1. Field of the Invention
The present invention relates to computer-assisted navigation for use in surgical procedures and, more specifically, to a tracking apparatus including a support arm which may be detachably coupled to a surgical instrument, the support arm including a tracking array for use in accurately locating the position of the surgical instrument during a surgical procedure.
2. Description of the Related Art
Various methods and guide instruments have been developed to facilitate the proper positioning of a surgical instrument during a surgical procedure. Such instruments and methods include the use of mechanical surgical guides which can be positioned in relation to one or more anatomical structures to function as mechanical guides for cutting, reaming, and drilling instruments, for example. For example, these types of mechanical guides may be used to locate and align a surgical instrument with respect to a bone when preparing the bone for receiving an implant, such as a component of an artificial joint.
Computer-assisted navigation systems are well known, and can also be used to facilitate proper instrument placement during a surgical procedure. Computer-assisted navigation techniques often involve acquiring preoperative images of the relevant anatomical structures of a patient, and generating an anatomical coordinate system database that represents a three-dimensional model of the anatomical structures. The relevant surgical instruments typically have a known and fixed geometry that is also defined in the database preoperatively.
During the surgical procedure, the position of the instrument being used, as well as the location of one or more relevant anatomical landmarks, are registered with the anatomical coordinate system. Generally, registration is the process of relating pre-procedural or intra-procedural scans of the relevant anatomy and/or data corresponding to an instrument, to the surgical or medical position of the corresponding anatomy and/or instrument. A graphical display showing the relative position of the instrument with respect to the relevant anatomical structures may then be computed in real time and displayed for the surgeon to assist in properly positioning and manipulating the surgical instrument with respect to the relevant anatomical structures. In such image-guided procedures, a robotic arm may be used to position and control the instrument, or alternatively, the surgeon may manually position the instrument using the display of the relative position of the instrument with respect to the anatomical structures to facilitate proper positioning of the instrument.
Surgical instruments have typically been adapted for use with computer-assisted navigation systems by clamping a fixed tracking array that is registrable in the navigation system onto the surgical instrument at an arbitrary location and orientation relative to the instrument. Because the location and orientation is arbitrary, the geometric relationship between the tracking array and the surgical instrument must then be calibrated in order to register the combination of the tracking array and the surgical instrument in the navigation system and to properly graphically display the relative position and orientation of the instrument with respect to the anatomical structures. Thus, each time the tracking array is coupled to a surgical instrument, the combination must again be carefully calibrated and registered to ensure that the graphical display viewed by the surgeon on the computer-assisted navigation system accurately reflects the true position of the instrument relative to the anatomical structures.
The variability associated with arbitrarily clamping a tracking array to a surgical instrument, as well as the possibility of a clamped tracking array slipping relative to the surgical instrument, causes uncertainty in the geometry of the combination, thus requiring careful and possibly repeated instrument calibrations. Surgical instruments including a tracking array permanently fixed to the instrument eliminate this uncertainty. However, a surgical instrument so equipped may not be suitable for procedures which require the array to be in a different position relative to the instrument, or may not be suitable for use without the computer-assisted navigation system because of the permanently-affixed tracking array.
After use of a surgical instrument having a tracking array clamped thereto has begun, it may become necessary to reposition the tracking array relative to the surgical instrument. For example, the position of the tracking array may present a barrier to accessing the anatomical structures visually or with other instruments, or the position of the tracking array may need to be adjusted to place the tracking array properly in the “line of sight” of, or otherwise within the applicable field of detection of, the computer-assisted navigation system. Repositioning the tracking array may require re-clamping the tracking array to the instrument, followed by recalibration and re-registration of the assembly with the computer-assisted navigation system.
Also, when multiple surgical instruments are independently positioned relative to the anatomical structures, different tracking arrays each having a different pattern of reference elements may be clamped to the instruments, thus enabling the computer-assisted navigation system to distinguish between the different tracking arrays and in turn the different instruments. Disadvantageously, such a system requires a supply of many different tracking arrays for each surgical procedure.
What is needed is a tracking apparatus for use in a computer-assisted navigation system which is an improvement over the foregoing.
The present invention provides a universal tracking apparatus for a surgical instrument, the tracking apparatus including a support arm and tracking array. The support arm allows position adjustment of the tracking array between a number of predefined orientations relative to the instrument which are recognizeable and registerable in the navigation system. The support arm may be coupled with multiple types of surgical instruments and used to accurately define the position of the instrument in an anatomical model generated by the navigation system. The adjustable coupling between the tracking array and the support arm allows the surgeon to determine which orientation is best suited for the surgical application and also allows the surgeon to adjust the position of the tracking array during a surgical procedure without the need to re-register the tracking apparatus. The tracking array may also include at least one repositionable reference element to allow a single tracking array to be configured for use with a plurality of different instruments, wherein differing geometries defined by the tracking array and corresponding to particular instruments are recognizable and registerable by the navigation system.
In one exemplary embodiment, the tracking apparatus of the present invention includes a support arm having first, second, and third members. The first member includes a mounting interface for releasably coupling the first member to a surgical instrument in a predefined geometric relationship with respect to the support arm. The second member is moveable between a plurality of predefined positions relative to the first member to permit adjustment of the support arm. For example, the second member may be rotationally coupled with the first member about a first axis, wherein the second member is rotatable relative to the first member about the first axis between a plurality of predefined positions. Also, the third member is moveable between a plurality of predefined positions relative to the second member to permit further adjustment of the support arm. For example, the third member may be rotationally coupled with the second member about a second axis which is substantially perpendicular to the first axis for rotational adjustment about the second axis between a plurality of predefined positions.
The third member includes a mounting interface for coupling a tracking array which may be registered in the computer-assisted navigation system. By repositioning the second and third members to selected predefined positions, the position of the tracking array relative to the instrument may be adjusted. Also, at least one of the first, second, and third members may include a reference indicator registerable in the navigation system, such that after the tracking apparatus is adjusted, the orientation of the tracking apparatus may be automatically recognized by the navigation system, eliminating the need for the surgeon to manually re-register the tracking apparatus in the navigation system.
In one exemplary embodiment, the first and/or third members may be coupled to the second member so that they may be rotated to a limited number of predefined positions relative to the second member, thereby simplifying the task of indicating to the computer-assisted navigation system the relative geometry between the instrument and the tracking array. For example, a set of matching protuberances and recesses may be located on adjacent members and the members biased by a spring to engage the protuberances in the recesses. To reposition the first or third member relative to the second member, the members may be pulled slightly apart against the force of a spring to disengage the protuberances from the recesses and then rotated to another predefined position in which the protuberances may again engage matching recesses. The selected predefined position may then be input manually to the computer-assisted navigation system, or a reference element may be coupled to the first member in order for the computer-assisted navigation system to determine the geometry between the tracking array and first member, thereby defining the geometry between the tracking array and instrument.
In another exemplary embodiment, the tracking apparatus includes a tracking array usable for tracking an instrument in a computer-assisted navigation system. The tracking array includes a body member, at least three reference elements coupled with the body member in a nonlinear pattern, and a mounting interface coupled with the body member for coupling the body member with an instrument. At least one of the reference elements is adjustable in its position relative to the body member. For example, the reference elements may be coplanar, with one reference element movable within the plane relative to the remaining reference elements, thus forming a different reference element pattern. The pattern may be distinct from other patterns and/or other tracking arrays used with the computer-assisted navigation system in order to uniquely identify the tracking array, and the instrument to which it is coupled, from the other tracking arrays and instruments.
The reference elements of the exemplary tracking array may be passive elements such as reflective spheres, for example, the positions of which are detectable by a position sensor of the navigation system. Alternatively, the reference elements may be active elements which emit a signal detectable by a position sensor of the navigation system.
The adjustable or repositionable reference element may be repositioned by providing, for example, multiple mounting interfaces to which the reference element may be coupled, or by providing a translating, pivoting, or otherwise movable mounting interface which is coupled to the body of the tracking array and upon which the reference element is mounted. The mechanism for moving the mounting interface relative to the body may include detents or other mechanical devices to provide predetermined positions. Optionally, a template may be used for accurately repositioning the movable reference element relative to the other reference elements. The template may include recesses corresponding to the fixed reference elements and the multiple positions of the movable reference element.
Advantageously, the support arm or tracking array may be repositioned to provide an optimal view of the tracking array by the position sensor, or to provide unobstructed access for the surgeon to the anatomical structures of the patient without having to uncouple the support arm from the instrument or having to re-register the tracking apparatus.
Further, once an instrument is positioned and secured relative to the anatomical structures of the patient, the support arm and tracking array may be detached from a surgical instrument, providing increased access to the instrument and anatomical structure. Additionally, the flexibility of adjusting the pivotable couplings of the support arm and the movable reference element of the tracking array reduces the number of different components that need be available to perform a surgical procedure.
In one form thereof, the present invention provides a tracking apparatus for use with a surgical instrument in a computer-assisted surgical navigation system, including a support arm, including a first member having a surgical instrument mounting interface, and a second member adjustably coupled to the first member; and a tracking array adjustably coupled to the second member, the tracking array including at least one reference element which is registerable in the navigation system.
In another form thereof, the present invention provides a tracking apparatus for use with a surgical instrument in a computer-assisted surgical navigation system, including a support arm including a surgical instrument mounting interface; and a tracking array adjustably coupled to the support arm, the tracking array including a plurality of reference elements which are registerable in the navigation system, at least one of the reference elements adjustably coupled to the tracking array whereby the relative position of the at least one reference element with respect to others of the reference elements may be varied.
In a further form thereof, the present invention provides a tracking array for use with a surgical instrument in a computer-assisted surgical navigation system, including a body member; and a plurality of reference elements coupled to the body member, the reference elements registerable in the navigation system, at least one reference element adjustably coupled to the body member, whereby the relative position of the at least one reference element with respect to others of the reference elements may be varied.
In a further form thereof, the present invention provides a method of using a tracking apparatus in a computer-assisted surgical navigation system, including the steps of providing a surgical instrument; providing a tracking apparatus including a support arm having first and second members adjustably coupled to one another, and a tracking array adjustably coupled to the second member, the tracking array registerable in the navigation system; coupling a surgical instrument to the first member of the support arm; registering the tracking apparatus in the navigation system; adjusting at least one of the position of the second member with respect to the first member, and the position of the tracking array with respect to the second member; and re-registering the tracking apparatus with the navigation system.
In the foregoing method, the re-registering step may occur automatically without manual intervention by an operator. Also, the adjusting step may include at least one of rotationally adjusting the position of the second member with respect to the first member about a first axis; and rotationally adjusting the position of the tracking array with respect to the second member about a second axis different from the first axis. Further, the tracking array may include a plurality of reference elements registerable in the navigation system, the method further including the additional step, prior to the registering step, of adjusting the position of at least one reference element of the tracking array with respect to at least one other reference element of the tracking array. Still further, the coupling step may include threading a threaded member associated with one of the support arm and the instrument into a threaded bore of the other of the support arm and the instrument; and inserting a locating member associated with one of the support arm and the instrument into a locating recess in the other of the support arm and the instrument.
In a still further form thereof, the present invention provides a method of using a tracking apparatus in a computer-assisted surgical navigation system, including the steps of providing a surgical instrument; providing a tracking apparatus including a plurality of reference elements registerable in the navigation system; coupling the surgical instrument to the tracking apparatus; adjusting the position of at least one of the reference elements with respect to others of the reference elements; and registering the tracking apparatus with the navigation system.
In the foregoing method, the adjusting step may further include adjusting the position of at least one of the reference elements with respect to others of the reference elements to define a predetermined reference element geometry corresponding to the surgical instrument. Also, the adjusting step may further include positioning the tracking apparatus with respect to a template; and securing the at least one reference element in a position defined by the template. Further, the coupling step may include threading a threaded member associated with one of the support arm and the instrument into a threaded bore of the other of the support arm and the instrument; and inserting a locating member associated with one of the support arm and the instrument into a locating recess in the other of the support arm and the instrument. Still further, the method may include the additional steps of decoupling the surgical instrument from the tracking apparatus; coupling a different surgical instrument to the tracking apparatus; adjusting the position of at least one of the reference elements with respect to others of the reference elements; and re-registering the tracking apparatus with the navigation system.
In a still further form thereof, the present invention provides a tracking apparatus for use with a surgical instrument in a computer-assisted surgical navigation system, including a support arm including a surgical instrument mounting interface; a tracking array adjustably coupled to the support arm, the tracking array including at least one reference element which is registerable in the navigation system; and the support arm and the tracking array further including cooperating reference indicators registerable in the navigation system for determining a relative orientation between the support arm and the tracking array.
The above mentioned and other features and objects of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. Although the drawings represent embodiments of the present invention, the drawings are not necessarily to scale and certain features may be exaggerated to better illustrate and explain the present invention. The exemplifications set out herein illustrate embodiments of the invention, in several forms, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Referring initially to
Referring to
Navigation system 30 is well known in the art, and generally includes a monitor for displaying an image of one or more body elements, such as portions of the knee 38 of patient 34. The image is generated from an image data set stored within a computer, and the image data set is typically obtained from preoperative computed tomography (CT) or magnetic resonance image (MRI) scan. The image data set includes reference points for at least one body element which have a fixed spatial relation relative to the body element. These reference points may be sensors attached to the body, or sensors on an auxiliary frame which is fixed with respect to the body. The position sensing unit 28 may be a sensor array or digitizer for identifying, during the surgical procedure, the position of the reference points, and the computer modifies the image data set during the procedure according to the positions of each of the reference points. These and other types of surgical navigation systems are well known in the art and will not be further described herein.
Referring to
Referring to
A second mounting interface 62 is located on third member 44 for coupling tracking array 24 to support arm 22. Second mounting interface 62 may be a universal mount for repeatably precisely coupling tracking array 24 to support arm 22 in a predefined geometry. In the exemplary embodiment, second mounting interface 62 is a dovetail projection which is receivable by dovetail receptacle 64 of body 66 of tracking array 24 so that tracking array 24 may be repeatably precisely coupled to support arm 22 in a predefined geometry with respect to support arm 22 and instrument 26.
Tracking array 24 includes body 66 having arms or projections 68 projecting therefrom. The end of each projection 68 distal from body 66 includes a mounting interface, for example, posts 70 (
In order to minimize or eliminate the need for repeated calibration after adjustment of tracking apparatus 20, first member 40 and third member 44 are movably coupled such that they may be repositioned relative to second member 42 in predetermined positions defining the relative location and relative orientation between the components. Specifically, in the exemplary embodiment, the pivotable joints about axes 46 and 48 provided between first member 40 and second member 42, and between third member 44 and second member 42, are biased together by springs 74 and 76, respectively, so that projections 78 of second member 42 engage with recesses 80 of first member 40, and projections 82 of third member 44 engage with recesses 84 of second member 42 to place tracking apparatus 20 in one of a number of predetermined positions.
In one exemplary embodiment, second member 42 is substantially cylindrical, and includes four equilaterally spaced V-shaped projections 78 projecting longitudinally from the circumference of lower portion 86 of second member 42. First member 40 includes substantially cylindrical portion 47 having recesses 80 defined adjacent the circumference of top surface 88 of first member 40. Recesses 80 correspond to the spacing and shape of projections 78. Because projections 78 and recesses 80 include four equilaterally spaced pairs, the exemplary embodiment includes four possible predetermined rotational positions in which first member 40 may be engaged with, and located with respect to, second member 42.
The rotational coupling of first member 40 and second member 42 is supported by cylindrical sleeves 90 and 92 which engage one inside the other from oppositely faced ends of bore 98 of first member 40 and bore 100 of second member 42. Bores 98 and 100 are located coaxially with first axis 46, which extends longitudinally and centrally through first member 40 and second member 42.
Heads 96 and 94 of sleeves 90 and 92 restrict relative translation of members 40 and 42. Bores 98 and 100 may be countersunk to accommodate heads 96 and 94. Spring 74 is located within the hollow central lengths of cylinders 90 and 94 and is welded or otherwise secured at its opposite ends to heads 94 and 96, thus providing a biasing force to compress first member 40 against second member 42, maintaining the engagement of projections 78 within recesses 80.
In order to rotationally reposition second member 42 relative to first member 40, second member 42 may be manually translated away from first member 40 along first axis 46 sufficient to disengage projections 78 from recesses 80. Upon disengagement of projections 78 from recesses 80, second member 42 may be rotated about axis 46 relative to first member 40 until the desired predetermined position between members 42 and 40 is achieved. Upon release of second member 42, the bias of spring 74 re-engages projections 78 within recesses 80.
In exemplary support arm 22, third member 44, which may be substantially rectangular, is coupled to second member 42 in a fashion similar to that of members 40 and 42. However, along with the coupling between first and second members 40 and 42, other forms of coupling and mechanisms for adjustment may also be utilized. Third member 44 includes V-shaped projections 82 on an end thereof opposite second mounting interface 62 to which tracking array 24 is attached. Projections 82 are engagable within complementary-shaped recesses 84 defined within substantially flat wall 101 of second member 42. Specifically, four recesses 84 provide four predefined positions of engagement for second and third members 42 and 44 in 90° increments about second axis 48.
Projections 82 of third member 44 may be biased into engagement with recesses 84 of second member 42 by spring 76. Spring 76 is located within cylinder 102. Cylinder 102 includes threads 104 and 106, located at opposite ends thereof. Thread 104 is fastened in threaded receptacle 108 located in second member 42 and centered on axis 48. Thread 106 of cylinder 102 extends through bore 110 in third member 44, and into opening 112 which extends from face 114 through third member 44. Retaining nut 116 is fastened on threads 106 of cylinder 102 to retain third member 44 to second member 42. However, cylinder 102 is of sufficient length to allow third member 44 to slide along axis 48 against the bias of spring 76 and away from second member 42, disengaging projections 82 from recesses 84 so that third member 44 may be rotated about axis 48 relative to second member 42. Spring 76 may be anchored to cylinder 102 adjacent threads 104 and, at an opposite end of spring 76, to anchor 118 located in opening 112 of third member 44. Spring 76 pulls anchor 118 toward second member 42, thereby biasing projections 82 into engagement within recesses 84, while allowing for disengagement and rotation of members 44 and 42 when desired.
Indicators 312 and 316 located on member 42, and labels 314 and 318 located on first member 40 and third member 44, respectively, may be used to indicate, as described below, the predetermined positions of members 40, 42 and 44 relative to one another. Similarly, reference element 320 mounted on post 319 of first member 40, and recess or indentation 328 on first member 40, which is sized to receive engagement feature 326 of probe 322 (illustrated in
Although support arm 22 includes rotatable couplings, alternative mechanisms for moving each member of support arm 22 relative to the other members of support arm 22 may be utilized. For example, a pivoting or translating member, a worm gear, or other known couplings and mechanisms may be utilized. Additionally, although projection and recess pairs 78, 80 and 82, 84 provide a limited number of predetermined positions between members 40 and 42 and between members 44 and 42, other mechanisms may be utilized that provide fewer or additional predefined positions between the members.
Referring to
Advantageously, reference elements 156a-156d may be arranged in various nonlinear patterns to enable navigation system 30 to distinguish between multiple tracking arrays 150 and in turn, to distinguish between various different instruments to which arrays 150 may be coupled. Reference elements 156a-156d may be active or passive reference elements, as described above, the positions of which are detectable by position sensing unit 28 (
Second exemplary tracking array 150 includes reference elements 156b and 156c which are movable along projections 158b and 158c of body 152, respectively. Specifically, posts 160a-160d and 162a-162d may be used to selectively position reference elements 156b and/or 156c relative to reference elements 156a and 156d, which are mounted on projections 158a and 158d, respectively. For example, reference element 156b is shown mounted on post 160a; however, reference element 156b may also be mounted on any one of posts 160b, 160c and 160d. Likewise, reference element 156c is shown mounted on post 162a; however, reference element 156c may also be mounted on any one of posts 162b, 162c and 162d. Reference elements 156b and 156c may be retained on posts 160a-160d and 162a-162d by conventional hardware, for example, threads, or by a mechanical detent or a press fit, for example.
The number of movable reference elements 156a-156d and mounting posts 160a-160d and 162a-162d may be selected as desired and located on one or more of projections 158a-158d. Tracking array 150 includes four possible mounting positions for each of reference elements 156b and 156c, thereby providing sixteen unique patterns of reference elements 156a-156d that may be distinguished by computer-assisted navigation system 30. The pattern of reference elements 156a-156d identify and aid tracking of each configuration of array 150 and instrument to which the array is coupled, independently of any other configurations of array 150 and other associated instruments. Computer-assisted navigation system 30 may be programmed to automatically recognize the instrument associated with a particular reference element pattern, or may be manually instructed to do so by the surgeon or other operator prior to or during a surgical procedure.
Referring to
Adjustment projection 178b may slidably engage sleeve 180 defined in body 172. Projection 178b is thereby capable of extending outwardly relative to body 172, for example to predefined positions 182a-182d shown in
Referring to
For example, referring to
Referring to
Referring to
Referring to
In step 306, tracking apparatus 20 is assembled by coupling instrument 26 to support arm 22 using mounting interface 50 shown in
In step 308, the surgeon adjusts the rotatable coupling(s) of support arm 22 as desired. For example, first element 40 and third element 44 may be rotatably repositioned relative to second element 42 to provide a desired geometry between support arm 24, 150 or 170 and instrument 26 to allow easier access to particular anatomical structures during the surgical procedure, or to more accurately position the tracking array within the field of detection of position sensing unit 28.
In step 310, indication of the relative position of the rotatable couplings and the type of instrument 26 utilized are indicated to computer-assisted navigation system 30 (
Alternatively, navigation system 30 may be preprogrammed to automatically recognize the predefined positions of support arm 22. First member 40 may include a mounting post 319, or another mounting interface, for coupling reference element 320 to first member 40. Reference element 320 is detectable by position sensing unit 28 so that navigation system 30 may determine the geometric relationship between tracking array 24, 150 or 170 and first member 40 and thereby automatically recognize the predefined position of support arm 22.
Another alternative method of indicating the position of the rotatable couplings of support arm 20 is to utilize reference probe 322, shown in
In step 312, tracking apparatus 20, including support arm 22, tracking array 24, 150 or 170, and instrument 26, is registered in navigation system 30. Computer implemented image guidance systems which provide for the registration of an actual anatomical structure with a three dimensional model representing that structure, together with the registration or localization of another object such as a surgical instrument within the image coordinate system to facilitate the display of the relative positions of the object and the actual anatomical structure are well known in the art, and thus will not be described in detail herein. Registration enables navigation system 30 to track and to assist in the positioning of instrument 26 relevant to anatomical structures of patient 34.
In step 320, the position of instrument 26 with respect to the anatomical structures of patient 34 may be adjusted as required. Additionally, support arm 22 may be adjusted as required to reposition tracking array 24, 150 or 170 relative to instrument 26. For example, the surgeon may require tracking array 24, 150 or 170 to be moved to allow for unobstructed access to an anatomical structure of patient 34. Alternatively, tracking array, 24, 150 or 170 may require repositioning relative to instrument 26 in order to provide an improved orientation for detection by position sensing unit 28.
Further, after instrument 26 is positioned with respect to the anatomical structures of patient 34, instrument 26 may be secured with other instrumentation (not shown) to a patient anatomical structure, and tracking array 24, 150 and 170 and support arm 22 may then be uncoupled from instrument 26. Method 300 is complete in step 322.
Method 400, illustrated in
In step 404, a tracking device, for example tracking array 150 or 170 (
In step 406, the operator couples instrument 26 with tracking array 150 or 170. Tracking array 150 or 170 may be coupled directly to instrument 26, or may include a support arm, such as support arm 22 described above. In step 408, reference element 156b or 176b is repositioned with respect to tracking array body 152 or 172, as discussed above.
In step 410, navigation system 30 receives an indication of the type of instrument 26 coupled to tracking array 150 or 170. This indication may be in the form of an operator manually identifying the instrument type to navigation system 30, or by navigation system 30 being preprogrammed to associate a particular instrument type with a particular reference element pattern, as determined by the position of movable reference element 156b and 176b relevant to the remaining reference elements.
In step 412, the assembly consisting of at least tracking array 150 or 170 and instrument 26 may be registered with a navigation system 30. Registration enables navigation system 30 to track and to determine and guide the position of instrument 26 via the tracking of tracking array of 150 or 170 by reference device 28.
In step 414 the surgeon adjusts the position of instrument 26 as desired relative to the anatomical structures of patient 34. Method 400 is complete in step 416.
While this invention has been described as having exemplary embodiments, the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.
This application is related to and claims the benefit under Title 35, U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 60/550,460, entitled UNIVERSAL SUPPORT ARM AND TRACKING ARRAY, filed on Mar. 5, 2004.
Number | Date | Country | |
---|---|---|---|
60550460 | Mar 2004 | US |