The present disclosure relates generally to compressors and more particularly to a capacity modulation system and method for a compressor.
Heat pump and refrigeration systems are commonly operated under a wide range of loading conditions due to changing environmental conditions. In order to effectively and efficiently accomplish a desired cooling and/or heating under these changing conditions, conventional heat pump or refrigeration systems may incorporate a compressor having a capacity modulation system that adjusts an output of the compressor based on the environmental conditions.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
An apparatus is provided and may include a compression mechanism, a valve plate associated with the compression mechanism and including a plurality of ports in fluid communication with the compression mechanism, and a header disposed adjacent to the valve plate. A plurality of cylinders may be disposed within the header and a plurality of pistons may be respectively disposed in the plurality of cylinders and may be movable between a first position separated from the valve plate and permitting flow through the plurality of ports and into the compression mechanism and a second position engaging the valve plate and restricting flow through the plurality of ports and into the compression mechanism. A chamber may be disposed within each of the cylinders and may receive a pressurized fluid in a first mode to move the piston into the second position and may vent the pressurized fluid in a second mode to move the piston into the first position. One of the chambers may include a smaller volume than the other of the chambers.
An apparatus is provided and may include a compression mechanism, a valve plate associated with the compression mechanism and including a plurality of ports in fluid communication with the compression mechanism, and a header disposed adjacent to the valve plate. A plurality of cylinders may be disposed within the header and a plurality of pistons may be respectively disposed in the plurality of cylinders and may be movable between a first position separated from the valve plate and permitting flow through the plurality of ports and into the compression mechanism and a second position engaging the valve plate and restricting flow through the plurality of ports and into the compression mechanism. A chamber may be disposed within each of the cylinders and may receive a pressurized fluid in a first mode to move the piston into the second position and may vent the pressurized fluid in a second mode to move the piston into the first position. One of the chambers may vent the pressurized fluid at a greater rate than the other of the chambers to move one of the pistons into the first position before the other of the pistons.
An apparatus is provided and may include a compression mechanism, a valve plate associated with the compression mechanism and including a plurality of ports in fluid communication with the compression mechanism, and a header disposed adjacent to the valve plate. A plurality of cylinders may be disposed within the header and a plurality of pistons may be respectively disposed in the plurality of cylinders and may be movable between a first position separated from the valve plate and permitting flow through the plurality of ports and into the compression mechanism and a second position engaging the valve plate and restricting flow through the plurality of ports and into the compression mechanism. A chamber may be disposed within each of the cylinders and may receive a pressurized fluid in a first mode to move the piston into the second position and may vent the pressurized fluid in a second mode to move the piston into the first position. One of the chambers may include a different diameter than the other of the chambers.
A method is provided and may include opening a plurality of ports of a valve plate when a plurality of pistons are in a raised position to permit flow through the plurality of ports and evacuating fluid at a different rate from at least one of a plurality of chambers to permit one of the plurality of pistons to move into the raised position before the other of the plurality of pistons. The method may also include causing movement of the plurality of pistons within and relative to respective ones of the plurality of chambers from a lowered position to the raised position in response to evacuation of the fluid.
A method is provided and may include opening a plurality of ports of a valve plate when a plurality of pistons are in a raised position to permit flow through the plurality of ports and evacuating a reduced volume of fluid from at least one of a plurality of chambers to permit one of the plurality of pistons to move into the raised position before the other of the plurality of pistons. The method may also include causing movement of the plurality of pistons within and relative to respective ones of the plurality of chambers from a lowered position to the raised position in response to evacuation of the fluid.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features. The present teachings are suitable for incorporation in many different types of scroll and rotary compressors, including hermetic machines, open drive machines and non-hermetic machines.
Various embodiments of a valve apparatus are disclosed that allow or prohibit fluid flow, and may be used to modulate fluid flow to a compressor, for example. The valve apparatus may include one or more cylinders defining a chamber having a piston slidably disposed therein, and a control-pressure passage in communication with the chamber. The chamber area may be varied to reduce or increase piston travel and/or a control pressure passage may be employed to vary fluid flow. A control pressure communicated to the chamber biases the piston for moving the piston relative to a valve opening, to thereby allow or prohibit fluid communication through the valve opening.
When pressurized fluid is communicated to the chamber, the piston is biased to move against the valve opening, and may be used for blocking fluid flow to a suction inlet of a compressor, for example. The valve apparatus may be a separate component that is spaced apart from but fluidly coupled to an inlet of a compressor or, alternatively, may be a component included within a compressor assembly. The valve apparatus may be operated together with a compressor, for example, as an independent unit that may be controlled by communication of a control pressure via an external flow control device. The valve apparatus may also optionally include a pressure-responsive valve member and a solenoid valve, to selectively provide for communication of a control pressure fluid to the control pressure passage.
Referring to
Compressor 10 is shown in
The capacity of the compressor 10 may be regulated by selectively opening and closing one or more of the plurality of pistons 110 to control flow through the valve plate 107. A predetermined number of pistons 110 may be used, for example, to selectively block the flow of suction gas to the cylinder 24.
It is recognized that one or more pistons 110 forming a bank of valve cylinders may be modulated together or independently, or one or more banks may not be modulated while others are modulated. The plurality of banks may be controlled by a single solenoid valve with a manifold, or each bank of valve cylinders may be controlled by its own solenoid valve. The modulation method may include duty-cycle modulation that, for example, provides an ON-time that ranges from zero to one hundred percent relative to an OFF-time, where fluid flow may be blocked for a predetermined OFF-time period. Additionally, the modulation method used may be digital (i.e., duty-cycle modulation), conventional blocked suction, or a combination thereof. The benefit of using a combination may be economic. For example, a full range of capacity modulation in a multi-bank compressor may be provided by using conventional blocked suction in all but one bank and the above-described digital modulation unloader piston configuration in the remaining bank of cylinders.
As shown in
The chamber 120 is formed in a body 102 of the valve apparatus 100 and slidably receives the piston 110 therein. The valve plate 107 may include a passage 104 formed therein, which is in selective communication with the valve opening 106. The passage 104 of the valve apparatus 100 may provide for communication of fluid to an inlet of the compressor 10, for example. The body 102 may include a control-pressure passage 124, which is in communication with the chamber 120. A control pressure may be communicated via the control-pressure passage 124 to chamber 120, to move the piston 110 relative to the valve opening 106. The body 102 may be positioned relative to the compression mechanism 14 such that the valve plate 107 is disposed generally between the compression mechanism 14 and the body 102 (
With continued reference to
The piston 110 may further include a disc-shaped sealing element 140 disposed at an open end of the piston 110. Blocking fluid flow through the opening 106 is achieved when a valve seat 108 at opening 106 is engaged by the disc-shaped sealing element 140 disposed on the lower end of the piston 110.
When discharge-pressure gas is communicated to the chamber 120, the force of the discharge-pressure gas acting on the top of the piston 110 causes the piston 110 and sealing element 140 to move towards the raised valve seat 108 adjacent the valve opening 106 (
Referring to
The solenoid valve 130 is in communication with a pressurized fluid. The pressurized fluid may be a discharge pressure gas from the compressor 10, for example. The solenoid valve 130 is movable to allow or prohibit communication of pressurized fluid to the pressure responsive valve member 300. The solenoid valve 130 functions as a two-port (on/off) valve for establishing and discontinuing communication of discharge-pressure gas to the valve 300. In connection with the pressure-responsive valve member 300, the solenoid valve 130 substantially has the output functionality of a three-port solenoid valve (i.e., suction-pressure gas or discharge-pressure gas may be directed to the control-pressure passage 124 to raise or lower the piston 110). When the solenoid valve 130 is energized to an open position, the solenoid valve 130 establishes communication of discharge-pressure gas to the valve 300.
The first-valve member 302 may include an upper-flange portion 314, a longitudinally extending portion 316 extending downward from the upper-flange portion 314, and a longitudinally extending passage 318. The passage 318 may extend completely through the first-valve member 302 and may include a flared check valve seat 320.
The second-valve member 304 may be an annular disk disposed around the longitudinally extending portion 316 of the first valve member 302 and may be fixedly attached to the first-valve member 302. While the first and second valve members 302, 304 are described and shown as separate components, the first and second valve members 302, 304 could alternatively be integrally formed. The first and second valve members 302, 304 (collectively referred to as the “slave piston”) are slidable within the body 102 between a first position (
The intermediate-isolation seal 308 and the upper seal 310 may be fixedly retained in a seal-holder member 324, which, in turn, is fixed within the body 102. The intermediate-isolation seal 308 may be disposed around the longitudinally extending portion 316 of the first-valve member 302 (i.e., below the upper-flange portion 314) and may include a generally U-shaped cross section. An intermediate-pressure cavity 326 may be formed between the U-Shaped cross section of the intermediate-isolation seal 308 and the upper-flange portion 314 of the first-valve member 302.
The upper seal 310 may be disposed around the upper-flange portion 314 and may also include a generally U-shaped cross section that forms an upper cavity 328 beneath the base of the solenoid valve 130. The upper cavity 328 may be in fluid communication with a pressure reservoir or discharge-gas reservoir 330 formed in the body 102. The discharge-gas reservoir 330 may include a vent orifice 332 in fluid communication with a suction-pressure port 334. The suction-pressure port 334 may be in fluid communication with a source of suction gas such as, for example, a suction inlet of a compressor. Feed drillings or passageways 336, 338 may be formed in the body 102 and seal-holder member 324, respectively, to facilitate fluid communication between the suction-pressure port 334 and the intermediate-pressure cavity 326 to continuously maintain the intermediate-pressure cavity 326 at suction pressure. Suction pressure may be any pressure that is less than discharge pressure and greater than a vacuum pressure of the vacuum port 322. Vacuum pressure, for purposes of the present disclosure, may be a pressure that is lower than suction pressure and does not need to be a pure vacuum.
The valve-seat member 306 may be fixed within the body 102 and may include a seat surface 340 and an annular passage 342. In the first position (
The check valve 312 may include a ball 344 in contact with a spring 346 and may extend through the annular passage 342 of the valve-seat member 306. The ball 344 may selectively engage the check valve seat 320 of the first-valve member 302 to prohibit communication of discharge gas between the solenoid valve 130 and the control-pressure passage 124.
With continued reference to
The discharge gas accumulates in the upper cavity 328 formed by the upper seal 310 and in the discharge-gas reservoir 330, where it is allowed to bleed into the suction-pressure port 334 and through the vent orifice 332. While the suction-pressure port 334 is in fluid communication with suction chamber 18, the vent orifice 332 has a sufficiently small diameter to allow the discharge-gas reservoir 330 to remain substantially at discharge pressure while the solenoid valve 130 is energized.
A portion of the discharge gas is allowed to flow through the longitudinally extending passage 318 and urge the ball 344 of the check valve 312 downward, thereby creating a path for the discharge gas to flow through to the control-pressure passage 124 (
To return the piston 110 to the upward (or loaded) position, the solenoid valve 130 may be de-energized, thereby prohibiting the flow of discharge gas therefrom. The discharge gas may continue to bleed out of the discharge-gas reservoir 330 through the vent orifice 332 and into the suction-pressure port 334 until the longitudinally extending passage 318, the upper cavity 328, and the discharge-gas reservoir 330 substantially reach suction pressure. At this point, there is no longer a net downward force urging the second-valve member 304 against the seat surface 340 of the valve-seat member 306. The spring 346 of the check valve 312 is thereafter allowed to bias the ball 344 into sealed engagement with check valve seat 320, thereby prohibiting fluid communication between the control-pressure passage 124 and the longitudinally extending passage 318.
As described above, the intermediate-pressure cavity 326 is continuously supplied with fluid at suction pressure (i.e., intermediate pressure), thereby creating a pressure differential between the vacuum port 322 (at vacuum pressure) and the intermediate-pressure cavity 326 (at intermediate pressure). The pressure differential between the intermediate-pressure cavity 326 and the vacuum port 322 applies a force on valve members 302, 304 and urges the valve members 302, 304 upward relative to the body 102. Sufficient upward movement of the valve members 302, 304 relative to the body 102 allows fluid communication between the chamber 120 and the vacuum port 322. Placing chamber 120 in fluid communication with the vacuum port 322 allows the discharge gas occupying chamber 120 to evacuate through the vacuum port 322 to passage 104 of valve plate 107.
The evacuating discharge gas flowing from chamber 120 to vacuum port 322 (
In a condition where a compressor is started with discharge and suction pressures being substantially balanced and the piston 110 is in the unloaded position, the pressure differential between the intermediate-pressure cavity 326 and the vacuum port 322 provides a net upward force on the valve members 302, 304, thereby facilitating fluid communication between the chamber 120 and the vacuum port 322. The vacuum pressure of the vacuum port 322 will draw the piston 110 upward into the loaded position, even if the pressure differential between the intermediate-pressure cavity 326 and the area upstream of 182 (
The above valve apparatus is generally of the type described in Assignee's U.S. application Ser. No. 12/177,528, the disclosure of which is incorporated herein by reference.
With reference to
With reference to
The volume of the chamber 120a may be smaller than the chambers 120b, 120c by reducing the travel of the piston 110a within the chamber 120a (
With further reference to
The reduced volume of chamber 120a of the lead piston 110a may be in fluid communication with the control-pressure passage 124a and the previously described valve member 300. Because the reduced volume of chamber 120a has a smaller volume than the chamber 120b, less fluid is required to move the lead piston 110a into the unloaded position (
The secondary piston 110b may be located proximate to the lead piston 110a and may include the chamber 120b in fluid connection with the control-pressure passage 124b. The control-pressure passage 124b may be fluidly connected to the previously described valve member 300 and may include the reduced orifice 126b. By reducing the flow rate of pressurized gas into and out of the chamber 120b, the reduced orifice 126b operates to delay the transition of the secondary piston 110b between the loaded and unloaded positions. Orifice size may be varied depending on the desired delay between loaded and unloaded positions of the secondary piston 110b.
With reference to
In addition to the foregoing, the valve opening 106 of the valve plate 107 may be varied in size to further prevent the inrush of gas when the pistons 110a, 110b, 110c are moved into the raised or loaded position. For example, a valve opening 106 having a large opening will allow a greater flow rate of gas through the valve opening 106 when the pistons 110a, 110b, 110c move from the unloaded position to the loaded position when compared to a valve opening 106 having a smaller opening. In one configuration, a valve opening 106a (
With reference to
The passage 124b may have a reduced orifice 126b disposed proximate to the valve member 300 to restrict fluid flow to the chamber 120b and control the rate of movement of the piston 110b during the loaded to unloaded transition and vice versa. Similarly, the passages 124c may have reduced orifices 126c disposed proximate to the valve member 300 that are smaller or larger than the reduced orifice 126b to restrict fluid flow to the chamber 120c at a rate different from that to the chamber 120b, thus establishing a transition time for the piston 110c that is different than the piston 110b. The reduced orifices 126b, 126c could alternatively be disposed proximate to the chambers 120b, 120c (
The chambers 120a, 120b, and 120c may initially include the lead piston 110a, the secondary piston 110b and one or more third pistons 110c, respectively, all in a raised or loaded position. The solenoid 130 may communicate discharge pressure gas into the passages 124a, 124b, and 124c via the valve member 300. Because the passage 124a is unrestricted, the gas will be communicated therethrough to the chamber 120a with the highest mass flow rate. Because the chamber 120a includes a smaller volume than chambers 120b, 120c, less gas is required to move the lead piston 110a to the down or unloaded position when compared to the chambers 120b, 120c. Therefore, the lead piston 110a will seat into the opening 106 in the valve plate 107 before the pistons 110b, 110c, and prevent fluid flow to the passage 104.
The lead piston 110a could alternatively or additionally include a reduced diameter in addition to a reduced travel, thereby causing the chamber 120a to have a reduced diameter. As shown in
As described above, the reduced orifices 126c may include a smaller size than the reduced orifice 126b. Due to the relative size of orifice 126c, the valve 300 will deliver a higher flow rate of discharge gas through the control-pressure passage 124b and into the chamber 120b. The chambers 120b and 120c may have the same volume, thus the increased flow rate to the chamber 120b will transition the piston 110b from the loaded position to the unloaded position before the pistons 110c. After the piston 110b is seated into the opening 106 following seating of the lead piston 110a, the smallest flow rate of gas delivered through the passages 124c and into the chambers 120c transitions the pistons 110c into the unloaded position; seated in the opening 106.
The transition from the unloaded position to the loaded position operates in a similar fashion. The solenoid 130 may be de-energized or energized to prevent communication of discharge gas to the valve member 300. Energizing or de-energizing solenoid 130 causes the valve 300 to vent discharge gas out common exhaust port 322. Discharge gas may flow from the chambers 120a, 120b, and 120c through passages 124a, 124b, and 124c to the valve 300 and out exhaust port 322. The lead piston 110a may move to the raised position first due to the reduced volume in chamber 120a and unrestricted passage 124a. As described above, the reduced volume of chamber 120a may be accomplished by shortening a travel of the lead piston 110a and/or by reducing a diameter of the lead piston 110a and the chamber 120a.
The secondary piston 110b may be raised following the piston 110a and before the pistons 110c due to the larger restricted orifice 126b in the passage 124b. Finally, the third pistons 110c may be raised to the loaded position due to the smallest flow rate of discharge gas moving to the exhaust port 322. The cycle may then be repeated.
In the above described aspect, the pistons 110a, 110b, and 110c open in sequence. By staggering the operation of the multiple valve apparatuses 100, the flow rate of pressurized gas flowing through the passage 104 of valve plate 107 may be better controlled and improve compressor performance and efficiency. It should be noted that the compressor 10 and valve apparatus 100 may comprise combinations of one or more of the above components or features, such as the solenoid assembly 130, which may be separate from or integral with the compressor 10.
The above described combination of a reduced volume chamber and reduced orifices is merely exemplary and the present disclosure is not limited to such a configuration. Any number of pistons with reduced-volume piston chambers, reduced orifices, reduced valve openings, or the inclusion of a reduced control-pressure passage diameter to stage opening of each piston 110a, 110b, 110c may be employed.
A specific example of a header 128′ for use with a compressor 10′ is provided in
The piston 110a′ is moved into the loaded position before the piston 110b′ due to the smaller volume of the chamber 120a′ when compared to the chamber 120b′. Specifically, a smaller volume of gas is required to be evacuated along a passage 124a′ to move the piston 110a′ from the unloaded position to the loaded position when compared to the volume of gas required to be evacuated along a passage 124b′ to move the piston 110b′ from the unloaded position to the loaded position. A restricted orifice 126b′ is disposed proximate to the chamber 120b′ along the passage 124b′ to further reduce the flow rate of gas transferred to and evacuated from the chamber 120b′. As described above, the gas is either supplied to or evacuated from the chambers 120a′, 120b′ by energizing or de-energizing a solenoid 130 associated with the valve 300.
A valve opening 106a′ associated with the piston 110a′ is smaller than a valve opening 106b′ associated with the piston 110b′ The smaller opening prevents gas from rushing from the suction chamber 18 and into passage 104′ at an excessive mass flow rate when the piston 110a′ is moved into the loaded position in advance of the piston 110b′.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a”, “an” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on”, “engaged to”, “connected to” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to”, “directly connected to” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath”, “below”, “lower”, “above”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
This application claims the benefit of U.S. Provisional Application No. 61/147,661, filed on Jan. 27, 2009. The entire disclosure of the above application is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61147661 | Jan 2009 | US |