The present invention relates generally to seals for use in endoscopic surgery and, more particularly, to a universal seal that seals against different sizes of medical instruments being inserted through a cannula into the body while maintaining insufflation pressure, yet still allowing for side to side motion of the medical instruments.
As modern technology has developed, new surgical innovations have followed the technology. One of the techniques of modern surgery that has rapidly grown in the last decade is the use of small openings in the body through which access to the internal organs is obtained. While many different titles to describe this technique have been used, probably the more common titles are laparoscopic surgery or endoscopic surgery. Other people prefer more descriptive titles such as telescopic surgery or minimally invasive surgery. This entire area of surgical techniques probably developed the most in laparoscopic cholecystectomy, which is used to remove gall stones.
For the present application, because the most commonly used and comprehensive term is endoscopic surgery, the term endoscopic surgery will be used in this application to refer collectively to all of these types of surgery. However, it should be realized that other terms can be used to describe the surgical technique.
In endoscopic surgery, a small cut is made in the skin and a sharpened cannula or spike is then inserted through the fascia into a body opening such as the abdominal cavity. After removal of the spike from the cannula, the cannula will then allow access to the body opening such as the abdominal cavity.
Typically, a gas is inserted through the cannula to insufflate the body opening. Once the first opening is made, a camera lens on the end of a fiber optic cable can be inserted through the cannula that will allow the monitoring of the internal parts of the body cavity. It is extremely important that the body organs not be damaged when inserting any cannulas, spikes, or trocars into the body.
After access to the body opening is obtained by the insertion of the cannula, it is also important to maintain a seal along the central opening of the cannula. If not, the gas used for the insufflation of the body cavity will rapidly escape and it will be difficult to maintain a sufficient cavity opening for the endoscopic surgery.
In the past, various types of seals have been developed to seal the upper part of the cannula opening. An example is shown in U.S. Pat. No. 5,512,053, which patent is owned by the same assignee as the present application. U.S. Pat. No. 5,512,053 provides a lip seal to maintain the insufflation gas in the body cavity. However, once a medical instrument is inserted through the lip seal, the gas can leak around the medical instrument and escape into the atmosphere. To provide a back up, a second sliding seal with different size apertures has been provided to engage the medical instrument being inserted into the cannula and through the lip seal. Medical instruments vary in size, and the medical instruments will be moved form side to side during use in endoscopic surgery. This side to side motion causes leakage of the gas around the medical instruments. Some type of seal is needed that will seal around medical instruments of varying sizes and, at the same time, allow for lateral or side to side movement of the medical instrument during endoscopic surgery.
Also, it is important that the seal have a memory to return to its original position after periods of use. In other words, if the doctor during the operation is moving the medical instrument to one side, there should be a continual force trying to urge the medical instrument back to the center of the cannula opening.
To remedy the problem of different size medical instruments being inserted through the cannula, U.S. Pat. No. 4,112,932 shows a laparoscopic cannula that has a rotating seal where different size openings can be selected depending upon the size of instrument being inserted into the cannula. While this is effective to some degree, it does not allow for side to side movement of the medical instrument and it does not allow for the rapid exchange of medical devices without also rotating or spinning the seal.
A common seal that is in use today to seal surgical instruments such as cannulas, trocars, or similar devices is shown in U.S. Pat. No. 5,407,433 to Loomas. The Loomas patent and its related patents allows some side to side movement of the medical instruments, but has a rigid internal ring on the seal that limits its effectiveness. The rigid internal ring does not allow the seal to make a sealing relationship with the medical instrument as well as the present invention. The inflexible nature of the internal ring does not provide as effective an urging force against the medical instrument to return the medical instrument to the center of the cannula. The Loomas seal is also much more complicated and expensive to manufacture than the present universal seal and does not provide as effective sealing as the present invention.
To overcome this problem of accommodating different sizes of medical instruments and to allow for side to side movement, many other United States patents have been issued to seal surgical instruments such as cannulas or trocars. Another example is U.S. Pat. No. 5,342,315 issued to Rowe, which has a whole collection of different types of seals. Each of these seals is much more complicated and expensive to manufacture than the present invention and still is not as effective. The Rowe patent shows all types of reinforcing ribs and slots being cut in the seal, none of which are necessary with the present invention.
Other patents refer to their seal as a “universal seal” such as U.S. Pat. No. 5,628,732 to Antoon or U.S. Pat. No. 5,350,364 to Stephens. Again, both of these patents are much more complicated, expensive, and do not do the job of the present universal seal. Applicants, who are very familiar with the industry, does not know of any other seal that is as economical and inexpensive to manufacture as the present universal seal, but is as effective in allowing different size instrument to be inserted through a cannula and allowing side to side movement of the medical instrument, yet still maintaining air tight contact to hold the insufflation gas inside the body cavity. The need exists for a universal type of seal that can be used for any cannula or trocar device through which access is obtained to body cavities for the purpose of performing endoscopic surgery, particularly while sealing against the surgical instruments being inserted through the cannulas or trocars into the body.
It is an object of the present invention to provide a universal seal.
It is another object of the present invention to provide a seal for cannulas or other devices used in endoscopic surgery.
It is still another object of the present invention to provide for a universal seal that can be used with cannulas or trocars, which universal seal allows for side to side movement with different size surgical instruments when inserted therethrough, yet still maintaining an air tight seal to hold the insufflation gas inside the body.
It is yet another object of the present invention to provide a cannula with an improved seal for sealing against the surgical instruments being inserted through the cannula into the body cavity while still urging the surgical instrument and the seal back to the center of the cannula due to the memory of the elastomeric material.
It is still another object of the present invention to provide a universal seal that can seal against medical instruments of different diameters as they are inserted through a cannula or trocar during endoscopic surgery and still maintain the seal during side to side movement of the medical instrument.
The universal seal is shown in a preferred embodiment in combination with a reusable cannula. The reusable cannula is made from a metal material and is connected to a lip seal housing for a lip seal. An insufflation port connects through the lip seal housing into the central passage of the reusable cannula below the lip seal. Above the lip seal housing is an adapter so that different devices or seals may be attached to the lip seal housing.
Above the adapter is a universal housing, which maintains a universal seal between a top and bottom portion of the universal seal housing. The top and bottom portions form an annulus therebetween that surrounds an insertion port in the universal seal housing. An outer ring of the universal seal is compressed at the outer edge of the annulus between the bottom and top portions of the universal seal housing. An inner ring of the universal seal is free to move back and forth inside of the annulus while maintaining rubbing contact with the top and bottom portions of the universal seal housing which forms the annulus. A small opening is in the center of the universal seal.
Because the universal seal is made from elastomeric material, as medical instruments of different diameters are inserted through the insertion port into the small opening of the universal seal, the small opening in the universal seal will expand to accommodate the different size medical instruments up to a predetermined limit. If the medical instrument moves from side to side, the center ring of the universal seal will deform and move inside of the annulus to allow for side to side movement of the medical instrument while still maintaining contact with the medical instrument. The universal seal will have a tendency to self center that is caused by a combination of (a) memory of the elastomeric material, (b) gas pressure on the underside of the universal seal, and (c) geometry of the universal seal. This combination creates what could be called an annular spring.
Several different embodiments of the universal seal are shown. Also, the universal seal with the seal housing may be attached to other types of medical devices such as trocars for allowing entry into the body for endoscopic surgery.
Referring to
An enlarged upper portion 16 of the cannula 12 has upper internal threads 18 for threadably connecting to lower threads 20 of a lip seal body 22.
The lip seal body 22 has a port 24 through which insufflation gas is inserted. The insufflation gas 30 is directed downward through the cannula 12 into the body of the patient.
A lip seal 26 is located on an internal shoulder 28 of the lip seal body 22. A slot 30 is cut in the lip seal 26, which slot 30 may be opened upon the insertion of medical instruments.
A snap cap 32 snaps onto the upper portion of the lip seal body 22 to securely hold the lip seal 26 in position. The snap cap 32 may be held to the lip seal body by any conventional means such as snap posts (not shown). Around the upper part of the snap cap 32 is an elastomeric ring 34 that provides a good fit with the adapter 36. The adapter 36, also called a Chiulli adapter, is used so that access can be obtained to the cannula for the removal of body tissue. It is important not to have to go through any further seals in reaching into the body and removing irregular objects.
While the adapter 36 can be of any particular configuration, in the present preferred embodiment, it is of an elongated shape and has a mating shoulder/edge 38. The mating shoulder/edge 38 is received into a mating cavity 40 formed in the bottom 42 of the universal seal housing 44. The connection between the adapter 46 and the bottom 42 of the universal seal housing 44 is an air tight seal that will not allow insufflation gas to escape therethrough. A circular opening 46 is in the top of the bottom 42 of the universal seal housing 44. The top 48 of the universal seal housing 44 connects to the bottom 42 by any conventional means. Therebetween is located the universal seal 50, which will be described in more detail subsequently. In this preferred embodiment, the bottom 42 and the top 48 are held together by snap posts 52 snapping into holes 54 to hold the universal seal housing 44 together.
Referring to
An inner ring 62 of the universal seal 50 is located inside of the roll or bellows 58. The inner ring 62 is free to slide back and forth in sliding contact with the bottom side of the top 48 or the circular opening 46 of the bottom 42 of the universal seal housing 44. In the middle of the universal seal 50 is located an opening 64 through which medical instruments (not shown) may be inserted. The opening 64 is in alignment with the center of the central passage 66 which extends through the universal seal housing 44, adapter 36, snap cap 32, lip seal body 22, and cannula 12.
The inner ring 62 prevents the universal seal 50 from being pushed into the central passage 66 when inserting a large diameter instrument, or from being pulled into the central passage 66 when removing a large diameter instrument.
Referring now to
As the medical instrument 68 moves to the left as shown in
As can be seen in
While in the present view, the medical instrument is shown as a surgical cutting device, any other type of medical instrument may be inserted such as surgical devices, lens on the end of fiber optic links, clip appliers, just to name a few of the medical instruments.
Referring to
As the universal seal 50 is installed in the universal seal housing 44, it will assume the configuration as shown in
Referring to
The outer cylinder 72 moves up and down as the lever 76 is moved down and up. When the outer cylinder 72 is moved down, expandable members 82 extend outward as shown in
The outer cylinder 72 is riding on an inner cylinder 86 which is securely mounted into position at the top by housing 88. The housing 88 may be made from two pieces of injection molded plastic that are fused or snapped together. Inside of the housing 88 is a lip seal housing 90 in which the lip seal 92 is located.
Above the housing 88 and the lip seal housing 90 is located the universal seal 50 and universal seal housing 44 as previously described in connection with
Referring now to
Referring now to
The inner ring 98 will be in rubbing contact with the bottom 42 and top 48 of the universal seal housing 44. The modified universal seal 94 will flex generally in the same way as the universal seal 50 described in the preferred embodiment with the inner ring 98 flexing as the medical instrument inserted therethrough may move from side to side. Also, the modified universal seal 94 will accommodate varying sizes of medical instruments being inserted.
Referring to
This application is a continuation of U.S. application Ser. No. 10/419,426 filed Apr. 21, 2003 now U.S. Pat. No. 7,169,130, which is a continuation of U.S. application Ser. No. 09/422,414 now U.S. Pat. No. 6,551,282 filed on Oct. 21, 1999, which is a continuation of U.S. application Ser. No. 09/027,754 now U.S. Pat. No. 5,989,224 filed Feb. 23, 1998. The disclosure of each of these prior applications is hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3421509 | Fiore | Jan 1969 | A |
3565078 | Vaillaincourt et al. | Feb 1971 | A |
3853127 | Spademan | Dec 1974 | A |
3907310 | Dufour | Sep 1975 | A |
3994287 | Turp et al. | Nov 1976 | A |
4000739 | Stevens | Jan 1977 | A |
4112932 | Chiulli | Sep 1978 | A |
4173350 | Sieghartner | Nov 1979 | A |
4177814 | Knepshield et al. | Dec 1979 | A |
4177997 | Cartwright | Dec 1979 | A |
4240335 | Stucka et al. | Dec 1980 | A |
4240411 | Hosono | Dec 1980 | A |
4311315 | Kronenberg | Jan 1982 | A |
4334688 | Spargo et al. | Jun 1982 | A |
4338689 | Zieg | Jul 1982 | A |
4386756 | Muchow | Jun 1983 | A |
4387879 | Tauschinski | Jun 1983 | A |
4430081 | Timmermans | Feb 1984 | A |
4447237 | Frisch et al. | May 1984 | A |
4464178 | Dalton | Aug 1984 | A |
4553760 | Reed et al. | Nov 1985 | A |
4588195 | Antonini et al. | May 1986 | A |
4601710 | Moll | Jul 1986 | A |
4626245 | Weinstein | Dec 1986 | A |
4641842 | Kataoka | Feb 1987 | A |
4654030 | Moll et al. | Mar 1987 | A |
4655752 | Honkanen et al. | Apr 1987 | A |
4673393 | Suzuki et al. | Jun 1987 | A |
4705511 | Kocak | Nov 1987 | A |
4715360 | Akui et al. | Dec 1987 | A |
4723550 | Bales et al. | Feb 1988 | A |
4758225 | Cox et al. | Jul 1988 | A |
4842591 | Luther | Jun 1989 | A |
4844483 | Iijima et al. | Jul 1989 | A |
4844484 | Antonini et al. | Jul 1989 | A |
4857062 | Russell | Aug 1989 | A |
4869717 | Adair | Sep 1989 | A |
4874378 | Hillstead | Oct 1989 | A |
4889349 | Muller | Dec 1989 | A |
4909798 | Fleischhacker et al. | Mar 1990 | A |
4917668 | Haindl | Apr 1990 | A |
4929235 | Merry et al. | May 1990 | A |
4932633 | Johnson et al. | Jun 1990 | A |
4943280 | Lander | Jul 1990 | A |
4960412 | Fink | Oct 1990 | A |
4966588 | Rayman et al. | Oct 1990 | A |
4998740 | Tellier | Mar 1991 | A |
5000745 | Guest et al. | Mar 1991 | A |
5002557 | Hasson | Mar 1991 | A |
5015000 | Perini | May 1991 | A |
5038756 | Kepley | Aug 1991 | A |
5041095 | Littrell | Aug 1991 | A |
5053014 | Van Heugten | Oct 1991 | A |
5053016 | Lander | Oct 1991 | A |
5073169 | Raiken | Dec 1991 | A |
5104383 | Schichman | Apr 1992 | A |
5127626 | Hilal et al. | Jul 1992 | A |
5137520 | Maxson et al. | Aug 1992 | A |
5167636 | Clement | Dec 1992 | A |
5180373 | Green et al. | Jan 1993 | A |
5197955 | Stephens et al. | Mar 1993 | A |
5201714 | Gentelia et al. | Apr 1993 | A |
5209736 | Stephens et al. | May 1993 | A |
5209737 | Ritchart et al. | May 1993 | A |
5221264 | Wilk et al. | Jun 1993 | A |
5226891 | Bushatz et al. | Jul 1993 | A |
5242412 | Blake, III | Sep 1993 | A |
5290304 | Storace | Mar 1994 | A |
5299813 | McKenna | Apr 1994 | A |
5300036 | Meueller et al. | Apr 1994 | A |
5308336 | Hart et al. | May 1994 | A |
5320611 | Bonutti et al. | Jun 1994 | A |
5342315 | Rowe et al. | Aug 1994 | A |
5354280 | Haber et al. | Oct 1994 | A |
5380288 | Hart et al. | Jan 1995 | A |
5385553 | Hart et al. | Jan 1995 | A |
5391153 | Haber et al. | Feb 1995 | A |
5395342 | Yoon | Mar 1995 | A |
5400586 | Bagepalli et al. | Mar 1995 | A |
5407433 | Loomas | Apr 1995 | A |
5411483 | Loomas et al. | May 1995 | A |
5429609 | Yoon | Jul 1995 | A |
5439455 | Kieturakis et al. | Aug 1995 | A |
5443452 | Hart et al. | Aug 1995 | A |
5485553 | Kovalick et al. | Jan 1996 | A |
5496280 | Vandenbroek et al. | Mar 1996 | A |
5512053 | Pearson et al. | Apr 1996 | A |
5545142 | Stephens et al. | Aug 1996 | A |
5554124 | Alvarado | Sep 1996 | A |
5568931 | Tseng et al. | Oct 1996 | A |
5584850 | Hart et al. | Dec 1996 | A |
5599305 | Hermann et al. | Feb 1997 | A |
5628732 | Antoon, Jr. et al. | May 1997 | A |
5634908 | Loomas | Jun 1997 | A |
5634911 | Hermann et al. | Jun 1997 | A |
5634937 | Mollenauer et al. | Jun 1997 | A |
5643227 | Stevens | Jul 1997 | A |
5643301 | Mollenauer | Jul 1997 | A |
5709664 | Vandenbroek et al. | Jan 1998 | A |
5743884 | Hasson et al. | Apr 1998 | A |
5752938 | Flatland et al. | May 1998 | A |
5782812 | Hart et al. | Jul 1998 | A |
5782817 | Franzel et al. | Jul 1998 | A |
5792113 | Kramer et al. | Aug 1998 | A |
5814026 | Yoon | Sep 1998 | A |
5820600 | Carlson et al. | Oct 1998 | A |
5827228 | Rowe | Oct 1998 | A |
5857999 | Quick et al. | Jan 1999 | A |
5868714 | Danks | Feb 1999 | A |
5944320 | Werner et al. | Aug 1999 | A |
5989224 | Exline et al. | Nov 1999 | A |
5997515 | De la Torre et al. | Dec 1999 | A |
6042119 | Bagepalli et al. | Mar 2000 | A |
RE36702 | Green et al. | May 2000 | E |
6228061 | Flatland et al. | May 2001 | B1 |
6276661 | Laird | Aug 2001 | B1 |
20070085232 | Brustad et al. | Apr 2007 | A1 |
Number | Date | Country |
---|---|---|
32 17 118 | Aug 1983 | DE |
0 051 718 | May 1982 | EP |
0 113 520 | Jul 1984 | EP |
0 312 219 | Apr 1989 | EP |
0 316 096 | May 1989 | EP |
0 696 459 | Feb 1996 | EP |
1 482 857 | Aug 1977 | GB |
WO 9304717 | May 1992 | WO |
WO 9422357 | Oct 1994 | WO |
WO 9853865 | May 1998 | WO |
WO 9952577 | Mar 1999 | WO |
WO 9929250 | Jun 1999 | WO |
WO 03034908 | May 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20080269696 A1 | Oct 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10419426 | Apr 2003 | US |
Child | 11639675 | US | |
Parent | 09422414 | Oct 1999 | US |
Child | 10419426 | US | |
Parent | 09027754 | Feb 1998 | US |
Child | 09422414 | US |