The present invention relates generally to a data processing system, method and computer program product and more specifically to a secure critical security parameter transport arrangement between a host computer system and an associated cryptographic module.
In high security operating environments, the US National Institute of Standards and Technology (NIST) specifies in FIPS PUB 140-2, “Security Requirements For Cryptographic Modules,” for security levels 3 and 4 that critical security parameters (CSP) such as authentication data, passwords, PINs, CSPs, biometric samples, secret and private cryptographic keys be entered into or output from a cryptographic module in an encrypted form, generally using some form of physical and/or logical trusted path or secure messaging channel to prevent interception of the critical security parameters.
The cryptographic modules referred to in this specification include hardware based security devices such as security tokens, smart cards, integrated circuit chip cards, portable data carriers (PDC), personal security devices (PSD), subscriber identification modules (SIM), wireless identification modules (WIM), USB token dongles, identification tokens, secure application modules (SAM), hardware security modules (HSM), secure multi-media token (SMMC), trusted platform computing alliance chips (TPCA) and like devices.
Attempts at providing a physical trusted path include the use of cryptographic hardware devices installed between input devices such as the keyboard and possibly the mouse. An example of such a cryptographic interface device is disclosed in U.S. Pat. No. 5,841,868 to Helbig. However, the hardware expenditures and added administrative burden greatly increases the cost of the computer system.
In another approach, U.S. Pat. No. 4,945,468 to Carson, et al., a trusted path is generated by providing a new virtual terminal window which allows secure entry of CSPs. The new virtual terminal window is effectively isolated from other running processes. This method is a reasonably secure approach but does not extend the trusted path to peripheral security devices such as cryptography modules, cryptographic modules and biometric scanners.
In yet another approach, U.S. patent application Ser. No. 2002/0095587 to Doyle, et al. discloses a wireless SSL or equivalent connection which utilizes negotiated time-limited cryptography keys to maintain a chain of trust between interconnected security devices. However, the mechanism disclosed relies heavily on multiple public key cryptography key pairs which is difficult to maintain and may reduce overall performance due to relatively slow transaction processing when employed using a smart card. In addition, negotiation of time-limited cryptography keys relies on devices containing a system clock for changing of cryptographic keys. Smart cards and like devices do not include system clocks and thus cannot be part of the negotiated key exchange.
Cryptographic mechanisms are available in the relevant art which could be adapted to encrypt an incoming CSP with a cryptographic key for secure transport through a host and eventual decryption by a security executive installed within the cryptographic module. However, the cryptographic mechanism employed by the host must provide a sufficient level of security to prevent interception of the cryptographic keys used in encrypting the CSP and furthermore limits vulnerability to a replay type attack.
Another common vulnerability in the relevant art relates to the lack of ability to bind a CSP to a session, which potentially allows an unlocked cryptographic module to accessed by an unauthorized entity. To address this potential vulnerability, the CSP is typically cached or stored and presented by software to the cryptographic module each time access is required. The cached or stored CSPs are likewise vulnerable to interception or compromise by an authorized entity.
Therefore, it would highly advantageous to provide a secure CSP transport system which limits an intruder's ability to intercept a cryptographic key, is relatively invulnerable to a replay type attack, minimizes requests for user input of CSPs already provided within a session and does not store or otherwise cache a CSP.
This invention addresses the limitations described above and provides an efficient secure messaging arrangement to securely exchange information between a host computer system and a cryptographic module. The secure messaging arrangement may be used to securely transport a critical security parameter (CSP) to the cryptographic module without clear text disclosure of the CSP but is not limited to this one implementation. The invention is comprised of a host computer system and a functionally connected cryptographic module. The host computer system may be locally or remotely connected to the cryptographic module.
The host computer system includes a Host Security Manager application having the functional capacity to generate a session key and perform symmetric and asymmetric cryptography.
The session key is a symmetric key generated or derived from a random number having a sufficient bit strength to prevent unauthorized access to the information being exchanged in the secure messaging session. A unique session identifier is associated with the session key which is generated and supplied by the cryptographic module.
Multiple messaging sessions may be established to perform various activities with the cryptographic module. The session identifier is used by the Host Security Manager application to select the appropriate session key for a particular function.
The session key generated by the Host Security Manager application is sent to the cryptographic module using a secure key exchange. A public key associated with the cryptographic module is retrieved and used to encrypt a duplicate of the session key using public key infrastructure (PKI) cryptography. The public key is retrieved from a X.509 compliant digital certificate supplied directly from the cryptographic module, from a remote server or from a certificate authority.
Once the session keys are securely shared and assigned the unique session identifier, CSP transfer, bulk encryption and decryption and message authentication code (MAC) verification are performed using the session keys and a symmetric cryptography method such as DES, 3DES, AES or equivalent symmetric encryption method.
The cryptographic module includes the private key counterpart to the public key and a Security Executive application. The Security Executive application includes the functional capabilities of performing its portion of the secure key exchange using the private key counterpart for decrypting the duplicate of session key, generating a unique session identifier, sharing the unique session identifier with the host computer system, associating the unique session identifier with each session key and performing the symmetric cryptographic functions on the information being exchanged through the secure messaging arrangement in conjunction with the host computer system.
As an added security enhancement to the basic embodiment of the invention, additional cryptographic functions such as attaching and verifying message authentication codes to the information exchanged between the host computer system and the cryptographic module.
The programs and associated data may be recorded on transportable digital recording media such as a CD ROM, floppy disk, data tape, or DVD for installing on a host computer system and/or cryptographic module.
One embodiment of the invention provides a secure messaging arrangement that allows a subsequent use of a symmetric key as a surrogate for a CSP for gaining access to a CSP protected application installed in a cryptographic module. The symmetric key is generated on a host computer system and may include a timestamp or unique session identifier to prevent replay type attacks.
The symmetric key is typically a random number having a sufficient bit strength of at least 64 bits but preferably 112 bits or greater to assure adequate security and performance. The term symmetric key is intended to be synonymous with a session key.
A CSP is supplied by a user or other entity to initially access the cryptographic module after the session keys are established. In a basic embodiment of the invention, both the CSP and a duplicate of the symmetric key are sent to the cryptographic module by a Host Security Manager application installed on the host computer system. The Host Security Manager application uses the symmetric key to encrypt the CSP during transfer between the host and the cryptographic module. This minimizes the likelihood of unauthorized monitoring of the CSP.
A Security Executive application installed inside the cryptographic module verifies and/or authenticates the CSP and temporarily allows access to a CSP protected application. The duplicate symmetric key is temporarily granted permission to unlock all of the applications authorized for the particular CSP for the duration of a session. Subsequent access to one or more of the authorized applications requires presentation of the symmetry key to the Security Executive application. Multiple symmetric keys may be established to allow access to applications which require different CSPs and/or associated with different entities requiring access to the cryptographic module.
The duration of the session is controlled by the entity or user, removal of the cryptographic module from its interface with the host, logout from the host or exceeding a predetermined session duration terminates the session and requires reentry of the CSP.
The features and advantages of the invention will become apparent from the following detailed description when considered in conjunction with the accompanying drawings. Where possible, the same reference numerals and characters are used to denote like features, elements, components or portions of the invention. It is intended that changes and modifications can be made to the described embodiment without departing from the true scope and spirit of the subject invention as defined in the claims.
FIG. 1—is a generalized block diagram of a host computer system and a functionally connected cryptographic module.
FIG. 1A—is a generalized block diagram of a first embodiment of the invention.
FIG. 1B—is a generalized block diagram of an alternate embodiment of the invention which incorporates a remote host computer system.
FIG. 2—is a detailed block diagram of a public key receipt by a host computer system.
FIG. 2A—is a detailed block diagram of the invention where a session key pair is generated by the host computer system.
FIG. 2B—is a detailed block diagram of the invention where a secure key exchange is performed between the host computer system and a functionally connected cryptographic module.
FIG. 2C—is a detailed block diagram of the invention where a unique session identifier is assigned to the session key pair.
FIG. 2D—is a detailed block diagram of the invention where a CSP in the form of a PIN is encrypted using the host version of the session key and sent to the cryptographic module.
FIG. 2E—is a detailed block diagram of the invention where a CSP in the form of a biometric sample is encrypted using another host version of a session key and sent to the cryptographic module.
FIG. 3—is a flow diagram illustrating the major steps associated with establishing a secure messaging session between a host computer system and a functionally connected cryptographic module.
FIG. 3A—is a flow diagram illustrating the major steps associated with reestablishing a secure messaging session between a host computer system and a functionally connected cryptographic module.
FIG. 3B—is a flow diagram illustrating the detailed steps associated with reestablishing the secure messaging session.
FIG. 3C—is a flow diagram illustrating the detailed steps associated with performing counterpart cryptographic functions and assignment of a session key as a surrogate for a CSP.
This present invention provides an anonymous secure messaging arrangement which allows transfer of critical security parameters and other information exchanged between a host computer system and a functionally connected cryptographic module In addition, the secure messaging arrangement provides a session based temporary surrogate CSP following initial presentation and verification of a CSP to the cryptographic module. The applications are envisioned to be programmed in a high level language using such as Java™, C++, C or Visual Basic™.
Referring to
A communications interface 55 subsystem is coupled to a network interface 60 and a network 65, a cryptographic module interface 70 and a cryptographic module 75, a user input interface 80 including a mouse and a keyboard 85, a biometric scanner interface 90 and a biometric scanner 95.
The processor 5, main memory 10, display interface 15 secondary memory subsystem 25 and communications interface system 55 are electrically coupled to a communications infrastructure 100. The host computer system includes an operating system, a Host Security Manager application, other applications software, cryptography software capable of performing symmetric and asymmetric cryptographic functions, secure messaging software and device interface software.
The cryptographic module 75 includes a wireless, optical and/or electrical connection means compatible with the cryptographic module interface 70, a processor, volatile and non-volatile memory electrically coupled to the processor, a runtime operating environment, cryptography extensions incorporated into the operating system and capable of performing symmetric and asymmetric cryptographic functions compatible with the host cryptography software, a Security Executive application, one or more CSP protected applications functionally coupled to the Security Executive application and a public key infrastructure (PKI) key pair functionally coupled to the Security Executive application.
The non-volatile memory has operatively stored therein one or more reference CSPs which are verified by the Security Executive application to allow access to the one or more CSP protected applications.
Referring to
The Host Security Manager application 110 includes the ability to perform cryptographic functions available through the cryptography software and extensions, including generation of one or more session based symmetric key pairs for use as block cipher keys during information exchange over the communications link 101.
The Host Security Manager application 110 may exist as a single application or a plurality of interrelated applications and library extensions. The session keys may be used as temporary CSP surrogates which allows access to security functions initially authenticated with the required CSP. The Host Security Manager application 110 further includes the ability to uniquely associate each of the generated symmetric keys with a particular CSP and a CSP protected application installed in the cryptographic module 75. In one embodiment of the invention, access requirements are determined by security policies maintained within the cryptographic module as is described in co-pending U.S. patent application Ser. No. 10/321,624 to Eric Le Saint & al. filed on Dec. 18, 2002, entitled “Uniform Framework for Security Tokens,” and herein incorporated by reference.
Additional security policies may be combined with the security policies established for the cryptographic module as is described in co-pending U.S. patent application to Eric Le Saint & al. filed the same day as this application, entitled “Uniform Framework For Host Computer System,” and herein incorporated by reference. In general, the relevant portions of the security policies are comprised of access control rules having a general form shown as an example in Table 1 below;
Where;
ACR# refers to an access control rule; AM# refers to an authentication application installed inside the cryptographic module; PIN refers to a CSP in the form of a personal identification number required by the authentication application; BIO refers to a CSP in the form a biometric sample required by the authentication application; and SM refers to a secure messaging application.
The state of each executed access control rule is maintained in a session table and is shown as a binary flag. The session ID is used to determine which session key is assigned the surrogate privileges provided by the PIN and BIO CSPs. In an alternate embodiment of the invention, the Host Security Manager application 110 maintains an equivalent table.
The generated session keys are temporarily stored in main memory 10 (
The Security Executive application 115 installed inside the cryptographic module 75 includes the ability to perform the cryptographic functions available from cryptography applications and extensions including; authenticating a received CSP CSPs against the stored CSPs and the ability to allow one or more session keys to operate as a temporary surrogate(s) for the reference CSP(s) for gaining access to the one or more CSP protected applications 130 after initial authentication with the actual CSP(s). The temporary surrogates) are stored in the volatile memory by the Security Executive application.
The Security Executive application 115 may exist as a single application or a plurality of interrelated applications and library extensions. The received CSP includes of a personal identification number (PIN), biometric sample, password, phase phrase, cryptographic key or any combination thereof as described in FIPS Pub 140-2, “Security Requirements For Cryptographic Modules,” included as a reference to this disclosure.
The Security Executive application 115 controls access to one or more applications 130 by requiring a secure messaging session be established using a secure messaging application SMA 120 and entity authentication using a personal identification number (PIN) PIN 125 or a biometric sample BIO 140. A PKI infrastructure key pair Kpubt 160 and Kprit 165 is provided to perform secure session key exchanges between the host computer system 105 and cryptographic module 75. The public key Kpubt 160 is not required to be retained inside the cryptographic module 75. The public key 160, may be freely distributed using a digital certificate or other mechanism.
Referring to
Referring to
When transferred from the cryptographic module 75, the Security Executive application 115 routes the public key Kpubt′ 160′ over the communications link 101 for use by the Host Security Manager application 110. The public key Kpub′t 160′ will be used to perform secure session key exchanges between the host computer system 105 and cryptographic module 75.
Referring to
Referring to
Referring to
The Host Security Manager Application 110 generates a MAC′ 225′ of the received session identifier SID[x] 215′ and compares it to the received MAC 225. If the generated MAC′ 225′ matches the received MAC 225, the unique session identifier is associated with the counterpart session key KsysSID[x] 220 by the Host Security Manager application 110. The MAC binds the authenticated entity to the particular session key pair and session.
The message authentication code utilizes a keyed message digest algorithm such as DES-based X9.9 or preferably a MAC which utilizes a more robust encryption algorithm and greater bit strength such as AES. When used with ISO 7816 compliant cryptographic devices, the entire command APDU may be encrypted and MAC′ed using the session key Ksys′SID[x] 220′. In an alternate embodiment of the invention, a separate set of symmetric keys are generated for use with the keyed message authentication code algorithms. For simplicity, the second set of MAC session keys is not shown but operates equivalently to the described implementations of the session keys.
Referring to
Upon receipt of the of the encrypted CSP (PIN)KsySID[x] 235, the Security Executive application 115 routes the encrypted CSP 235 to the secure messaging application SMA 120 for decryption using the counterpart session key Ksys′SID[x] 220′. A MAC′ 240′ is generated from the decrypted CSP PIN 230 and compared to the MAC 240 sent from the host computer system 105. If the generated MAC′ 240′ matches the received MAC 240, the decrypted PIN 230 is sent to the PIN application PIN 125 for authentication.
If the received PIN 230 matches the stored reference PIN (not shown), the sending entity is authenticated and the session key Ksys′SID[x] 220′ is established as a surrogate of the PIN 230 for the duration of the session by the Security Executive application 115. The duration of the session may be controlled by events initiated by the authenticated entity or user, such as disconnection of the cryptographic module from its interface with the host, logout from the host or may be time dependent such as exceeding a predetermined session length or extended idle period may terminate the session.
Referring to
In this embodiment of the invention, a critical security parameter (CSP) in the form a biometric sample BIO 245 is routed to the Host Security Manager application 110 for secure transport to the cryptographic module 75 using the communications link 101. The secure transport of the CSP involves generating a keyed message authentication code (MAC) of at least the CSP, encryption of at least the CSP using another session key KsysSID[n] 250 generated as described in the discussion for
The encrypted CSP (BIO)KsysSID[n] 255 and MAC 260 are then sent to the Security Executive application 115 installed inside the cryptographic module 75. Upon receipt of the of the encrypted CSP (BIO)KsySID[n] 255, the Security Executive application 115 routes the encrypted CSP (BIO)KsysSID[n] 255 to the secure messaging application SMA 120 as before for decryption using the counterpart session key Ksys′SID[n] 250′. Another MAC′ 260′ is generated from the decrypted CSP BIO 245 and compared to the MAC 260 sent from the host computer system 105. If the generated MAC′ 260′ matches the received MAC 260, the decrypted BIO 245 is sent to the biometric application BIO 140 for authentication.
If the received biometric sample 245 matches the stored reference biometric template (not shown), the sending entity is authenticated and the session key Ksys′SID[n] 250′ is established as a surrogate of the biometric sample BIO 245 for the duration of the session by the Security Executive application 115. As before, the duration of the session may be controlled by events initiated by the authenticated entity or user, such as disconnection of the cryptographic module from its interface with the host, logout from the host or may be time dependent such as exceeding a predetermined session length or extended idle period may terminate the session.
In
If no available idle session is available 304, a session key pair is generated or derived from a random number each having a bit strength of at least 64 bits 312. In another embodiment of the invention two key pair sets are generated. One key pair set is used for bulk cryptography and the other for use in generating keyed message authentication codes. If not already present on the host computer system, a public key associated with the cryptographic module is retrieved from either the cryptographic module or from a central authority such as a certificate authority 316.
A Host Security Manager application causes one of the generated session keys to be encrypted 320 with the retrieved public key and sent to the cryptographic module. The session key is received by a Security Executive application and caused to be decrypted using an internal private key counterpart to the encrypting public key as part of a secure key exchange 324. The Security Executive application then generates a unique session identifier for the session key pair 328.
The unique session identifier is then associated with the session key pair by the Host Security Manager and Security Executive applications 332. Once the session key pair is associated with the unique session identifier, performance of counterpart cryptographic functions is performed between the host computer system and cryptographic module 344 until the session ends 356, another session needs to be reactivated 304 or a new session needs to be established 312. The details of performing the counterpart cryptographic functions 342 is described in the discussion provided for
Referring to
the Host Security Manager application sends the unique session identifier associated with the specific session key pair required to the Security Executive application 358.
The Security Executive application retrieves its counterpart session key associated with the received unique session identifier 362 and a mutual authentication session is performed 366 as is described in the discussion provided for
Referring to
The Security Executive application causes the encrypted host random number to be decrypted using the retrieved session key 378 and causes a cryptographic module random number to be generated 380.
The host and cryptographic module random numbers are then encrypted with the retrieved cryptographic module session key 382 and the resulting cryptogram sent to Host Security Manager application installed inside the host computer system.
The Host Security Manager application causes the encrypted host and cryptographic module random numbers to be decrypted using the retrieved host session key 386. The Host Security Manager application causes the decrypted host random number to be verified against the original random number 388. If no match is found 390, processing ends 352, 356 as is shown in
The Security Executive application causes the decrypted cryptographic random number to be verified against the original random number 394. If no match is found 396, processing ends 352, 356 as is shown in
Lastly, referring to
The cryptogram is received by the Security Executive application which causes the cryptogram to be decrypted using the cryptographic module session key. The Security Executive application causes the generation of message authentication code using either a session key or MAC key 355. The generated MAC is then verified against the received MAC 357. If the generated MAC does not match the received MAC 359 processing ends 352, 356 as is shown in
If the generated MAC does match the received MAC 359 the information is processed 361. If the received information includes a critical security parameter (CSP) 363, the CSP is used to authenticate an entity 365. If the information does not contain a CSP 363, counterpart cryptographic functions continue 340, 344 as is shown in
The foregoing described embodiments of the invention are provided as illustrations and descriptions. They are not intended to limit the invention to precise form described. In particular, it is contemplated that functional implementation of the invention described herein may be implemented equivalently in hardware, software, firmware, and/or other available functional components or building blocks. No specific limitation is intended to a particular cryptographic module operating environment. Other variations and embodiments are possible in light of above teachings, and it is not intended that this Detailed Description limit the scope of invention, but rather by the Claims following herein.
This application is a continuation of application Ser. No. 10/424,783 filed Apr. 29, 2003, now abandoned the entire disclosure of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
5131038 | Puhl et al. | Jul 1992 | A |
5235642 | Wobber et al. | Aug 1993 | A |
5276735 | Boebert et al. | Jan 1994 | A |
5309501 | Kozik et al. | May 1994 | A |
5347580 | Molva et al. | Sep 1994 | A |
5448045 | Clark | Sep 1995 | A |
5499297 | Boebert | Mar 1996 | A |
5546463 | Caputo et al. | Aug 1996 | A |
5638444 | Chou et al. | Jun 1997 | A |
5742756 | Dillaway et al. | Apr 1998 | A |
5778071 | Caputo et al. | Jul 1998 | A |
5821854 | Dorinski et al. | Oct 1998 | A |
5842118 | Wood, Jr. | Nov 1998 | A |
5878142 | Caputo et al. | Mar 1999 | A |
5937068 | Audebert | Aug 1999 | A |
5953424 | Vogelesang et al. | Sep 1999 | A |
6002427 | Kipust | Dec 1999 | A |
6016476 | Maes et al. | Jan 2000 | A |
6038551 | Barlow et al. | Mar 2000 | A |
6069952 | Saito et al. | May 2000 | A |
6070240 | Xydis | May 2000 | A |
6075860 | Ketcham | Jun 2000 | A |
6084968 | Kennedy et al. | Jul 2000 | A |
6108789 | Dancs et al. | Aug 2000 | A |
6173400 | Perlman et al. | Jan 2001 | B1 |
6178504 | Fieres et al. | Jan 2001 | B1 |
6189099 | Rallis et al. | Feb 2001 | B1 |
6198823 | Mills | Mar 2001 | B1 |
6216230 | Rallis et al. | Apr 2001 | B1 |
6373946 | Johnston | Apr 2002 | B1 |
6378073 | Davis et al. | Apr 2002 | B1 |
6385729 | DiGiorgio et al. | May 2002 | B1 |
6425084 | Rallis et al. | Jul 2002 | B1 |
6459704 | Jandrell | Oct 2002 | B1 |
6481632 | Wentker et al. | Nov 2002 | B2 |
6490679 | Tumblin et al. | Dec 2002 | B1 |
6570610 | Kipust | May 2003 | B1 |
6588660 | Buescher et al. | Jul 2003 | B1 |
6601771 | Charrin | Aug 2003 | B2 |
6609199 | DeTreville | Aug 2003 | B1 |
6763315 | Xydis | Jul 2004 | B2 |
6877094 | DiGiorgio et al. | Apr 2005 | B1 |
6931529 | Kunzinger | Aug 2005 | B2 |
6993658 | Engberg et al. | Jan 2006 | B1 |
7020773 | Otway et al. | Mar 2006 | B1 |
7080782 | Charrin | Jul 2006 | B2 |
7114178 | Dent et al. | Sep 2006 | B2 |
7162631 | Audebert et al. | Jan 2007 | B2 |
7174569 | Trostle | Feb 2007 | B1 |
7225465 | Audebert et al. | May 2007 | B2 |
7269732 | Kilian-Kehr | Sep 2007 | B2 |
7269844 | Elteto et al. | Sep 2007 | B2 |
7302571 | Noble et al. | Nov 2007 | B2 |
7310734 | Boate et al. | Dec 2007 | B2 |
7315943 | Shibata | Jan 2008 | B2 |
7324645 | Juopperi et al. | Jan 2008 | B1 |
7340600 | Corella | Mar 2008 | B1 |
7363486 | Audebert et al. | Apr 2008 | B2 |
7366703 | Gray et al. | Apr 2008 | B2 |
7370350 | Salowey | May 2008 | B1 |
7409552 | Buttyan et al. | Aug 2008 | B2 |
7650647 | Hansmann et al. | Jan 2010 | B1 |
7907935 | Le Saint et al. | Mar 2011 | B2 |
8065718 | Grove et al. | Nov 2011 | B2 |
20010007815 | Philipsson | Jul 2001 | A1 |
20010012360 | Akkar et al. | Aug 2001 | A1 |
20010013830 | Garber et al. | Aug 2001 | A1 |
20010020897 | Takatori et al. | Sep 2001 | A1 |
20010021950 | Hawley et al. | Sep 2001 | A1 |
20010037312 | Gray et al. | Nov 2001 | A1 |
20010045451 | Tan et al. | Nov 2001 | A1 |
20010047343 | Dahan et al. | Nov 2001 | A1 |
20020040936 | Wentker et al. | Apr 2002 | A1 |
20020046342 | Elteto et al. | Apr 2002 | A1 |
20020065625 | Xydis | May 2002 | A1 |
20020066042 | Matsumoto et al. | May 2002 | A1 |
20020069030 | Xydis | Jun 2002 | A1 |
20020091921 | Kunzinger | Jul 2002 | A1 |
20020095587 | Doyle et al. | Jul 2002 | A1 |
20020145051 | Charrin | Oct 2002 | A1 |
20020171546 | Evans et al. | Nov 2002 | A1 |
20030005300 | Noble et al. | Jan 2003 | A1 |
20030041244 | Buttyan et al. | Feb 2003 | A1 |
20030093690 | Kemper | May 2003 | A1 |
20030217148 | Mullen et al. | Nov 2003 | A1 |
20040054717 | Aubry et al. | Mar 2004 | A1 |
20040088567 | Lamotte | May 2004 | A1 |
20050033702 | Holdsworth | Feb 2005 | A1 |
20050033703 | Holdsworth | Feb 2005 | A1 |
20050044385 | Holdsworth | Feb 2005 | A1 |
20050044393 | Holdsworth | Feb 2005 | A1 |
20050055452 | Suzuki et al. | Mar 2005 | A1 |
20050071282 | Lu et al. | Mar 2005 | A1 |
20050100166 | Smetters et al. | May 2005 | A1 |
20050120213 | Winget et al. | Jun 2005 | A1 |
20050138421 | Fedronic et al. | Jun 2005 | A1 |
20070245148 | Buer | Oct 2007 | A1 |
20110252466 | Le Saint et al. | Oct 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20080089521 A1 | Apr 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10424783 | Apr 2003 | US |
Child | 11852261 | US |