The invention relates to a universal slicer having a housing, a rotatably mounted round blade, and a positioning plate which has a bearing surface for an item for slicing. A slicing-width adjustment mechanism is provided for adjusting the positioning plate in relation to the round blade. Universal slicers with a housing and a round blade mounted rotatably therein, up against which an item for slicing bearing against a positioning plate can be brought, are known. The known universal slicers have a plane positioning plate which can be adjusted in relation to the round blade by a slicing-width adjustment mechanism. The position of the positioning plate in relation to the round blade defines the width of the slice of the item for slicing cut off. In general, the slicing-width adjustment mechanism contains a threaded portion which engages in an associated threaded portion on the positioning plate.
It is a disadvantage of the known universal slicers that the positioning plate has relatively great play in relation to the slicing-width adjustment mechanism. Owing to the great play between the positioning plate and the slicing-width adjustment mechanism, the bearing surface of the positioning plate is positioned only roughly. If an item for slicing is placed against the bearing surface of the positioning plate and the item for slicing is moved along the bearing surface toward the round blade, a change in position of the bearing surface of the positioning plate may occur. If a change in position occurs during the slicing operation, slices of varying thickness are produced.
It is accordingly an object of the invention to provide a universal slicer with a positioning plate which overcomes the above-mentioned disadvantages of the prior art devices of this general type, which produces slices of uniform thickness. The uniformity of the slices is in particular also to be guaranteed in universal slicers that are of a simple configuration and/or inexpensive to manufacture.
With the foregoing and other objects in view there is provided, in accordance with the invention, a universal slicer. The slicer contains a housing, a round blade rotatably mounted in the housing, a positioning plate having a bearing surface for an item for slicing and mounted in the housing, a slicing-width adjustment mechanism for adjusting the positioning plate in relation to the round blade, and a tensioner for prestressing the positioning plate free of play against the slicing-width adjustment mechanism.
By virtue of the tensioning device, by way of which the positioning plate can be prestressed free of play against the slicing-width adjustment mechanism, being provided on the universal slicer, it is ensured that the bearing surface for the item for slicing has a position that no longer changes during the slicing operation. In plastic universal slicers in particular, the positioning plate is adjusted by two mutually engaging threaded portions via a slicing-width adjustment mechanism. The slicing-width adjustment mechanism can comprise a rotatable handle. By rotating the handle, the positioning plate is displaced in relation to the round blade. In order that a clear adjustment travel is achieved on the positioning plate with only a small angular rotation of the handle, the threaded portion on the slicing-width adjustment mechanism is provided with a large thread pitch. The large thread pitch makes it necessary for the mutually engaging threaded portions of the slicing-width adjustment mechanism and of the positioning plate to have relatively great play. Only in this way can the positioning plate be adjusted by the rotatable handle with little effort. In universal slicers of this kind, the disadvantage of mounting the positioning plate with great play proves to be especially great.
In one embodiment of the invention, separate elastic spring elements can be provided inside the housing of the universal slicer, which prestress the positioning plate against the slicing-width adjustment mechanism. Preferably, at least two spring elements are provided, the first ends of which act on the rear side of the positioning plate and the second ends of which are supported against an inner side of the housing. The positioning plate is canted in relation to the slicing-width adjustment mechanism by the elastic spring elements. Owing to the canting, play-free prestressed positioning of the positioning plate is brought about.
In a preferred embodiment of the invention, the positioning plate has a bearing surface which, in proximity to its edge facing the round blade, has at least one raised portion protruding in relation to the remaining bearing surface. In this preferred embodiment, the advantage is obtained that separate elastic spring elements can be dispensed with and prestressing of the positioning plate is nevertheless achieved. This is because when the item for slicing is placed against the bearing surface of the positioning plate, a force acting perpendicularly to the bearing surface is generated by the user. At the beginning of the slicing operation, the user pushes the item for slicing in the direction of the round blade. The item for slicing bearing against the bearing surface of the positioning plate is therefore displaced in the direction of the round blade on the bearing surface. Before the item for slicing reaches the periphery of the round blade, it has to surmount the protruding raised portion in the bearing surface. If the item for slicing is moved against the protruding raised portion, a force is introduced into the positioning plate at the protruding raised portion, which generates a torque that is introduced into the positioning plate and cants or prestresses the latter in relation to the slicing-width adjustment mechanism. In this way, the positioning plate is intentionally moved into a canted position before the item for slicing has reached the periphery of the round blade. For a uniform width of the item for slicing, it is not necessary to align the plane of the bearing surface parallel to the plane of the round blade. For a uniform width of the slice, it is necessary only that that edge of the bearing surface of the positioning plate facing the round blade does not change its spatial position throughout the slicing operation. If the bearing surface of the positioning plate is already prestressed by the protruding raised portion according to the invention at the beginning of the slicing operation, the positioning plate can no longer reposition itself during the slicing operation. It is consequently ensured that that edge of the bearing surface of the positioning plate facing the round blade does not change its position during the slicing operation.
In one embodiment of the invention, the protruding raised portion can be formed by a plurality of raised portions that are distributed uniformly over the entire length of that edge of the bearing surface of the positioning plate facing the round blade. The known positioning plates of plane configuration mainly have a surface structure that prevents the item for slicing bearing against the positioning plate over a large area. The intention of this is that the item for slicing will bear against the positioning plate in only a few surface portions, so that the item for slicing adheres only slightly on the bearing surface of the positioning plate and can easily be moved toward the round blade. If a positioning plate with a surface structure is used in a universal slicer according to the invention, the raised portions according to the invention can be configured correspondingly. If the bearing surface of the positioning plate has, for example, a plurality of horizontally running grooves, the protruding raised portion can then have a corresponding number of horizontally running grooves which are distributed along that edge of the bearing surface facing the round blade and are raised in relation to the plane of the remaining bearing surface. This has the advantage that the item for slicing placed on the surface can be moved toward the round blade with little effort in the region of the protruding raised portions as well.
In a preferred embodiment, the protruding raised portion has a plateau portion which adjoins the edge facing the round blade and has a slope portion which is disposed between the plateau portion and the remaining bearing surface. The plateau portion ensures to a particular degree that the positioning plate is completely prestressed before the item for slicing reaches the periphery of the round blade.
In order to achieve sufficient prestressing effect by the protruding raised portion and at the same time to give the bearing surface of the positioning plate an attractive appearance, the plateau portion can be configuration in such a way that it is raised from the plane of the remaining bearing surface by between 0.5 and 2 mm.
That edge of the bearing surface of the positioning plate facing the round blade has a circular-arc-shaped configuration and the plateau portion can accordingly extend with a constant width along the circular-arc-shaped edge. This ensures that items for slicing of very different cross section or very different size can be processed by the universal slicer according to the invention and the prestressing function is achieved both with items for slicing of very small diameter and with items for slicing of very large diameter. In an advantageous embodiment of the protruding raised portion, the plateau portion has a width of between 10 and 20 mm.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in a universal slicer with a positioning plate, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
Referring now to the figures of the drawing in detail and first, particularly, to
This application claims the priority, under 35 U.S.C. ยง 119, of German patent application No. 102 08 493.9, filed Feb. 27, 2002; the entire disclosure of the prior application is herewith incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
102 08 493 | Feb 2002 | DE | national |
This application is a continuation, under 35 U.S.C. § 120, of copending international application No. PCT/EP03/01810, filed Feb. 21, 2003, which designated the United States; this application also claims the priority, under 35 U.S.C. § 119, of German patent application No. 102 08 493.9, filed Feb. 27, 2002; the prior applications are herewith incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
725262 | Lallement | Apr 1903 | A |
1756348 | Folk | Apr 1930 | A |
1860382 | Campbell | May 1932 | A |
2004602 | Folk | Jun 1935 | A |
2136792 | Folk | Nov 1938 | A |
2177526 | Heuer | Oct 1939 | A |
2663341 | Grove | Dec 1953 | A |
2685315 | Winberg | Aug 1954 | A |
2857778 | Rokos | Oct 1958 | A |
3124185 | Karp | Mar 1964 | A |
3442312 | Karp | May 1969 | A |
6119566 | Yan et al. | Sep 2000 | A |
6209438 | Mitchell et al. | Apr 2001 | B1 |
20020069737 | Zhu | Jun 2002 | A1 |
Number | Date | Country |
---|---|---|
826 841 | Jan 1952 | DE |
974 123 | Sep 1960 | DE |
34 46 656 | Jul 1986 | DE |
1 469 558 | Apr 1977 | GB |
Number | Date | Country | |
---|---|---|---|
20050051007 A1 | Mar 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP03/01810 | Feb 2003 | US |
Child | 10928225 | US |