1. Field of the Invention
This invention relates to vehicle based universal control systems and methods for remotely controllable garage door opening systems.
2. Background Art
Garage door openers, security gates and the like may be operated from a remote control. As an example only, the remote control system may be a remotely controlled garage door opener (GDO) having a receiver associated with the GDO, and at least one remote transmitter, which could be placed or carried in an automotive vehicle for use within the vehicle to operate the GDO system.
Customer wishes and safety considerations suggest the desirability for integrating such a remote control into the interior of the automotive vehicle. In that regard, it is known to provide a programmable or “trainable” garage door transceiver in a vehicle, where the transceiver receives and learns characteristics of a GDO activation signal from an existing GDO remote transmitter and then, when prompted by a user, generates and transmits an activation signal having the same characteristics in order to operate the GDO system. One problem with such devices is the need to put a complex electronic device within an automobile, where space is at a premium. Another problem with such devices is the difficulty experienced by users programming such devices to work with their GDO systems.
Another proposed solution is a device that must be wired into the existing GDO circuit in order to operate. However, installation of such a device may be beyond the capabilities of some users. Yet another proposed solution is to place an existing GDO remote transmitter into a wall-mountable device that includes a receiver. A transmitter in the vehicle configured to operate with the device transmits a signal for receipt by the device receiver. The device mechanically operates the existing GDO remote transmitter based on the received signals from the vehicle transmitter. A difficulty associated with this device is designing a housing or receptacle capable of actuating the buttons employed in the wide range of available GDO remote transmitters.
What is needed is a universal vehicle-based remote control system and method that does not require complex electronics within the vehicle, does not require wiring into the GDO system, and is more easily set up by a vehicle owner. The present invention provides a vehicle-based control system and method that is compatible with a wide variety of GDO systems, and is capable of interaction with a user to determine operating characteristics of the user's GDO system.
Accordingly, the present invention provides a vehicle-based control system and method for use with a barrier operating system.
According to one embodiment of the present invention, a vehicle-based control system is provided for use with a barrier operating system. The barrier operating system comprises a motor for opening and closing a barrier, a receiver in communication with the motor, and a remote transmitter for transmitting an activation signal, the activation signal comprising a radio frequency carrier signal modulated with a codeword, the activation signal for receipt by the receiver for use in activating the motor to open and close the barrier. The control system comprises a transceiver to be mounted in a vehicle and configured to receive a plurality of radio frequency carrier signals, and transmit an activation signal for receipt by the barrier operating system receiver. The control system further comprises a controller to be mounted in a vehicle in communication with the transceiver and a user input device. The controller is configured to store the plurality of received radio frequency carrier signals, and receive user input identifying an activation scheme having at least a variable codeword format associated therewith. In response to user input, the controller is further configured to generate a variable codeword based on the identified activation scheme, select one of the plurality of stored carrier signals, and control the transceiver to transmit an activation signal comprising the selected carrier signal modulated with the generated variable codeword.
According to another embodiment of the present invention, a vehicle-based control method is provided for use with a barrier operating system. The barrier operating system comprises a motor for opening and closing a barrier, a receiver in communication with the motor, and a remote transmitter for transmitting an activation signal, the activation signal comprising a radio frequency carrier signal modulated with a codeword, the activation signal for receipt by the receiver for use in activating the motor to open and close the barrier. The control method comprises identifying an activation scheme having at least a variable codeword format associated therewith, generating a variable codeword based on the identified activation scheme, and selecting one of a plurality of stored carrier signals. The selected carrier signal and the generated variable codeword are for use in transmitting an activation signal.
The following detailed description and accompanying drawings set forth preferred embodiments of the present invention.
Referring now to the FIGURES, the preferred embodiments of the control system and method of the present invention will be described. As previously discussed, garage door openers, security gates and the like may be operated from a remote control. The remote control system may be a remotely controlled garage door opener (GDO) having a receiver associated with the GDO, and at least one remote transmitter, which could be placed or carried in an automotive vehicle for use within the vehicle to operate the GDO system.
As also previously noted, it is desirable to integrate such a remote control into the interior of the automotive vehicle. In that regard, it is known to provide a programmable or “trainable” garage door transceiver in a vehicle, where the transceiver receives and learns characteristics of a GDO activation signal from an existing GDO remote transmitter and then, when prompted by a user, generates and transmits an activation signal having the same characteristics in order to operate the GDO. One problem with such devices is the need to put a complex electronic device within an automobile, where space is at a premium. Another problem with such devices is the difficulty experienced by users programming such devices to work with their GDO systems.
It is also known to provide a device that is wired into the existing GDO circuit in order to operate the GDO system. However, installation of such a device may be beyond the capabilities of some users. Yet another proposed solution is to place an existing GDO remote transmitter into a wall-mountable device that includes a receiver. A transmitter in the vehicle configured to operate with the device transmits a signal for receipt by the device receiver. The device mechanically operates the existing GDO remote transmitter based on the received signals from the vehicle transmitter. A difficulty associated with this device is designing a housing or receptacle capable of actuating the buttons employed in the wide range of available GDO remote transmitters.
What is needed is a universal vehicle-based remote control system and method that does not require complex electronics within the vehicle, does not require wiring into the GDO system, and is more easily set up by a vehicle owner. The present invention provides a vehicle-based control system and method that is compatible with a wide variety of GDO systems, and is capable of interaction with a user to determine operating characteristics of the user's GDO system.
Referring now to
Controller (14) is also provided in communication with user input and output devices (22, 24), through which controller (14) provides and receives information to and from a user (not shown). As will be described in greater detail below, it should be noted that user input and output devices (22, 24) may be embodied in a single user interface device. Controller (14) preferably comprises a processor (26) and a Digital Radio Frequency Memory (DRFM) (28) for use in practicing various aspects of the present invention, as will also be described in greater detail below.
As previously noted, the present invention is for use with a remotely controllable barrier operating system, such as a security gate system or a GDO system (62). In that regard, such systems typically include a barrier, such as a security gate or garage door (64), a motor (66) connected to the gate or garage door (64) through a drive chain, drive belt, drive shaft or screw gear (68), a radio frequency receiver (70) in communication with the motor (66), and at least one remote transmitter (72). The remote transmitter (72) is used by an operator (not shown) to transmit a radio frequency activation signal (18) for receipt by the GDO system receiver (70). Upon receipt of such an activation signal (18), the receiver (70) activates the motor (66) in order to open or close the barrier (64).
More specifically, in remotely controlled GDO systems (62), a remote control transmitter (72) transmits a radio frequency activation signal (18) in response to the user (not shown) pressing an activation button (77a, 77b) on the transmitter (72). In a typical system, one button (77a) on the remote transmitter (72) may be provided for opening and closing the garage door (64), and another button (77b) may be provided for turning on or off a light (78).
As is well known in the art, the activation signal (18) is generated by modulating a radio frequency carrier signal with a data word. The simplest form of modulation is on-off keying, although various other types of modulation are known, including polar, bipolar, duobinary, Manchester, and the like. With on-off modulation, a binary “one” in the data word results in transmission of the radio frequency carrier signal, and a binary “zero” results in no transmission of the carrier signal.
The data word used to modulate the carrier signal is typically made up of a number of different parts. First, the data word includes one or more bits to indicate a function (i.e., which button on the transmitter was pushed, such as the button for opening/closing the garage door or the button for activating/deactivating a light). Second, the data word includes a transmitter identification (ID), which allows the GDO system receiver (70) to determine if a received activation signal (18) was transmitted by a recognized remote transmitter (72), and which remote transmitter (72) was activated. Third, the data word includes a codeword to prevent unauthorized or accidental activation of the garage door opener.
As is also well known in the art, in many older GDO systems, the same codeword is used each time the remote transmitter sends an activation signal, such that the codeword is referred to as “fixed.” In such systems, both the remote transmitter (72) and the GDO system receiver (70) are typically programmed by a user with the same fixed codeword, such as by similarly setting switches in each. Such switches, which may be Dual Inline Programmable (DIP) switches, can be changed or re-set by the user if desired. Since both the remote transmitter (72) and the GDO receiver (70) are programmed with the same fixed codeword, the GDO system acts to open or close the garage door (64) (or activate or deactivate a light (78)) each time an activation signal (18) from the remote transmitter (72) is received by the GDO system receiver (70).
For increased security, newer GDO systems utilize a different codeword each time the activation signal is sent by a remote transmitter, such that the codeword is referred to as “rolling” or “variable.”
As seen therein, and with continuing reference to
The activation signal (18) sent by the remote transmitter (72) includes a carrier signal modulated with the variable codeword (90) and the transmitter ID (88). That activation signal (18) is received by the GDO system receiver (70) which, as noted above, has been placed in a “learn” mode, such as by activating a switch (not shown) on the receiver (70). Using the stored crypt key algorithm (82), the GDO system generates the crypt key (86) for that remote transmitter (72) based on the stored manufacturer's key (80) and the transmitter ID (88) conveyed by the received activation signal (18). Alternatively, using the stored crypt key algorithm (82), the GDO system (62) may generate the crypt key (86) for that remote transmitter (72) based on the stored manufacturer's key (80) and the random number or “seed” (89). In that regard, to do so, remote transmitter (72) must transmit random number or “seed” (89) to GDO receiver (70) during the “learn” mode of the GDO system (62). Remote transmitter (72) may be activated to transmit random number or “seed” (89) in any fashion known in the art, such as by a particular combination or combinations of button pushes on remote transmitter (72) by an operator. Using the stored encryption algorithm (84b), the GDO system then generates and stores a counter value (94) based on the crypt key (86) for that remote transmitter (72) and the variable codeword (90) conveyed by the received activation signal (18). In such a fashion, the GDO system receiver (70) has been “trained” to the remote transmitter (72).
Having been successfully “trained,” the GDO system (62) exits the “learn” mode, and enters an “operating” mode. Thereafter, actuation of the remote transmitter (72) again sends an activation signal (18) that includes a carrier signal modulated with a variable codeword (90) and the transmitter ID (88). Upon receipt of the activation signal (18), using the stored encryption algorithm (84b), the GDO system generates a counter value (94) based on the variable codeword (90) conveyed by the received activation signal (18) and the stored crypt key (86) for that remote transmitter (72), which the GDO system retrieves based on the transmitter ID (88) also conveyed by the received activation signal (18). In such a fashion, if the variable codeword (90) conveyed by the received activation signal (18) “decrypts” (84b) to a counter value (94) that matches or is within a predefined range of the counter value maintained by the GDO system, the GDO system activates the motor (66) to open or close the garage door (64) (or activate or deactivate a light (78)).
In that regard, it should be noted that, as is well known in the art, encryption/decryption algorithms (84a, 84b) may be the same. It should also be noted that if the transmitter ID (88) conveyed by a received activation signal (18) does not match a transmitter ID (88) stored by the GDO system, then that activation signal (18) is ignored by GDO system (62), which takes no action. It should still further be noted that where GDO system (62) uses crypt key algorithm (82) to generate crypt key (86) based on manufacturer's key (80) and random number or “seed” (89), that random number or “seed” (89) is transmitted by remote transmitter (72) to GDO receiver (70) only during the “learn” mode for GDO system (62). That is, random number or “seed” (89) is not thereafter transmitted by remote transmitter (72) as part of an activation signal (18) for receipt by GDO receiver (70) during the normal “operating” mode of GDO system (62).
In a typical GDO system (62), the same radio frequency carrier signal is modulated by the codeword each time the activation signal is transmitted, although different carrier frequencies may be used in different GDO systems and by different system manufacturers. Significantly, however, as is well known in the art, all carrier signals used in the various manufacturers'GDO systems are required by regulation to fall within a pre-defined band of the radio frequency spectrum. As is also well known in the art, in addition to either a “fixed” or “variable” codeword format and different carrier frequencies, activation signals for different remotely controlled GDO systems can have different data formats (number and location of bits), different baseband modulation techniques (how ones and zeros are represented in a digital signal, e.g., on-off, polar, bipolar, duobinary, Manchester, etc.), and different broadband modulation techniques (how the carrier is modulated with the digital signal, e.g., on-off keying, frequency modulation, etc.) The various possible combinations of these characteristics, including carrier frequencies, codeword formats, data formats, baseband modulation techniques, broadband modulation techniques, etc., may be referred to as activation schemes. In that regard, such characteristics of activation schemes, as well as variable codeword techniques, are discussed in U.S. patent application Ser. No. 10/630,013, entitled “Radio Relay Appliance Activation,” filed on the same date as the present application, published as U.S. patent application Publication Ser. No. 2005/0024253, which is commonly owned by the assignee of the present application, and which is hereby incorporated by reference in its entirety.
Referring next to
Controller (14) looks for baseband data including a codeword in the received activation signal (18) in order to determine (34) whether or not the codeword is fixed. In that regard, a remote transmitter (72) is typically placed in close proximity to transceiver (12) while transmitting an activation signal (18). As a result, activation signal (18) will be considerably stronger than any background radio frequency noise or interfering signals. Since the received activation signal (18) will be strong, controller (14) may use a well known envelope detector to retrieve the codeword from received activation signal (18).
If the codeword is fixed, controller (14) stores (36) that fixed codeword, and samples (38) the radio frequency carrier of the received activation signal (18). As previously discussed, controller (14) preferably uses a DRFM (28) for sampling (38) the radio frequency carrier of the received activation signal (18). The stored fixed codeword and the sampled radio frequency carrier signal are subsequently used by the controller (14) to control transceiver (12) to transmit (40) an activation signal (20) for actuating the GDO system (62), the activation signal (20) comprising the sampled carrier signal modulated by the fixed codeword. It should be noted that the activation signal (20) is transmitted (40) in response to input from a user via user input device (22). In that regard, DRFM (28), including its use in sampling, generating and/or transmitting a radio frequency carrier, is described in U.S. patent application Ser. No. 10/306,077, entitled “Programmable Transmitter And Receiver Including Digital Radio Frequency Memory,” filed Nov. 27, 2002, published as U.S. Patent Application Publication No. 2004/0100391, which is commonly owned by the assignee of the present application, and which is hereby incorporated by reference in its entirety, as well as in U.S. patent application Ser. No. 10/630,103, entitled “Radio Relay Appliance Activation,” previously incorporated by reference in its entirety.
Alternatively, if controller (14) determines (34) that the codeword is not fixed (e.g., if controller (14) determines (34) that the codeword is variable), controller (14) preferably receives input from a user (not shown) via user input device (22) in order to identify (44) (see
It should be noted that the simplified flowcharts depicted in
With reference to
As previously described, if the activation signal (18) includes a fixed codeword, that codeword is stored (36) and the carrier signal of the activation signal (18) is sampled (38). Thereafter, in an operating mode, when a user actuates the system (10), such as by pushing a button on user input device (22), the system (10), using transceiver (12) and antenna (16), transmits (40) an activation signal (20) for receipt by the GDO system receiver (70) to activate the GDO system, the activation signal (20) comprising the sampled carrier signal modulated by the stored fixed codeword.
Alternatively, if, as also previously described, activation signal (18) from the GDO system remote transmitter (72) does not include a fixed codeword (e.g., activation signal (18) includes a variable codeword), the system (10) provides an indication to the user (not shown) via user output device (24) that additional action by and/or information from the user is required. In that event, still in an initialization mode, the user then inputs information, such as by pressing one or more buttons or combinations of buttons on user input device (22), that identifies (44) to controller (14) an activation scheme comprising at least a variable codeword format.
In that regard, any number of techniques may be utilized to provide a user with the information necessary to identify the user's GDO system (62), and to thereby identify (44) an activation scheme to controller (14). For example, via user output device (24), controller (14) could prompt the user to call a toll-free telephone number, after which an operator could assist the user in identifying the user's GDO system (62). Alternatively, GDO system manufacturers could voluntarily place identifiers on the exterior of the GDO system remote transmitters (72), which could be a numeric code. Still further, automobile manufacturers could provide a list of GDO system manufacturers and other information, such as system photographs and/or descriptions, in the vehicle owner's manual. The user could also be prompted by controller (14), via user output device (24), to visit a particular website in order to obtain information identifying the user's GDO system (62). Utilizing user output device (24), controller (14) could also display information pertaining to particular GDO systems (62) sequentially, such as photographs and/or descriptions, and prompt the user to provide feedback to the controller via user input device (22) until a system is identified corresponding to the user's system.
In any event, via user input device (22), the user would then provide GDO system (62) information to controller (14), which would then identify (44) an activation scheme having at least a variable codeword format based on the GDO system (62) information. In that regard,
More particularly, referring now to
Each of buttons (54a, 54b, 54c) is provided with a backlight (not shown), such as a Light Emitting Diode (LED), so that buttons (54a, 54b, 54c) are easily seen, especially in low ambient light conditions, and so that buttons (54a, 54b, 54c) may be used to provide feedback or output information to a user. In that regard, a number of different three digit codes may be used to represent the various manufacturers' GDO systems (62). As shown in
More particularly, backlit buttons (54a, 54b, 54c) may be used in any fashion, such as by rapidly flashing all three lights, to indicate to the user that the activation signal (18) received from the GDO system remote transmitter (72) does not include a fixed code, that additional information is required from the user, and that the system (10) is ready for entry of such information. In that event, the user first obtains the three-digit code representing the user's GDO system (62), such as in any fashion described above in the preceding paragraphs (toll-free telephone number, transmitter identifier, vehicle owner's manual list, website, prompting, etc.), or in any other fashion.
Thereafter, or if a user knows the user's GDO system (62) is a variable codeword system, the three digit code may be input using the three backlit buttons (54a, 54b, 54c). For example, to enter a three digit code of “304,” button 54a may light independently, thereby indicating system (10) readiness to receive the first digit of the three digit code. The user could then depress button 54a three times in order to enter the number “3,” and wait. A timeout timer (not shown) for buttons (54a, 54b, 54c) could then deactivate the light for button (54a) and activate the light for button (54b) after a predetermined time, thereby indicating system (10) readiness to receive the second digit of the three digit code. In order to enter the number “0,” the user could then simply wait for the timer to timeout, deactivating the light for button (54b) and activating the light for button (54c), thereby indicating system (10) readiness to receive the third digit of the three digit code. The user could then depress button (54c) four times in order to enter the number “4,” and wait. After timeout of the timer, the light for button (54c) could be deactivated, and the lights for all buttons (54a, 54b, 54c) could again be flashed rapidly to indicate successful entry into system (10) of the three digit code.
Of course, a three digit code and three buttons (54a, 54b, 54c) are described herein as an example only. In that regard, it should be noted that the number of buttons (54a, 54b, 54c) provided need not match the number of digits used in any code to identify manufacturers' GDO systems. It should also be noted that any number of digits could be used for a code to identify the various GDO systems, and any number of buttons (54a, 54b, 54c), or any other types of input/output devices, could be used to allow a user to provide input to and/or receive output from the system (10) in any fashion and according to any techniques known in the art.
As is readily apparent from the foregoing description, input can be received from a user by system (10), and output can be provided to a user by system (10), using a single input/output device (50). However, as shown in
In such a fashion, the user identifies the make and/or model of the user's GDO system (62), thereby narrowing the number of possible activation schemes for the GDO system (62). For example, a particular GDO system manufacturer may construct systems that operate on one of only a few frequencies and with only rolling codes generated with a particular encryption algorithm.
Having input such information via user input/output device (50) to controller (14), controller (14) identifies (44) an activation scheme having a set of the various characteristics previously described, including at least a variable codeword format, known to be used for such a GDO system (62). Using particular stored encryption and/or crypt key algorithms (82, 84) associated with the variable codeword format, controller (14) then generates whatever encryption information may be required and, via user input/output device (50), prompts the user to place the GDO system receiver in a “learn” mode. Controller (14) then controls transceiver (12) to transmit an activation signal (20), thereby “training” the GDO system receiver (70) to the system (10), including transceiver (12), as previously described in detail above.
In that regard, where the particular variable codeword format includes using a crypt key algorithm (82) to generate a crypt key (86) based on a manufacturer's key (80) and a random number or “seed” (89), controller (14) also controls transceiver (12) to transmit that random number or “seed” (89) for receipt by GDO system receiver (70) during the “learn” mode for GDO system (62), as described in detail above. This is preferably accomplished by controller (14) electrically duplicating the input which would result from the mechanical button pushes necessary for transceiver (12) to transmit the random number or “seed” (89), such that the transceiver (12) transmits that random number or “seed” (89) automatically. The automatic transmission of random number or “seed” (89) by transceiver (12) is preferably accomplished by interleaving data packets identified as “seeds” in a transmission to GDO system receiver (70). Alternatively, a user may activate buttons (54a, 54b, 54c) on transceiver (12) as required in order to transmit the random number or “seed” (89). Controller (14), via user input/output device (50), may also query the user to provide feedback as to whether or not an activation signal (20) transmitted by the system (10) successfully operated the user's GDO system (62).
It should also be noted that each of buttons (54a, 54b, 54c) may be associated with a different user GDO system. That is, where a user has two or more GDO systems or security gates, as part of the initialization mode, the user may indicate which of buttons (54a, 54b, 54c) is to be associated with a particular GDO system (62) as a result of such initialization. Thereafter, in an operating mode, activation of that button (54a, 54b, 54c) by a user will cause controller (14) to control transceiver (12) to transmit the particular activation signal (20) for that particular GDO system (62), as described in detail above, the activation signal (20) comprising a stored carrier signal modulated by a generated variable codeword.
As previously described, controller (14) preferably comprises a Digital Radio Frequency Memory (DRFM) (28). DRFM (28) may be used in the system (10) and method (30) of the present invention to sample the carrier signal of a received activation signal (18), and/or for storing carrier signals for use in transmitting activation signals (20). In that regard, DRFM (28) may be pre-programmed, such as during system (10) set-up at a factory, with appropriately sampled versions of various known carrier signals. That is, DRFM (28) may be used to store a plurality of radio frequency carrier signals for use by controller (14) and transceiver (12) in generating and transmitting variable codeword activation signals (20). As also previously described, controller (14) also preferably comprises a processor (26). In that regard, processor (26) may be used to perform the various functions of controller (14) described above, and preferably includes a memory (not shown) for storing information concerning the various characteristics of activation signals for the variety of known GDO systems, including, but not limited to, carrier frequency information, data formats, manufacturers' keys, encryption and crypt key algorithms, and baseband and broadband modulation information.
As is readily apparent from the foregoing description, the present invention provides a universal vehicle-based remote control system and method that does not require complex electronics within the vehicle, does not require wiring into the GDO system, and is more easily set up by a vehicle owner. The present invention provides a vehicle-based control system and method that is compatible with a wide variety of GDO systems, and is capable of interaction with a user to determine operating characteristics of the user's GDO system.
While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
1522241 | Hennessey | Jan 1925 | A |
3098212 | Creamer, Jr. | Jul 1963 | A |
3300867 | Sampson | Jan 1967 | A |
3337992 | Tolson | Aug 1967 | A |
3456387 | Tolson | Jul 1969 | A |
3680951 | Jordan et al. | Aug 1972 | A |
4074200 | Buchta | Feb 1978 | A |
4167833 | Farina et al. | Sep 1979 | A |
4178549 | Ledenbach et al. | Dec 1979 | A |
4219812 | Rittenbach | Aug 1980 | A |
4241870 | Marcus | Dec 1980 | A |
4247850 | Marcus | Jan 1981 | A |
4425717 | Marcus | Jan 1984 | A |
4447808 | Marcus | May 1984 | A |
4453161 | Lemelson | Jun 1984 | A |
4482947 | Zato et al. | Nov 1984 | A |
4529980 | Liotine et al. | Jul 1985 | A |
4535333 | Twardowski | Aug 1985 | A |
4581827 | Higashi | Apr 1986 | A |
4595228 | Chu | Jun 1986 | A |
4598287 | Osakabe et al. | Jul 1986 | A |
4623887 | Welles, II | Nov 1986 | A |
4631708 | Wood et al. | Dec 1986 | A |
4635033 | Inukai et al. | Jan 1987 | A |
4638433 | Schindler | Jan 1987 | A |
4665397 | Pinnow | May 1987 | A |
4676601 | Itoh et al. | Jun 1987 | A |
4700327 | Hilton | Oct 1987 | A |
4703359 | Rumbolt et al. | Oct 1987 | A |
4706299 | Jorgensen | Nov 1987 | A |
4707788 | Tashiro et al. | Nov 1987 | A |
RE32576 | Pastore | Jan 1988 | E |
4727302 | Mizuta et al. | Feb 1988 | A |
4743905 | Wiegand | May 1988 | A |
4747159 | Kato | May 1988 | A |
4750118 | Heitschel et al. | Jun 1988 | A |
4754255 | Sanders et al. | Jun 1988 | A |
4771283 | Imoto | Sep 1988 | A |
4793690 | Gahan et al. | Dec 1988 | A |
4799189 | Grover | Jan 1989 | A |
4806930 | Wojciak, Jr. | Feb 1989 | A |
4825200 | Evans et al. | Apr 1989 | A |
4866434 | Keenan | Sep 1989 | A |
4881148 | Lambropoulos et al. | Nov 1989 | A |
4882565 | Gallmeyer | Nov 1989 | A |
4886960 | Molyneux et al. | Dec 1989 | A |
4890108 | Drori et al. | Dec 1989 | A |
4896030 | Miyaji | Jan 1990 | A |
4905279 | Nishio | Feb 1990 | A |
4912463 | Li | Mar 1990 | A |
4917477 | Bechtel et al. | Apr 1990 | A |
4953305 | Van Lente et al. | Sep 1990 | A |
4959810 | Darbee et al. | Sep 1990 | A |
4978944 | Andros et al. | Dec 1990 | A |
4988992 | Heitschel et al. | Jan 1991 | A |
5016996 | Ueno | May 1991 | A |
5064274 | Alten | Nov 1991 | A |
5085062 | Capdevila | Feb 1992 | A |
5103221 | Memmola | Apr 1992 | A |
5109222 | Welty | Apr 1992 | A |
5113821 | Fukui et al. | May 1992 | A |
5122647 | Lynam et al. | Jun 1992 | A |
5123008 | Beesley | Jun 1992 | A |
5126686 | Tam | Jun 1992 | A |
5146215 | Drori | Sep 1992 | A |
5154617 | Suman et al. | Oct 1992 | A |
5181423 | Philipps et al. | Jan 1993 | A |
5191610 | Hill et al. | Mar 1993 | A |
5193210 | Nicholas et al. | Mar 1993 | A |
5201067 | Grube et al. | Apr 1993 | A |
5225847 | Roberts et al. | Jul 1993 | A |
5243322 | Thompson et al. | Sep 1993 | A |
5252960 | Duhame | Oct 1993 | A |
5252977 | Lueker et al. | Oct 1993 | A |
5266945 | Peek et al. | Nov 1993 | A |
5278547 | Suman et al. | Jan 1994 | A |
5369706 | Latka | Nov 1994 | A |
5379453 | Tigwell | Jan 1995 | A |
5402105 | Doyle et al. | Mar 1995 | A |
5408698 | Serizawa et al. | Apr 1995 | A |
5412379 | Waraksa et al. | May 1995 | A |
5420925 | Michaels | May 1995 | A |
5442340 | Dykema | Aug 1995 | A |
5455716 | Suman et al. | Oct 1995 | A |
5463374 | Mendez et al. | Oct 1995 | A |
5471668 | Soenen et al. | Nov 1995 | A |
5473317 | Inomata et al. | Dec 1995 | A |
5475366 | Van Lente et al. | Dec 1995 | A |
5479155 | Zeinstra et al. | Dec 1995 | A |
5481256 | Darbee et al. | Jan 1996 | A |
5510791 | Viertel et al. | Apr 1996 | A |
5517187 | Bruwer et al. | May 1996 | A |
5528230 | Kim | Jun 1996 | A |
5554977 | Jablonski, Jr. | Sep 1996 | A |
RE35364 | Heitschel et al. | Oct 1996 | E |
5564101 | Eisfeld et al. | Oct 1996 | A |
5583485 | Van Lente et al. | Dec 1996 | A |
5594429 | Nakahara | Jan 1997 | A |
5596316 | Honeck | Jan 1997 | A |
5598475 | Soenen et al. | Jan 1997 | A |
5613732 | Demick | Mar 1997 | A |
5614885 | Van Lente et al. | Mar 1997 | A |
5614891 | Zeinstra et al. | Mar 1997 | A |
5614906 | Hayes et al. | Mar 1997 | A |
5619190 | Duckworth et al. | Apr 1997 | A |
5627529 | Duckworth et al. | May 1997 | A |
5645308 | Fink | Jul 1997 | A |
5646701 | Duckworth et al. | Jul 1997 | A |
5661455 | Van Lente et al. | Aug 1997 | A |
5661651 | Geschke et al. | Aug 1997 | A |
5661804 | Dykema et al. | Aug 1997 | A |
5680131 | Utz | Oct 1997 | A |
5680134 | Tsui | Oct 1997 | A |
5686903 | Duckworth et al. | Nov 1997 | A |
5686904 | Bruwer | Nov 1997 | A |
5691848 | Van Lente et al. | Nov 1997 | A |
5699044 | Van Lente et al. | Dec 1997 | A |
5699054 | Duckworth | Dec 1997 | A |
5699055 | Dykema et al. | Dec 1997 | A |
5708415 | Van Lente et al. | Jan 1998 | A |
5715020 | Kuroiwa et al. | Feb 1998 | A |
5726645 | Kamon et al. | Mar 1998 | A |
5731756 | Roddy | Mar 1998 | A |
5751224 | Fitzgibbon | May 1998 | A |
5758300 | Abe | May 1998 | A |
5774064 | Lambropoulos | Jun 1998 | A |
5790948 | Eisfeld et al. | Aug 1998 | A |
5793300 | Suman et al. | Aug 1998 | A |
5810420 | Welling | Sep 1998 | A |
5812097 | Maldonado | Sep 1998 | A |
5831548 | Fitzgibbon | Nov 1998 | A |
5838255 | Di Croce | Nov 1998 | A |
5841253 | Fitzgibbon et al. | Nov 1998 | A |
5841390 | Tsui | Nov 1998 | A |
5841813 | Van Nee | Nov 1998 | A |
5844473 | Kaman | Dec 1998 | A |
5845593 | Birkestrand | Dec 1998 | A |
5854593 | Dykema et al. | Dec 1998 | A |
5872513 | Fitzgibbon et al. | Feb 1999 | A |
5903226 | Suman et al. | May 1999 | A |
5910784 | Lai | Jun 1999 | A |
5926087 | Busch et al. | Jul 1999 | A |
5926106 | Beran et al. | Jul 1999 | A |
5940000 | Dykema | Aug 1999 | A |
5940007 | Brinkmeyer | Aug 1999 | A |
5940120 | Frankhouse et al. | Aug 1999 | A |
5949349 | Farris et al. | Sep 1999 | A |
5990828 | King | Nov 1999 | A |
5995898 | Tuttle | Nov 1999 | A |
6002332 | King | Dec 1999 | A |
6005508 | Tsui | Dec 1999 | A |
6008735 | Chiloyan et al. | Dec 1999 | A |
6020829 | Hormann | Feb 2000 | A |
6021319 | Tigwell | Feb 2000 | A |
6023241 | Clapper | Feb 2000 | A |
6025785 | Farris et al. | Feb 2000 | A |
6031465 | Burgess | Feb 2000 | A |
6043753 | Okayasu et al. | Mar 2000 | A |
6049289 | Waggamon et al. | Apr 2000 | A |
6055468 | Kaman et al. | Apr 2000 | A |
6055508 | Naor et al. | Apr 2000 | A |
RE36703 | Heitschel et al. | May 2000 | E |
6072404 | Nolan et al. | Jun 2000 | A |
6072436 | Marougi | Jun 2000 | A |
6078271 | Roddy et al. | Jun 2000 | A |
6081203 | Fitzgibbon | Jun 2000 | A |
6091330 | Swan et al. | Jul 2000 | A |
6091343 | Dykema et al. | Jul 2000 | A |
6097309 | Hayes et al. | Aug 2000 | A |
6104101 | Miller et al. | Aug 2000 | A |
6127740 | Roddy et al. | Oct 2000 | A |
6127922 | Roddy et al. | Oct 2000 | A |
6127961 | Stacy et al. | Oct 2000 | A |
6130625 | Harvey | Oct 2000 | A |
6131019 | King | Oct 2000 | A |
6137421 | Dykema | Oct 2000 | A |
6144114 | Chutorash | Nov 2000 | A |
6154148 | Fluharty et al. | Nov 2000 | A |
6154544 | Farris et al. | Nov 2000 | A |
6157319 | Johns et al. | Dec 2000 | A |
6160319 | Marougi et al. | Dec 2000 | A |
6166650 | Bruwer | Dec 2000 | A |
6175312 | Bruwer et al. | Jan 2001 | B1 |
6181255 | Crimmins et al. | Jan 2001 | B1 |
6188889 | Tsai | Feb 2001 | B1 |
6191701 | Bruwer | Feb 2001 | B1 |
6236350 | Andrews | May 2001 | B1 |
6243000 | Tsui | Jun 2001 | B1 |
6249673 | Tsui | Jun 2001 | B1 |
6265987 | Wang et al. | Jul 2001 | B1 |
6271765 | King et al. | Aug 2001 | B1 |
6275379 | Quinno et al. | Aug 2001 | B1 |
6282152 | Kurple | Aug 2001 | B1 |
6292230 | Shui et al. | Sep 2001 | B1 |
6308083 | King | Oct 2001 | B2 |
6320514 | Flick | Nov 2001 | B1 |
6333698 | Roddy | Dec 2001 | B1 |
6344817 | Verzulli | Feb 2002 | B1 |
6359558 | Tsui | Mar 2002 | B1 |
6362771 | Schofield et al. | Mar 2002 | B1 |
6377173 | Desai | Apr 2002 | B1 |
6396408 | Drummond | May 2002 | B2 |
6397058 | Thibert et al. | May 2002 | B1 |
6414587 | Fitzgibbon | Jul 2002 | B1 |
6426706 | King | Jul 2002 | B1 |
6441719 | Tsui | Aug 2002 | B1 |
6472885 | Green et al. | Oct 2002 | B1 |
6486795 | Sobel et al. | Nov 2002 | B1 |
6512461 | Benzie et al. | Jan 2003 | B1 |
RE37986 | Heitschel et al. | Feb 2003 | E |
6525645 | King et al. | Feb 2003 | B2 |
6529556 | Perdue et al. | Mar 2003 | B1 |
6542076 | Joao | Apr 2003 | B1 |
6556681 | King | Apr 2003 | B2 |
6556813 | Tsui | Apr 2003 | B2 |
6559775 | King | May 2003 | B1 |
6597291 | Tsui | Jul 2003 | B2 |
6597374 | Baker et al. | Jul 2003 | B1 |
6634408 | Mays | Oct 2003 | B2 |
6661350 | Rohrberg et al. | Dec 2003 | B1 |
6690796 | Farris et al. | Feb 2004 | B1 |
6703941 | Blaker | Mar 2004 | B1 |
6724339 | Conway et al. | Apr 2004 | B2 |
6747568 | Teskey | Jun 2004 | B1 |
6759350 | Tsai | Jul 2004 | B2 |
6774813 | van Ee et al. | Aug 2004 | B2 |
6791467 | Ben-Ze'ev | Sep 2004 | B1 |
6810123 | Farris et al. | Oct 2004 | B2 |
6822603 | Crimmins et al. | Nov 2004 | B1 |
6903650 | Murray | Jun 2005 | B2 |
6956460 | Tsui | Oct 2005 | B2 |
6963267 | Murray | Nov 2005 | B2 |
6975203 | Brookbank et al. | Dec 2005 | B2 |
20010007086 | Rogers et al. | Jul 2001 | A1 |
20020034303 | Farris et al. | Mar 2002 | A1 |
20020067826 | King | Jun 2002 | A1 |
20020075133 | Flick | Jun 2002 | A1 |
20020126037 | Fitzgibbon | Sep 2002 | A1 |
20020137479 | Tsui | Sep 2002 | A1 |
20020140569 | van Ee et al. | Oct 2002 | A1 |
20020163440 | Tsui | Nov 2002 | A1 |
20020190872 | Suman et al. | Dec 2002 | A1 |
20020191794 | Farris et al. | Dec 2002 | A1 |
20020197955 | Witkowski et al. | Dec 2002 | A1 |
20030016119 | Teich | Jan 2003 | A1 |
20030016139 | Teich | Jan 2003 | A1 |
20030033540 | Fitzgibbon | Feb 2003 | A1 |
20030067394 | Tsui | Apr 2003 | A1 |
20030076235 | Tsui | Apr 2003 | A1 |
20030085798 | Castro Esteban | May 2003 | A1 |
20030112121 | Wilson | Jun 2003 | A1 |
20030118187 | Fitzgibbon | Jun 2003 | A1 |
20030153306 | Study et al. | Aug 2003 | A1 |
20030189530 | Tsui | Oct 2003 | A1 |
20030197594 | Olson et al. | Oct 2003 | A1 |
20030197595 | Olson et al. | Oct 2003 | A1 |
20030216139 | Olson et al. | Nov 2003 | A1 |
20030228879 | Witkowski et al. | Dec 2003 | A1 |
20040017292 | Reese et al. | Jan 2004 | A1 |
20040048622 | Witkowski et al. | Mar 2004 | A1 |
20040061591 | Teich | Apr 2004 | A1 |
20040066936 | Farris et al. | Apr 2004 | A1 |
20040100391 | Guthrie | May 2004 | A1 |
20040110472 | Witkowski et al. | Jun 2004 | A1 |
20040207537 | Keller, Jr. et al. | Oct 2004 | A1 |
20040243813 | Farris et al. | Dec 2004 | A1 |
20050024184 | Chuey | Feb 2005 | A1 |
20050024185 | Chuey | Feb 2005 | A1 |
20050024229 | Chuey | Feb 2005 | A1 |
20050024230 | Chuey | Feb 2005 | A1 |
20050024254 | Chuey | Feb 2005 | A1 |
20050024255 | Chuey | Feb 2005 | A1 |
20050026601 | Chuey | Feb 2005 | A1 |
20050026602 | Chuey et al. | Feb 2005 | A1 |
20050026605 | Guthrie et al. | Feb 2005 | A1 |
20050046545 | Skekloff et al. | Mar 2005 | A1 |
20060181428 | Blaker et al. | Aug 2006 | A1 |
20060217850 | Geerlings et al. | Sep 2006 | A1 |
20060232376 | Blaker | Oct 2006 | A1 |
20060234670 | Blaker et al. | Oct 2006 | A1 |
Number | Date | Country |
---|---|---|
42 04 463 | Aug 1992 | DE |
0 372 285 | Jun 1990 | EP |
0 670 402 | Sep 1995 | EP |
1 052 608 | Nov 2000 | EP |
1 129 441 | Sep 2001 | EP |
2 792 444 | Oct 2000 | FR |
2171545 | Aug 1986 | GB |
2 182 790 | Oct 1986 | GB |
2 265 482 | Sep 1993 | GB |
2 302 751 | Jun 1996 | GB |
2 325 552 | Nov 1998 | GB |
2 336 433 | Apr 1999 | GB |
2335773 | Sep 1999 | GB |
2 366 433 | May 2000 | GB |
WO9402920 | Jul 1993 | WO |
WO9418036 | Aug 1994 | WO |
WO9963308 | Sep 1999 | WO |
WO9964274 | Dec 1999 | WO |
WO 0012850 | Mar 2000 | WO |
WO 0029699 | May 2000 | WO |
WO 0070577 | Nov 2000 | WO |
WO 0280129 | Oct 2002 | WO |
WO 2004034352 | Apr 2004 | WO |
WO 2004036526 | Apr 2004 | WO |
WO 2004043750 | May 2004 | WO |
WO 2004066514 | Aug 2004 | WO |
WO 2004077729 | Sep 2004 | WO |
WO 2004104966 | Dec 2004 | WO |
WO 2004104966 | Dec 2004 | WO |
WO 2005002080 | Jan 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20050026605 A1 | Feb 2005 | US |