Information
-
Patent Grant
-
6641433
-
Patent Number
6,641,433
-
Date Filed
Thursday, June 21, 200123 years ago
-
Date Issued
Tuesday, November 4, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 439 172
- 439 638
- 439 651
- 439 678
-
International Classifications
-
Abstract
An electrical unit, such as a fire or gas detector, carries a three conductor plug for receipt of energy, AC hot, and neutral, as well as for coupling to a bidirectional signaling line. A multiple conductor adapter makes it possible to couple the plug to a plurality of incompatible, previously installed sockets. The adapter can be fully contained in a single housing. Alternately, it can include a housing for some of the conductors with the remainder carried on a cable which extends from the housing.
Description
FIELD OF THE INVENTION
The invention pertains to AC-powered ambient condition detectors. More particularly, the invention pertains to connectors and adapters for coupling such detectors to existing AC sockets.
BACKGROUND OF THE INVENTION
Fire detectors which can be battery powered or powered with utility supplied AC current are known. Battery powered detectors have become very popular as they are self-contained and can easily be installed almost anywhere. They are usually stand alone devices which do not interact with other similar detectors in the same region or installation.
Detectors which are coupled together by a communications line provide an alternate to stand alone, battery powered units. Such systems usually incorporate a three conductor cable. Two conductors (AC hot and neutral) provide electrical energy to power the detectors. A third conductor is used for signaling between detectors.
The cables terminate in three conductor sockets. A matching plug couples each detector to the cable.
Over a period of time, different socket/plug combinations have been used by manufacturers. In fact, there have been instances where a later model detector would not be compatible with previously installed sockets of the same manufacturer.
The problem of older, previously installed sockets impedes the replacement of older detectors with more current models. Where AC powered, or, interconnected detectors are installed in residences or small businesses, there may not be persons available who can safely remove the existing sockets and replace them with sockets compatible with more current models from the same or different manufacturers.
There is an on-going need to facilitate replacement of older AC powered, or, interconnected detectors with more current models. It would be most desirable if current detectors could be coupled to existing sockets without requiring any rewiring.
SUMMARY OF THE INVENTION
A connection adapter which facilitates coupling electrical units, such as fire or gas detectors, heat detectors or the like, to electrical cables includes a nonconductive housing. The housing carries a first set of electrical conductors and a second set of electrical conductors. The number of conductors is the same for both sets.
The first set exhibits an electromechanical plug profile for engagement with socket elements of an existing connector. The second set exhibits an electromechanical socket profile for engagement with a second plug carried by a respective electrical unit.
In a disclosed embodiment, the electrical units are fire or gas detectors which are to receive electrical energy, from a remote source, via a respective electrical plug. One form of electrical energy is utility supplied AC.
The adapter interfaces between the electrical plug of the respective detector and an existing power distribution cable which has an existing socket with a profile that is unlike the plug. Where the cable carries AC, for example, the adapter converts the configuration of the existing AC socket to that of the plug which exhibits two contacts, AC hot and neutral for example.
In one form, the adapter has a single two sided housing. One side is a plug for mating with the existing AC connector at the cable. The other side is a socket for mating with the detector's plug.
In another embodiment, the adapter has a socket for engagement with the detector's plug. A plurality of conductors extends from the adapter. The conductors engage individual contacts of the socket carried by the cable to couple electrical energy form the cable to the respective detectors.
In yet another embodiment, the installed socket includes a third, signaling conductor. The adapter mates with the installed three conductor socket and with a three conductor plug carried by the electrical unit.
Numerous other advantages and features of the present invention will become readily apparent from the following detailed description of the invention and the embodiments thereof, from the claims and from the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a block diagram of a system illustrating a problem solved by the present invention;
FIG. 2
is a schematic diagram illustrating exemplary wiring of a type found in systems as in
FIG. 1
;
FIG. 3
is a diagram of one embodiment of the present invention;
FIG. 3A
is an enlarged fragmentary view of a portion of
FIG. 3
;
FIGS. 4A
, B, taken together illustrate another embodiment of the invention;
FIG. 4C
is a composite view of the embodiment of the invention of
FIGS. 4A
, B;
FIG. 5
illustrates yet another embodiment of the invention;
FIG. 5A
is an enlarged view of a portion of
FIG. 5
;
FIG. 6A
is one view of an adapter which embodies the present invention;
FIG. 6A-1
is another view of the adapter of
FIG. 6A
;
FIG. 6B
illustrates yet another adapter which embodies the present invention;
FIG. 6B-1
illustrates another view of the adapter of
FIG. 6B
;
FIG. 6C
is a view of yet another adapter which embodies the present invention; and
FIG. 6C-1
is another view of the adapter in FIG.
6
C.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
While this invention is susceptible of embodiment in many different forms, there are shown in the drawing and will be described herein in detail specific embodiments thereof with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the invention to the specific embodiments illustrated.
FIG. 1
illustrates a system
10
of ambient condition detectors
12
a,b,c, . . . n.
These detectors are all coupled to a multiple conductor cable, such as a two conductor AC utility line
14
. The cable
14
can also include a third conductor for inter-detector signaling purposes as would be known to those of skill in the art.
Each of the detectors, such as
12
a
, has a plurality of internal conductors
12
a
-
1
(indicated in phantom) which extends therefrom and which is terminated by a plug
12
a
-
2
of a predetermined configuration. Each of the plugs
12
a
-
2
. . .
12
n
-
2
is compatible with and is intended to engage a corresponding socket, such as the sockets
14
a,b,c,d . . . n
carried on and coupled to the cable
14
.
In known installations, sockets
14
a,b,c,d . . . . n
mate with corresponding plugs
12
a
-
2
. . . .
12
n
-
2
to couple power to the respective detector and to provide intra-detector signaling. Such configurations provide convenience in installation and safety by isolating the power contacts from direct access by installer or maintenance personnel.
The above described system
10
is limited in that a replacement detector
16
which has a plug
16
-
2
with a different configuration can not be installed to replace detector
12
a
without altering or replacing socket
14
a
. This exposes the AC power lines and requires skill to be carried out safely.
FIG. 2
illustrates socket
14
a
with three conductors
14
a
-
1
,-
2
,-
3
coupled by wire nuts to multi-conductor cable
14
. Changing socket
14
a
so as to be compatible with plug
16
-
2
requires removing the respective wire nuts and installing a socket compatible with plug
16
-
2
.
FIG. 3
illustrates an adapter
30
which can be used to couple plug
16
-
2
to socket
14
a
safely and without any need to alter or replace the existing sockets
12
a,b,c,d . . . n.
The adapter
30
includes a socket
32
which is compatible with plug
16
-
2
. A plurality of conductors
34
extends from socket
32
.
FIG. 3A
is an enlargement of a portion of FIG.
3
and illustrates of adapter
30
.
Each of the conductors
34
a,b,c
has a free end which carries an insulator, such as
34
a
-
1
. Each insulator covers a respective pin
34
a
-
2
which is compatible with a respective socket-element in a socket such as socket
14
a
. The conductors
34
a,b,c
of adapter
30
are inserted into socket elements in socket
14
a
. Those pins thus engage the respective socket elements safely and conveniently. The plug
16
-
2
of replacement detector
16
can be coupled to adapter socket
32
so as to receive power and signals off of cable
14
.
FIG. 4A
illustrates an alternate adapter system
40
. Adapter system
40
has a socket
42
which is compatible with plug
16
-
2
. Conductors
44
extend from socket
42
. A positioning, or locating element, such as
44
a
-
1
is carried adjacent a free end of each conductor. Each conductor carries at the free end a respective pin, such as pin
44
a
-
2
.
FIG. 4B
illustrates a configurable shell, or housing
46
. Housing
46
includes a holder
46
a
and a spacer
46
b
. Positioning elements
44
a
-
1
,
b
-
1
,
c
-
1
can be inserted into and locked in holder
46
a
, along with spacer
46
b
with an arrangement which is compatible with a respective socket such as socket
14
a
as illustrated in FIG.
4
C. The pins
44
a
-
2
,
b
-
2
and
c
-
2
extend from holder
46
a
forming a plug
48
.
The plug
48
is compatible with socket
14
a
while the socket
42
is compatible with plug
16
-
2
. The detector
16
can now be safely and conveniently coupled to cable
14
.
The adapter
40
can readily be configured by a home owner or other installer prior to any engagement with the respective socket such as socket
14
a
. Adapter
40
can be used with a variety of different sockets merely by rearranging the location of spacer
46
b
and the relative positions of the pins
44
a
-
23
,
b
-
2
and
c
-
2
.
FIG. 5
illustrates an adapter system
50
which incorporates a socket
52
which is compatible with plug
16
-
2
. Conductors
54
extend from socket
52
.
FIG. 5A
is an enlarged view of a portion of the adapter
50
.
A housing
56
carries a plurality of spacing elements such as the elements
54
a
-
1
,
b
-
1
and
c
-
1
from which extend plug pins
54
a
-
2
,
b
-
2
, and
c
-
2
(comparable to the positioning elements
44
a
-
1
,
b
-
1
, and
c
-
1
and pins
44
a
-
2
,
b
-
2
and
c
-
2
, best seen in
FIG. 4A.
) In the system
50
, the housing
56
exhibits five locations into which the spacing elements
54
a
-
1
,
b
-
1
and
c
-
1
can be moved for purposes of configuring the pins
54
a
-
2
,
b
-
2
and
c
-
2
in a way which is compatible with a respective previously installed socket such as one of the sockets
14
a, b, . . . n.
By rearranging the connector pins
54
a
-
2
,
b
-
2
and
c
-
2
, a user or installer can readily configure the adapter system
50
for connection with one or more preexisting sockets. The configuration process takes place off-line with no connection to the existing sockets or cable
14
thus providing for a user's convenience and safety.
FIGS. 6A
, B and C each illustrate a different integrally formed adapter in accordance with the present invention.
FIGS. 6A-1
,
6
B-
1
and
6
C-
1
each illustrate a different view of the respective adapter of
FIGS. 6A
,
6
B and
6
C.
In
FIG. 6A
, an adapter
60
has a housing
62
with first and second ends
62
a, b
. The end
62
a
carries a plug
62
-
1
configured to mate with an existing socket, such as socket
14
n
of cable
14
. End
62
b
carries a socket
62
-
2
configured to mate with plug
16
-
2
.
Using adapter
60
, new detectors can be installed in existing systems quickly and safely. An adapter, such as adapter
60
, is especially convenient, as no discrete wires need to be inserted. All wiring between each plug
62
-
1
, end
62
a
is coupled to an appropriate plug
62
-
2
, end
62
b
by conductors internal to housing
62
. Coupling between respective socket
62
-
2
and plug
62
-
1
can be implemented using discrete conductors or printed wiring. Adapter
60
need only be plugged into socket
14
a
and to plug
16
-
2
to install detector
16
.
FIGS. 6B and 6C
illustrate alternate forms of adapters
70
and
80
. Each carries a plug on a respective end
72
a
,
82
a
whose elements are connected to a socket carried on a respective end
72
b
,
82
b
. Socket elements are connected to respective plug elements within a respective housing
72
,
82
.
Other configurations are possible as adapters
60
,
70
and
80
are exemplary only. All such configurations come within the spirit and scope of the present invention. One such variation is to combine movable pins or plug elements, as in
FIG. 5
in the integrally formed configurations of
FIG. 6A
, B or C. Hence, one adapter
60
can be used with a variety of pre-existing socket configurations.
From the foregoing, it will be observed that numerous variations and modifications may be effected without departing from the spirit and scope of the invention. It is to be understood that no limitation with respect to the specific apparatus illustrated herein is intended or should be inferred. It is, of course, intended to cover by the appended claims all such modifications as fall within the scope of the claims.
Claims
- 1. An adapter for coupling an existing connector of a multi-wire interconnect system to a different ambient condition detector than the one for which the existing connector was designed, the adapter comprising:a non-conductive housing which carries a first set of electrical conductors and a second set of electrical conductors wherein the number of the second set of conductors is the same as the number of the first set of conductors, wherein members of the first set exhibit an electro-mechanical plug-type profile for engagement with socket elements of the existing connector and wherein members of the second set exhibit an electro-mechanical socket-type profile for engagement with a second plug carried by the ambient condition detector wherein the existing connector and the second plug are incompatible and are not mutually engageable, wherein the first set of electrical conductors includes a plurality of rigid conducting prongs which extend axially from the housing and are engageable with the existing connector.
- 2. An adapter as in claim 1, wherein the first and second sets each comprise three conductors.
- 3. An adapter as in claim 1, wherein the existing connector includes at least two conductors for delivery of AC-type power.
- 4. An adapter as in claim 1, wherein the socket-type profile of the second set is axially oriented relative to the housing.
- 5. An adapter as in claim 4 wherein the first and second sets each comprise three conductors.
- 6. An adapter as in claim 1 wherein at least one of the conductors delivers power to a respective ambient condition detector and another conductor provides electrical signaling to/from the respective detector.
- 7. An adapter as in claim 6 wherein some of the conductors in the housing are movable between first and second positions in the housing.
- 8. An adapter system for coupling an existing connector of a multi-wire detector interconnect cable having a least one power wire and one signaling wire to an incompatible plug of an ambient condition detector where the plug of the detector includes at least one power terminal and at least one signaling terminal, the system comprising:a plurality of adapters with each adapter having a non-conductive housing with first and second ends, with at least two socket-type contacts carried at the first end, configured to engage the power terminal and signaling terminal of the detector's plug; at least two plug-type contacts carried at the second end with the two plug-type contacts configured to engage an interconnect cable connector with one plug-type contact adapted to engage a power contact and the second pug-type contact adapted to engage a signaling contact, both contacts carried by the connector with the socket-type contacts carried on the first end substantially the same for all members of the plurality of the adapters, and, with the plug-type contacts, carried at the second end different for all members of the plurality of adapters.
US Referenced Citations (4)
Number |
Name |
Date |
Kind |
4091363 |
Siegel et al. |
May 1978 |
A |
5871376 |
Tsai et al. |
Feb 1999 |
A |
5899773 |
Cheng |
May 1999 |
A |
6435916 |
Amberg et al. |
Aug 2002 |
B1 |