 A
5311419 Shires May 1994 A
5418707 Shimer et al. May 1995 A
5433245 Prather et al. Jul 1995 A
5489897 Inoue Feb 1996 A
5508903 Alexndrov Apr 1996 A
5563780 Goad Oct 1996 A
5572182 De Pinho et al. Nov 1996 A
5573032 Lenz et al. Nov 1996 A
5610452 Shimer et al. Mar 1997 A
5629844 Krichtafovitch et al. May 1997 A
5649451 Ruland Jul 1997 A
5682303 Goad Oct 1997 A
5731969 Small Mar 1998 A
5754028 Vezzini May 1998 A
5768117 Takahashi et al. Jun 1998 A
5806761 Enoki et al. Sep 1998 A
5811889 Massie Sep 1998 A
5825638 Shutts Oct 1998 A
5832996 Carmody et al. Nov 1998 A
5923550 Kumar Jul 1999 A
5930340 Bell Jul 1999 A
5982645 Levran et al. Nov 1999 A
5983743 McGregor et al. Nov 1999 A
5984260 Rawson et al. Nov 1999 A
6007047 Phipps Dec 1999 A
6031743 Carpenter et al. Feb 2000 A
6032924 Castle Mar 2000 A
6041667 Pischinger et al. Mar 2000 A
6069802 Priegnitz May 2000 A
6073907 Schreiner, Jr. et al. Jun 2000 A
6094366 Kalfhaus Jul 2000 A
6095487 Waber Aug 2000 A
6142171 Hancock Nov 2000 A
6152167 Baker Nov 2000 A
6154381 Kajouke et al. Nov 2000 A
6158295 Nielsen Dec 2000 A
6181576 Ikeda et al. Jan 2001 B1
6269015 Ikeda et al. Jul 2001 B1
6329726 Lau et al. Dec 2001 B1
6356384 Islam Mar 2002 B1
6373726 Russell Apr 2002 B1
6385057 Barron May 2002 B1
6388904 Nomura May 2002 B2
6407987 Abraham Jun 2002 B1
6411527 Reinold Jun 2002 B1
6420976 Baggs et al. Jul 2002 B1
6438005 Walter Aug 2002 B1
6446519 Biester Sep 2002 B1
6446660 Goni Sep 2002 B1
6494257 Bartlett Dec 2002 B2
6494294 Kubota et al. Dec 2002 B1
6529120 Bilenko et al. Mar 2003 B1
6559385 Johnson et al. May 2003 B1
6595487 Johansen et al. Jul 2003 B2
6615916 Vachon Sep 2003 B1
6659200 Eppink Dec 2003 B1
6668639 Fong et al. Dec 2003 B2
6741162 Sacca et al. May 2004 B1
6937923 Bassett Aug 2005 B1
6965302 Mollenkopf et al. Nov 2005 B2
6998962 Cope et al. Feb 2006 B2
7075414 Giannini et al. Jul 2006 B2
7264057 Rytlewski et al. Sep 2007 B2
7433214 Kunow et al. Oct 2008 B2
7615893 Biester et al. Nov 2009 B2
8106536 Kunow et al. Jan 2012 B2
Foreign Referenced Citations (64)
Number Date Country
492021 Feb 1930 DE
524986 May 1931 DE
1199088 Aug 1965 DE
1525323 Sep 1969 DE
145982 Oct 1979 DE
3224041 Mar 1983 DE
3303248 Aug 1984 DE
3316258 Nov 1984 DE
3417455 Nov 1985 DE
3424041 Jan 1986 DE
3832304 Mar 1990 DE
9005411 Aug 1990 DE
4344709 Jun 1995 DE
4414677 Nov 1995 DE
4447395 Jun 1996 DE
19528081 Feb 1997 DE
19548593 Jul 1997 DE
19614627 Oct 1997 DE
19750041 Nov 1997 DE
19639476 May 1998 DE
19714552 Oct 1998 DE
19909712 Sep 2000 DE
19963105 Jun 2001 DE
0028296 May 1981 EP
0050466 Apr 1982 EP
0303801 Feb 1989 EP
0384607 Aug 1990 EP
0622574 Nov 1994 EP
0626670 Nov 1994 EP
1024422 Aug 2000 EP
1107437 Jun 2001 EP
1244203 Sep 2002 EP
1390757 Feb 1965 FR
2309748 Nov 1976 FR
2353992 Dec 1977 FR
625580 Jun 1949 GB
1001629 Aug 1965 GB
2141882 Jan 1985 GB
2266942 Nov 1993 GB
2332220 Jun 1999 GB
59103570 Jun 1984 JP
61076071 Apr 1986 JP
61240858 Oct 1986 JP
62217857 Sep 1987 JP
1114368 Oct 1987 JP
63308420 Dec 1988 JP
2206362 Jan 1989 JP
3065054 Aug 1989 JP
3150068 Jun 1991 JP
4200270 Jul 1992 JP
5327381 Dec 1993 JP
7154967 Jun 1995 JP
8338391 Dec 1996 JP
112253 Jul 1965 NL
1270293 Nov 1986 SU
1709511 Jan 1992 SU
9520836 Aug 1995 WO
9628878 Sep 1996 WO
9738479 Oct 1997 WO
9830816 Jul 1998 WO
9937009 Jul 1999 WO
0137411 May 2001 WO
0152397 Jul 2001 WO
0184689 Nov 2001 WO
Non-Patent Literature Citations (136)
Entry
Chr. Rohrbach: Handbuch für elektrisches Messen mechanischer Grössen; 1967, Vdl-Verlag, Dusseldorf (DE) IDSP002156890 (p. 448-449) (2 p.).
Engels, Ludwig, u.a.: Informationsübertragung, ProzeBankopplung und und Komponenten eines Doppelrechnersystems. In: etz-a, Bd. 98, 1977; (p. 602-606) (6 p.).
Busewitz, M.: Elektrochemische Aktoren; F&M Feinwerktechnik Mikrotechnik Mikroelektronik; vol. 106, No. 7/8; Jul. 1998 (p. 527-530) (4 p.).
J. R. Pinheiro et al; Isolated Interleaved-Phase-Shift-PWM de-dc ZVS Converters; IEEE 2000; (p. 2383-2388) (6 p.).
René Torrico-Bascope et al; Dual-Bridge DC-DC Converter with Soft Switching Features; IEEE 2001; (p. 722-727) (6 p.).
Demercil S. Oliveira et al; A Lossless Commutation PWM Two Level Forward Converter Operating Like a Full-Bridge; IEEE 2000 (p. 334-339) (6 p.).
Demercil S. Oliveira et al; A Lossless Commutation PWM Two Level Forward Converter; IEEE 2000 (p. 582-588) (7 p.).
J. E. Baggio et al; An Improved Full-Load-Range Isolated ZVS-PWM DC-DC Converter; IEEE 2001 (p. 708-714) (8 p.).
German Search Report, Application No. 20018562.4 dated Jul. 11, 2001.
German Search Report, Application No. 20018 60.8; dated Oct. 23, 2001.
British Search Report, Application No. GB0603309.6 dated Mar. 14, 2006.
British Search Report, Application No. GB0603306.2 dated Mar. 14, 2006.
British Search Report, Application No. GB0603307.0 dated Mar. 14, 2006.
International Search Report, Application No. PCT/EP01/09513 dated Mar. 6, 2002.
International Search Report, Application No. PCT/EP01/12548 dated May 17, 2002.
International Search Report and Written Opinion, Application No. PCT/US05/14593 dated Sep. 29, 2006.
International Search Report, Application No. PCT/EP01/12550 dated Feb. 26, 2002.
International Search Report, Application No. PCT/EP02/10471 dated Jul. 14, 2003.
International Search Report, Application No. PCT/EP02/10467 dated Sep. 29, 2003.
Partial International Search Report, Application No. PCT/EP02/10468 dated Jan. 16, 2003.
Partial International Search Report, Application No. PCT/EP02/10469 dated May 16, 2003.
International Search Report, Application No. PCT/EP02/10469 dated Oct. 23, 2003.
Notice of Allowance Dated Sep. 29, 2010; U.S. Appl. No. 12/244,215 (4 p.).
European Office Action Dated Dec. 5, 2008; European Application No. 01980532.4 (3 p.).
Chinese Office Action Dated Jul. 16, 2009; Chinese Application No. 200580013612.3 (17 p.).
Chinese Office Action Dated Jun. 30, 2010; Chinese Application No. 200580013612.3 (5 p.).
Norwegian Office Action Dated Sep. 11, 2008; Norwegian Application No. 20041129 (2 p.).
Norwegian Office Action Dated May 25, 2009; Norwegian Application No. 20041130 (3 p.).
Norwegian Office Action Dated Sep. 11, 2008; Norwegian Application No. 20041128 (1 p.).
Norwegian Office Action Dated Apr. 2, 2009; Norwegian Application No. 20041128 (1 p.).
Norwegian Office Action Dated Dec. 7, 2007; Norwegian Application No. 20041129 (6 p.).
Norwegian Office Action Dated Jan. 30, 2008; Norwegian Application No. 20041130 (7 p.).
Norwegian Office Action Dated Nov. 5, 2008; Norwegian Application No. 20041130 (6 p.).
Norwegian Office Action Dated Dec. 7, 2007; Norwegian Application No. 20041128 (3 p.).
Norwegian Office Action Dated Feb. 5, 2008; Norwegian Application No. 20041134 (3 p.).
Norwegian Office Action Dated Jan. 6, 2009; Norwegian Application No. 20041134 (4 p.).
Office Action Dated Nov. 17, 2005; U.S. Appl. No. 10/415,510 (16 p.).
Response to Office Action Dated Nov. 17, 2005; U.S. Appl. No. 10/415,510; Response Filed Mar. 17, 2006 (39 p.).
Final Office Action Dated May 16, 2006; U.S. Appl. No. 10/415,510 (18 p.).
Response to Final Office Action Dated May 16, 2006; U.S. Appl. No. 10/415,510; Response Filed Jul. 17, 2006 (22 p.).
Office Action Dated Aug. 14, 2006; U.S. Appl. No. 10/415,510 (15 p.).
Response to Office Action Dated Aug. 14, 2006; U.S. Appl. No. 10/415,510; Response Filed Nov. 14, 2006 (15 p.).
Office Action Dated Jan. 31, 2007; U.S. Appl. No. 10/415,510 (17 p.).
Response to Office Action Dated Jan. 31, 2007; U.S. Appl. No. 10/415,510; Response Filed Apr. 30, 2007 (16 p.).
Office Action Dated Oct. 9, 2007; U.S. Appl. No. 10/415,510 (19 p.).
Response to Office Action Dated Oct. 9, 2007; U.S. Appl. No. 10/415,510; Response Filed Mar. 10, 2008 (24 p.).
Office Action Dated Jun. 20, 2008; U.S. Appl. No. 10/415,510 (22 p.).
Response to Office Action Dated Jun. 20, 2008; U.S. Appl. No. 10/415,510; Response Filed Oct. 20, 2008 (18 p.).
Final Office Action Dated Jan. 7, 2009; U.S. Appl. No. 10/415,510 (22 p.).
Response to Final Office Action Dated Jan. 7, 2009; U.S. Appl. No. 10/415,510; Response Filed Apr. 6, 2009 (18 p.).
Notice of Allowance dated Aug. 4, 2009; U.S. Appl. No. 10/415,510 (8 p.).
Office Action Dated Aug. 30, 2006; U.S. Appl. No. 10/836,559 (10 p.).
Response to Office Action Dated Aug. 30, 2006; U.S. Appl. No. 10/836,559; Response Filed Dec. 19, 2006 (37 p.).
Office Action Dated Feb. 23, 2007; U.S. Appl. No. 10/836,559 (11 p.).
Response to Office Action Dated Feb. 23, 2007; U.S. Appl. No. 10/836,559; Response Filed May 23, 2007 (80 p.).
Final Office Action Dated Aug. 9, 2007; U.S. Appl. No. 10/836,559 (13 p.).
RCE and Response to Final Office Action Dated Aug. 9, 2007; U.S. Appl. No. 10/836,559; Response Filed Dec. 10, 2007 (13 p.).
Office Action Dated Feb. 21, 2008; U.S. Appl. No. 10/836,559 (13 p.).
Response to Office Action Dated Feb. 21, 2008; U.S. Appl. No. 10/836,559; Response Filed May 21, 2008 (12 p.).
Office Action Dated Aug. 15, 2008; U.S. Appl. No. 10/836,559 (12 p.).
Response to Office Action Dated Aug. 15, 2008; U.S. Appl. No. 10/836,559; Response Filed Nov. 17, 2008 (21 p.).
Final Office Action Dated Feb. 19, 2009; U.S. Appl. No. 10/836,559 (15 p.).
Response to Final Office Action Dated Feb. 19, 2009; U.S. Appl. No. 10/836,559; Response Filed May 19, 2009 (12 p.).
Notice of Allowance Dated Jun. 26, 2009; U.S. Appl. No. 10/836,559 (10 p.).
Office Action Dated Oct. 4, 2010; U.S. Appl. No. 12/541,227 (18 p.).
Response to Office Action Dated Oct. 4, 2010; U.S. Appl. No. 12/541,227; Response Filed Jan. 4, 2011 (19 p.).
Final Office Action Dated Apr. 6, 2011; U.S. Appl. No. 12/541,227 (17 p.).
RCE and Response to Final Office Action Dated Apr. 6, 2011; U.S. Appl. No. 12/541,227 (14 p.).
Office Action Dated Aug. 10, 2011; U.S. Appl. No. 12/541,227 (19 p.).
Response to Office Action Dated Aug. 10, 2011; U.S. Appl. No. 12/541,227; Response Filed Dec. 12, 2011 (11 p.).
Notice of Allowance Dated Dec. 22, 2011; U.S. Appl. No. 12/541,227 (11 p.).
Office Action Dated Nov. 3, 2010; U.S. Appl. No. 12/567,105 (17 p.).
Response to Office Action Dated Nov. 3, 2010; U.S. Appl. No. 12/567,105; Response Filed Mar. 3, 2011 (19 p.).
Final Office Action Dated May 11, 2011; U.S. Appl. No. 12/567,105 (13 p.).
RCE and Response to Final Office Action Dated May 11, 2011; U.S. Appl. No. 12/567,105; Response Filed Aug. 10, 2011 (15 p.).
Office Action Dated Oct. 17, 2011; U.S. Appl. No. 12/567,105 (14 p.).
Response to Office Action Dated Oct. 17, 2011; U.S. Appl. No. 12/567,105; Response Filed Jan. 17, 2012 (7 p.).
Notice of Allowance Dated Mar. 5, 2012; U.S. Appl. No. 12/567,105 (8 p.).
Office Action Dated May 30, 2007; U.S. Appl. No. 10/489,573 (19 p.).
Response to Office Action Dated May 30, 2007; U.S. Appl. No. 10/489,573; Response Filed Aug. 30, 2007 (9 p).
Final Office Action Dated Nov. 13, 2007; U.S. Appl. No. 10/489,573 (23 p.).
Pre-Appeal Brief Request for Review Dated Feb. 13, 2008; U.S. Appl. No. 10/489,573 (9 p.).
Appeal Brief Dated Jun. 4, 2008; U.S. Appl. No. 10/489,573 (17 p.).
Supplemental Appeal Brief Dated Jul. 10, 2008; U.S. Appl. No. 10/489,573 (18 p.).
Examiner's Answer Dated Oct. 1, 2008; U.S. Appl. No. 10/489,573 (16 p.).
Reply Brief Dated Dec. 1, 2008; U.S. Appl. No. 10/489,573 (3 p.).
Decision on Appeal Dated Jun. 21, 2011; U.S. Appl. No. 10/489,573 (11 p.).
RCE and Response to Final Office Action Dated Nov. 13, 2007; U.S. Appl. No. 10/489,573; Response Filed Aug. 22, 2011 (12 p.).
Notice of Allowance Dated Sep. 30, 2011; U.S. Appl. No. 10/489,573 (8 p.).
Office Action Dated Dec. 8, 2005; U.S. Appl. No. 10/489,533 (16 p.).
Response to Office Action Dated Dec. 8, 2005; U.S. Appl. No. 10/489,533; Response Filed Mar. 8, 2006 (26 p.).
Final Office Action Dated Jul. 28, 2006; U.S. Appl. No. 10/489,533 (12 p.).
Response to Final Office Action Dated Jul. 28, 2006; U.S. Appl. No. 10/489,533; Response Filed Sep. 28, 2006 (14 p.).
Notice of Allowance Dated Oct. 5, 2006; U.S. Appl. No. 10/489,533 (4 p.).
Office Action Dated Dec. 19, 2006; U.S. Appl. No. 10/489,533 (13 p.).
Response to Office Action Dated Dec. 19, 2006; U.S. Appl. No. 10/489,533; Response Filed Mar. 19, 2007 (12 p.).
Final Office Action Dated May 18, 2007; U.S. Appl. No. 10/489,533 (13 p.).
RCE and Response to Final Office Action Dated May 18, 2007; U.S. Appl. No. 10/489,533; Response Filed Jul. 25, 2007 (13 p.).
U.S. Office Action Dated Oct. 18, 2007; U.S. Appl. No. 10/489,533 (11 p.).
Response to Office Action Dated Oct. 18, 2007; U.S. Appl. No. 10/489,533; Response Filed Jan. 18, 2008 (11 p.).
Office Action Dated Apr. 7, 2008; U.S. Appl. No. 10/489,533 (15 p.).
Response to Office Action Dated Apr. 7, 2008; U.S. Appl. No. 10/489,533; Response Filed Aug. 7, 2008 (10 p.).
Final Office Action Dated Dec. 12, 2008; U.S. Appl. No. 10/489,533 (14 p.).
Response to Final Office Action Dated Dec. 12, 2008; U.S. Appl. No. 10/489,533; Response Filed Mar. 11, 2009 (11 p.).
RCE and Response to Final Office Action Dated Dec. 12, 2008; U.S. Appl. No. 10/489,533; Response Filed Jun. 29, 2009 (11 p.).
Office Action Dated Sep. 2, 2009; U.S. Appl. No. 10/489,533 (13 p.).
Response to Office Action Dated Sep. 2, 2009; U.S. Appl. No. 10/489,533; Response Filed Dec. 2, 2009 (13 p.).
Notice of Allowance Dated Feb. 16, 2010; U.S. Appl. No. 10/489,533 (7 p.).
Office Action Dated Dec. 22, 2010; U.S. Appl. No. 12/796,944 (16 p.).
Office Action Dated Mar. 21, 2011; U.S. Appl. No. 12/796,944 (17 p.).
Response to Office Action Dated Mar. 21, 2011; U.S. Appl. No. 12/796,944; Response Filed Jun. 21, 2011 (17 p.).
Notice of Allowance Dated Sep. 29, 2011; U.S. Appl. No. 12/796,944 (9 p.).
Office Action Dated Jul. 3, 2006; U.S. Appl. No. 10/489,583 (11 p.).
Response to Office Action Dated Jul. 3, 2006; U.S. Appl. No. 10/489,583; Response Filed Oct. 3, 2006 (8 p.)
Office Action Dated Dec. 15, 2006; U.S. Appl. No. 10/489,583 (13 p.).
Response to Office Action Dated Dec. 15, 2006; U.S. Appl. No. 10/489,583; Response Filed Mar. 15, 2007 (10 p.).
Office Action Dated Jun. 4, 2007; U.S. Appl. No. 10/489,583 (13 p.).
Response to Office Action Dated Jun. 4, 2007; U.S. Appl. No. 10/489,583; Response Filed Sep. 4, 2007 (10 p.).
Final Office Action Dated Nov. 13, 2007; U.S. Appl. No. 10/489,583 (13 p.).
Notice of Allowance Dated Jul. 16, 2008; U.S. Appl. No. 10/489,583 (7 p.).
Supplemental Notice of Allowability Dated Aug. 4, 2008; U.S. Appl. No. 10/489,583 (5 p.).
Office Action Dated Apr. 16, 2009; U.S. Appl. No. 12/255,898 (8 p.).
Response to Office Action Dated Apr. 14, 2009; U.S. Appl. No. 12/255,898; Response Filed Jul. 16, 2009 (9 p.)
Notice of Allowance Dated Nov. 4, 2009; U.S. Appl. No. 12/255,898 (8 p.).
Office Action Dated Jul. 17, 2006; U.S. Appl. No. 10/489,584 (12 p.).
Response to Office Action Dated Jul. 17, 2006; U.S. Appl. No. 10/489,584; Response Filed Nov. 16, 2006 (27 p.).
Final Office Action Dated Jun. 15, 2007; U.S. Appl. No. 10/489,584 (8 p.).
Notice of Allowance Dated May 29, 2008; U.S. Appl. No. 10/489,584 (11 p.).
Supplemental Notice of Allowability Dated Aug. 27, 2008; U.S. Appl. No. 10/489,584 (8 p.).
Office Action Dated Jun. 26, 2009; U.S. Appl. No. 12/244,215 (14 p.).
Response to Office Action Dated Jun. 26, 2009; U.S. Appl. No. 12/244,215; Response Filed Nov. 24, 2009 (10 p.).
Final Office Action Dated Dec. 30, 2009; U.S. Appl. No. 12/244,215 (15 p.).
Response to Final Office Action Dated Dec. 30, 2009; U.S. Appl. No. 12/244,215; Response Filed Mar. 16, 2010 (9 p.).
RCE and Response to Final Office Action Dated Dec. 30, 2009; U.S. Appl. No. 12/244,215; Response Filed Mar. 30, 2010 (12 p.).
Office Action Dated May 13, 2010; U.S. Appl. No. 12/244,215 (11 p.).
Response to Office Action Dated May 13, 2010; U.S. Appl. No. 12/244,215; Response Filed Sep. 10, 2010 (9 p.).
Related Publications (1)
Number Date Country
20120169119 A1 Jul 2012 US
Divisions (1)
Number Date Country
Parent 10489573 US
Child 13338837 US