Unloader system and method for a compressor

Information

  • Patent Grant
  • 8308455
  • Patent Number
    8,308,455
  • Date Filed
    Wednesday, January 27, 2010
    14 years ago
  • Date Issued
    Tuesday, November 13, 2012
    11 years ago
Abstract
An apparatus is provided and may include a compression mechanism, a valve plate including a plurality of ports in fluid communication with the compression mechanism, and a header disposed adjacent to the valve plate. A plurality of cylinders may be disposed within the header and a plurality of pistons may be respectively disposed in the plurality of cylinders and may be movable between a first position separated from the valve plate and a second position engaging the valve plate. A chamber may be disposed within each of the cylinders and may receive a pressurized fluid in a first mode to move the piston into the second position and may vent the pressurized fluid in a second mode to move the piston into the first position. One of the chambers may include a smaller volume than the other of the chambers.
Description
FIELD

The present disclosure relates generally to compressors and more particularly to a capacity modulation system and method for a compressor.


BACKGROUND

Heat pump and refrigeration systems are commonly operated under a wide range of loading conditions due to changing environmental conditions. In order to effectively and efficiently accomplish a desired cooling and/or heating under these changing conditions, conventional heat pump or refrigeration systems may incorporate a compressor having a capacity modulation system that adjusts an output of the compressor based on the environmental conditions.


SUMMARY

This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.


An apparatus is provided and may include a compression mechanism, a valve plate associated with the compression mechanism and including a plurality of ports in fluid communication with the compression mechanism, and a header disposed adjacent to the valve plate. A plurality of cylinders may be disposed within the header and a plurality of pistons may be respectively disposed in the plurality of cylinders and may be movable between a first position separated from the valve plate and permitting flow through the plurality of ports and into the compression mechanism and a second position engaging the valve plate and restricting flow through the plurality of ports and into the compression mechanism. A chamber may be disposed within each of the cylinders and may receive a pressurized fluid in a first mode to move the piston into the second position and may vent the pressurized fluid in a second mode to move the piston into the first position. One of the chambers may include a smaller volume than the other of the chambers.


An apparatus is provided and may include a compression mechanism, a valve plate associated with the compression mechanism and including a plurality of ports in fluid communication with the compression mechanism, and a header disposed adjacent to the valve plate. A plurality of cylinders may be disposed within the header and a plurality of pistons may be respectively disposed in the plurality of cylinders and may be movable between a first position separated from the valve plate and permitting flow through the plurality of ports and into the compression mechanism and a second position engaging the valve plate and restricting flow through the plurality of ports and into the compression mechanism. A chamber may be disposed within each of the cylinders and may receive a pressurized fluid in a first mode to move the piston into the second position and may vent the pressurized fluid in a second mode to move the piston into the first position. One of the chambers may vent the pressurized fluid at a greater rate than the other of the chambers to move one of the pistons into the first position before the other of the pistons.


An apparatus is provided and may include a compression mechanism, a valve plate associated with the compression mechanism and including a plurality of ports in fluid communication with the compression mechanism, and a header disposed adjacent to the valve plate. A plurality of cylinders may be disposed within the header and a plurality of pistons may be respectively disposed in the plurality of cylinders and may be movable between a first position separated from the valve plate and permitting flow through the plurality of ports and into the compression mechanism and a second position engaging the valve plate and restricting flow through the plurality of ports and into the compression mechanism. A chamber may be disposed within each of the cylinders and may receive a pressurized fluid in a first mode to move the piston into the second position and may vent the pressurized fluid in a second mode to move the piston into the first position. One of the chambers may include a different diameter than the other of the chambers.


A method is provided and may include opening a plurality of ports of a valve plate when a plurality of pistons are in a raised position to permit flow through the plurality of ports and evacuating fluid at a different rate from at least one of a plurality of chambers to permit one of the plurality of pistons to move into the raised position before the other of the plurality of pistons. The method may also include causing movement of the plurality of pistons within and relative to respective ones of the plurality of chambers from a lowered position to the raised position in response to evacuation of the fluid.


A method is provided and may include opening a plurality of ports of a valve plate when a plurality of pistons are in a raised position to permit flow through the plurality of ports and evacuating a reduced volume of fluid from at least one of a plurality of chambers to permit one of the plurality of pistons to move into the raised position before the other of the plurality of pistons. The method may also include causing movement of the plurality of pistons within and relative to respective ones of the plurality of chambers from a lowered position to the raised position in response to evacuation of the fluid.


Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.





DRAWINGS

The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.



FIG. 1 is a partial sectional view of a compressor in combination with a valve apparatus according to the present disclosure;



FIG. 2 is a partial sectional view of a valve apparatus of the present disclosure shown in a closed position;



FIG. 3 is a partial sectional view of the valve apparatus of FIG. 2 shown in an open position;



FIG. 4 is a cross-sectional view of a pressure-responsive valve according to the present disclosure shown in a first position;



FIG. 5 is a cross-sectional view of the pressure-responsive valve of FIG. 4 shown in a second position;



FIG. 6 is a top view of a header of a compressor according to the present disclosure;



FIG. 7 is a side view of the header of FIG. 6;



FIG. 8 is a cross-sectional view of the header of FIG. 6 taken along line 8-8;



FIG. 9 is a cross-sectional view of the header of FIG. 6 taken along line 9-9;



FIG. 10 is a cross-sectional view of the header of FIG. 6 taken along line 10-10;



FIG. 11 is a cross-sectional view of the header showing a pair of valves having pistons of varying diameter;



FIG. 12 is a top cross-sectional view of the header of FIG. 7 taken along line 12-12; and



FIG. 13 is a cross-sectional view of a header showing a pair of valves having pistons of varying diameter and valve openings of varying diameter.





DETAILED DESCRIPTION

The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features. The present teachings are suitable for incorporation in many different types of scroll and rotary compressors, including hermetic machines, open drive machines and non-hermetic machines.


Various embodiments of a valve apparatus are disclosed that allow or prohibit fluid flow, and may be used to modulate fluid flow to a compressor, for example. The valve apparatus may include one or more cylinders defining a chamber having a piston slidably disposed therein, and a control-pressure passage in communication with the chamber. The chamber area may be varied to reduce or increase piston travel and/or a control pressure passage may be employed to vary fluid flow. A control pressure communicated to the chamber biases the piston for moving the piston relative to a valve opening, to thereby allow or prohibit fluid communication through the valve opening.


When pressurized fluid is communicated to the chamber, the piston is biased to move against the valve opening, and may be used for blocking fluid flow to a suction inlet of a compressor, for example. The valve apparatus may be a separate component that is spaced apart from but fluidly coupled to an inlet of a compressor or, alternatively, may be a component included within a compressor assembly. The valve apparatus may be operated together with a compressor, for example, as an independent unit that may be controlled by communication of a control pressure via an external flow control device. The valve apparatus may also optionally include a pressure-responsive valve member and a solenoid valve, to selectively provide for communication of a control pressure fluid to the control pressure passage.


Referring to FIG. 1, a compressor 10 with a pressure-responsive valve apparatus or unloader valve 100 is shown including a cylinder 101 defining a chamber 120 having a piston assembly 110 disposed therein, which moves relative to an opening 106 in a valve plate 107 to control fluid flow therethrough. The piston 110 may be moved by communication of a control pressure to the chamber 120 in which the piston 110 is disposed. The compressor 10 may include a plurality of pistons 110 (shown in FIG. 1 raised and lowered for illustration purposes only). The control pressure may be communicated to the chamber 120 by a valve, for example. To selectively provide a control pressure, the valve apparatus 100 may optionally include a pressure-responsive valve member and a solenoid valve, which will be described later.


Compressor 10 is shown in FIG. 1 and may include a manifold 12, a compression mechanism 14, and a discharge assembly 16. The manifold 12 may be disposed in close proximity to the valve plate 107 and may include at least one suction chamber 18. The compression mechanism 14 may similarly be disposed within the manifold 12 and may include at least one piston 22 received generally within a cylinder 24 formed in the manifold 12. The discharge assembly 16 may be disposed at an outlet of the cylinder 24 and may include a discharge-valve 26 that controls a flow of discharge-pressure gas from the cylinder 24.


The capacity of the compressor 10 may be regulated by selectively opening and closing one or more of the plurality of pistons 110 to control flow through the valve plate 107. A predetermined number of pistons 110 may be used, for example, to selectively block the flow of suction gas to the cylinder 24.


It is recognized that one or more pistons 110 forming a bank of valve cylinders may be modulated together or independently, or one or more banks may not be modulated while others are modulated. The plurality of banks may be controlled by a single solenoid valve with a manifold, or each bank of valve cylinders may be controlled by its own solenoid valve. The modulation method may include duty-cycle modulation that, for example, provides an ON-time that ranges from zero to one hundred percent relative to an OFF-time, where fluid flow may be blocked for a predetermined OFF-time period. Additionally, the modulation method used may be digital (i.e., duty-cycle modulation), conventional blocked suction, or a combination thereof. The benefit of using a combination may be economic. For example, a full range of capacity modulation in a multi-bank compressor may be provided by using conventional blocked suction in all but one bank and the above-described digital modulation unloader piston configuration in the remaining bank of cylinders.


As shown in FIGS. 1 and 2, the piston 110 is capable of prohibiting fluid flow through the valve apparatus 100, and may be used for blocking fluid flow to a passage 104 in communication with the suction inlet of a compressor 10. While the valve apparatus 100 will be described hereinafter as being associated with a compressor 10, the valve apparatus 100 could also be associated with a pump, or used in other applications to control fluid flow.


The chamber 120 is formed in a body 102 of the valve apparatus 100 and slidably receives the piston 110 therein. The valve plate 107 may include a passage 104 formed therein, which is in selective communication with the valve opening 106. The passage 104 of the valve apparatus 100 may provide for communication of fluid to an inlet of the compressor 10, for example. The body 102 may include a control-pressure passage 124, which is in communication with the chamber 120. A control pressure may be communicated via the control-pressure passage 124 to chamber 120, to move the piston 110 relative to the valve opening 106. The body 102 may be positioned relative to the compression mechanism 14 such that the valve plate 107 is disposed generally between the compression mechanism 14 and the body 102 (FIG. 1).



FIGS. 2 and 3 illustrate valve apparatus 100 with piston 110 in lowered and raised positions, respectively. When a pressurized fluid is communicated to the chamber 120, the piston 110 moves against valve opening 106 to prohibit fluid flow therethrough (FIG. 2). In an application where the piston 110 blocks fluid flow to a suction inlet of a compressor 10 for “unloading” the compressor, the piston 110 may be referred to as an “unloader” piston. In such a compressor application, the pressurized fluid may be provided by the discharge-pressure gas of the compressor 10. Discharge-pressure gas may then be vented from the chamber 120, to bias the piston 110 away from the valve opening 106 (FIG. 3). Accordingly, the piston 110 is movable relative to the valve opening 106 to allow or prohibit fluid communication to passage 104.


With continued reference to FIG. 1, the piston 110 is moved by application of a control pressure to a chamber 120 in which the piston 110 is disposed. The volume within opening 106, generally beneath the piston 110, is at low pressure or suction pressure, and may be in communication with a suction-pressure gas of a compressor, for example. When the chamber 120 above the piston 110 is at a higher relative pressure than the area under the piston 110, the relative pressure difference causes the piston 110 to be urged in a downward direction within the chamber 120.


The piston 110 may further include a disc-shaped sealing element 140 disposed at an open end of the piston 110. Blocking fluid flow through the opening 106 is achieved when a valve seat 108 at opening 106 is engaged by the disc-shaped sealing element 140 disposed on the lower end of the piston 110.


When discharge-pressure gas is communicated to the chamber 120, the force of the discharge-pressure gas acting on the top of the piston 110 causes the piston 110 and sealing element 140 to move towards the raised valve seat 108 adjacent the valve opening 106 (FIG. 2). The high pressure gas disposed above the piston 110 and low-pressure gas disposed under the piston 110 (i.e., in the area proximate the valve seat 108) causes the piston 110 to move toward the valve plate 107. The disc-shaped sealing element 140 is held down against the valve opening 106 by the discharge-pressure gas applied on top of the disc-shaped sealing element 140. Suction-pressure gas is also disposed under the sealing element 140 at the annulus between the seal C and valve seat 108.


Referring to FIGS. 4 and 5, a pressure-responsive valve 300 is provided and may include a first-valve member 302, a second-valve member 304, a valve-seat member 306, an intermediate-isolation seal 308, an upper seal 310, and a check valve 312. The pressure-responsive valve 300 is movable in response to a solenoid valve 130 being energized and de-energized to facilitate movement of the piston 110 between the unloaded and loaded positions.


The solenoid valve 130 is in communication with a pressurized fluid. The pressurized fluid may be a discharge pressure gas from the compressor 10, for example. The solenoid valve 130 is movable to allow or prohibit communication of pressurized fluid to the pressure responsive valve member 300. The solenoid valve 130 functions as a two-port (on/off) valve for establishing and discontinuing communication of discharge-pressure gas to the valve 300. In connection with the pressure-responsive valve member 300, the solenoid valve 130 substantially has the output functionality of a three-port solenoid valve (i.e., suction-pressure gas or discharge-pressure gas may be directed to the control-pressure passage 124 to raise or lower the piston 110). When the solenoid valve 130 is energized to an open position, the solenoid valve 130 establishes communication of discharge-pressure gas to the valve 300.


The first-valve member 302 may include an upper-flange portion 314, a longitudinally extending portion 316 extending downward from the upper-flange portion 314, and a longitudinally extending passage 318. The passage 318 may extend completely through the first-valve member 302 and may include a flared check valve seat 320.


The second-valve member 304 may be an annular disk disposed around the longitudinally extending portion 316 of the first valve member 302 and may be fixedly attached to the first-valve member 302. While the first and second valve members 302, 304 are described and shown as separate components, the first and second valve members 302, 304 could alternatively be integrally formed. The first and second valve members 302, 304 (collectively referred to as the “slave piston”) are slidable within the body 102 between a first position (FIG. 4) and a second position (FIG. 5) to prohibit and allow, respectively, fluid communication between the control-pressure passage 124 (FIG. 3) and a vacuum port 322.


The intermediate-isolation seal 308 and the upper seal 310 may be fixedly retained in a seal-holder member 324, which, in turn, is fixed within the body 102. The intermediate-isolation seal 308 may be disposed around the longitudinally extending portion 316 of the first-valve member 302 (i.e., below the upper-flange portion 314) and may include a generally U-shaped cross section. An intermediate-pressure cavity 326 may be formed between the U-Shaped cross section of the intermediate-isolation seal 308 and the upper-flange portion 314 of the first-valve member 302.


The upper seal 310 may be disposed around the upper-flange portion 314 and may also include a generally U-shaped cross section that forms an upper cavity 328 beneath the base of the solenoid valve 130. The upper cavity 328 may be in fluid communication with a pressure reservoir or discharge-gas reservoir 330 formed in the body 102. The discharge-gas reservoir 330 may include a vent orifice 332 in fluid communication with a suction-pressure port 334. The suction-pressure port 334 may be in fluid communication with a source of suction gas such as, for example, a suction inlet of a compressor. Feed drillings or passageways 336, 338 may be formed in the body 102 and seal-holder member 324, respectively, to facilitate fluid communication between the suction-pressure port 334 and the intermediate-pressure cavity 326 to continuously maintain the intermediate-pressure cavity 326 at suction pressure. Suction pressure may be any pressure that is less than discharge pressure and greater than a vacuum pressure of the vacuum port 322. Vacuum pressure, for purposes of the present disclosure, may be a pressure that is lower than suction pressure and does not need to be a pure vacuum.


The valve-seat member 306 may be fixed within the body 102 and may include a seat surface 340 and an annular passage 342. In the first position (FIG. 4), the second-valve member 304 is in contact with the seat surface 340, thereby forming a seal therebetween and prohibiting communication between the control-pressure passage 124 and the vacuum port 322. In the second position (FIG. 5), the second-valve member 304 disengages the seat surface 340 to allow fluid communication between the control-pressure passage 124 and the vacuum port 322.


The check valve 312 may include a ball 344 in contact with a spring 346 and may extend through the annular passage 342 of the valve-seat member 306. The ball 344 may selectively engage the check valve seat 320 of the first-valve member 302 to prohibit communication of discharge gas between the solenoid valve 130 and the control-pressure passage 124.


With continued reference to FIGS. 4 and 5, operation of the pressure-responsive valve 300 will be described in detail. The pressure-responsive valve 300 is selectively movable between a first position (FIG. 4) and a second position (FIG. 5). The pressure-responsive valve 300 may move into the first position in response to discharge gas being released by the solenoid valve 130. Specifically, as discharge gas flows from the solenoid valve 130 and applies a force to the top of the upper-flange portion 314 of the first-valve member 302, the valve members 302, 304 are moved into a downward position, as shown in FIG. 4. Forcing the valve members 302, 304 into the downward position seals the second-valve member 304 against the seat surface 340 to prohibit fluid communication between the vacuum port 322 and the control-pressure passage 124.


The discharge gas accumulates in the upper cavity 328 formed by the upper seal 310 and in the discharge-gas reservoir 330, where it is allowed to bleed into the suction-pressure port 334 and through the vent orifice 332. While the suction-pressure port 334 is in fluid communication with suction chamber 18, the vent orifice 332 has a sufficiently small diameter to allow the discharge-gas reservoir 330 to remain substantially at discharge pressure while the solenoid valve 130 is energized.


A portion of the discharge gas is allowed to flow through the longitudinally extending passage 318 and urge the ball 344 of the check valve 312 downward, thereby creating a path for the discharge gas to flow through to the control-pressure passage 124 (FIG. 4). In this manner, the discharge gas is allowed to flow from the solenoid valve 130 and into the chamber 120 to urge the piston 110 downward into the unloaded position and prevent communication of suction-pressure gas into the cylinder 24.


To return the piston 110 to the upward (or loaded) position, the solenoid valve 130 may be de-energized, thereby prohibiting the flow of discharge gas therefrom. The discharge gas may continue to bleed out of the discharge-gas reservoir 330 through the vent orifice 332 and into the suction-pressure port 334 until the longitudinally extending passage 318, the upper cavity 328, and the discharge-gas reservoir 330 substantially reach suction pressure. At this point, there is no longer a net downward force urging the second-valve member 304 against the seat surface 340 of the valve-seat member 306. The spring 346 of the check valve 312 is thereafter allowed to bias the ball 344 into sealed engagement with check valve seat 320, thereby prohibiting fluid communication between the control-pressure passage 124 and the longitudinally extending passage 318.


As described above, the intermediate-pressure cavity 326 is continuously supplied with fluid at suction pressure (i.e., intermediate pressure), thereby creating a pressure differential between the vacuum port 322 (at vacuum pressure) and the intermediate-pressure cavity 326 (at intermediate pressure). The pressure differential between the intermediate-pressure cavity 326 and the vacuum port 322 applies a force on valve members 302, 304 and urges the valve members 302, 304 upward relative to the body 102. Sufficient upward movement of the valve members 302, 304 relative to the body 102 allows fluid communication between the chamber 120 and the vacuum port 322. Placing chamber 120 in fluid communication with the vacuum port 322 allows the discharge gas occupying chamber 120 to evacuate through the vacuum port 322 to passage 104 of valve plate 107.


The evacuating discharge gas flowing from chamber 120 to vacuum port 322 (FIG. 5) may assist the upward biasing force acting on the valve members 302, 304 by the intermediate-pressure cavity 326. The upward biasing force of the check valve 312 against the check valve seat 320 may further assist the upward movement of the valve members 302, 304 due to engagement between the ball 344 of the check valve 312 and the valve seat 320 of the first-valve member 302. Once the chamber 120 vents back to suction pressure, the piston 110 is allowed to slide upward to the loaded position, thereby allowing flow of suction-pressure gas into the cylinder 24 from the suction chamber 18 and increasing the capacity of the compressor.


In a condition where a compressor is started with discharge and suction pressures being substantially balanced and the piston 110 is in the unloaded position, the pressure differential between the intermediate-pressure cavity 326 and the vacuum port 322 provides a net upward force on the valve members 302, 304, thereby facilitating fluid communication between the chamber 120 and the vacuum port 322. The vacuum pressure of the vacuum port 322 will draw the piston 110 upward into the loaded position, even if the pressure differential between the intermediate-pressure cavity 326 and the area upstream of 182 (FIG. 1) is insufficient to force the piston 110 upward into the loaded position. This facilitates moving the piston 110 out of the unloaded position and into the loaded position at a start-up condition where discharge and suction pressures are substantially balanced.


The above valve apparatus is generally of the type described in Assignee's U.S. application Ser. No. 12/177,528, the disclosure of which is incorporated herein by reference.


With reference to FIGS. 6 and 7, a header 128 of compressor 10 is illustrated. Header 128 includes pistons 110a, 110b, and 110c, chambers 120a, 120b, and 120c respectively in fluid communication with control-pressure passages 124a, 124b, and 124c and respectively receiving pistons 110a, 110b, and 110c, and the pressure-responsive valve 300, which cooperate to control the timing of the opening of each respective valve apparatus 100.


With reference to FIGS. 8-12, the mass flow rate into the passage 104 of the valve plate 107 may be controlled with the incorporation a control element such as a chamber 120a having a reduced volume when compared to the other chambers 120b, 120c and/or reduced orifices 126b and 126c associated with control-pressure passages 124b and 124c, respectively. As high pressure gas is communicated to the control-pressure passages 124a, 124b, and 124c and into the chambers 120a, 120b, and 120c, the pistons 110a, 110b, and 110c are biased into the lowered or unloaded position. As pressurized gas is vented from the chambers 120a, 120b, and 120c, the pistons 110a, 110b, and 110c raise and transition into the loaded position, which may allow a rapid inrush of gas into the previously evacuated valve plate 107. Raising multiple valves 100 simultaneously may create excessive mass flow rate due to the inrush of gas into the passage 104 of the valve plate 107. By intentionally staging the valves 100 to open at varied times, the mass flow rate into the passage 104 of the valve plate 107 may be controlled. The valves 100 may be staged using a control element such as the chamber 120a and/or the reduced orifices 126b, 126c.


The volume of the chamber 120a may be smaller than the chambers 120b, 120c by reducing the travel of the piston 110a within the chamber 120a (FIG. 9) and/or by reducing a diameter of the piston 110a and, thus, the diameter of the chamber 120a (FIG. 11). In either scenario, reducing the volume of the chamber 120a reduces the volume of gas that must be communicated to or from the chamber 120a to cause movement of the piston 110a relative to the chamber 120a between the lowered (i.e., unloaded) position and the raised (i.e., loaded) position.


With further reference to FIG. 9, the header 128 may include a lead piston 110a and a secondary piston 110b. The lead piston 110a may be disposed within a chamber 120a having a smaller volume than the chamber 120b associated with the piston 110b. The reduced volume of the chamber 120a may be accomplished by reducing the travel of the piston 110a within the chamber 120a, which may be represented by distance R. As previously described in FIG. 1, the piston 110 may be moved by communication of a control pressure from the control pressure-passage 124 to the chamber 120, thereby moving the piston 110 relative the opening 106 of the valve plate 107 to control fluid flow therethrough.


The reduced volume of chamber 120a of the lead piston 110a may be in fluid communication with the control-pressure passage 124a and the previously described valve member 300. Because the reduced volume of chamber 120a has a smaller volume than the chamber 120b, less fluid is required to move the lead piston 110a into the unloaded position (FIG. 2) and less fluid needs to be evacuated from the chamber 120a to transition the lead piston 110a into the loaded position (FIG. 3) when compared to the volume of fluid required to load and unload the piston 110b. Therefore, the lead piston 110a will be the first piston to open or close due to the smaller volume of chamber 120a.


The secondary piston 110b may be located proximate to the lead piston 110a and may include the chamber 120b in fluid connection with the control-pressure passage 124b. The control-pressure passage 124b may be fluidly connected to the previously described valve member 300 and may include the reduced orifice 126b. By reducing the flow rate of pressurized gas into and out of the chamber 120b, the reduced orifice 126b operates to delay the transition of the secondary piston 110b between the loaded and unloaded positions. Orifice size may be varied depending on the desired delay between loaded and unloaded positions of the secondary piston 110b.


With reference to FIG. 10, the header 128 may include one or more third pistons 110c. The third pistons 110c may include the chambers 120c in fluid communication with the control-pressure passages 124c. The control-pressure passages 124c may be fluidly connected to the valve member 300 and may include a reduced orifice 126c. The reduced orifice 126c may be a different size than that of the reduced orifice 126b of the passage 124b. In certain aspects, the reduced orifice 126c may be smaller than the reduced orifice 126b, thus reducing the flow rate of pressurized fluid between the valve member 300 and the chambers 120c more than the reduction in flow rate in the passages 124b. Therefore, the delay between loaded and unloaded positions of the third pistons 110c would be greater than the delay for the secondary piston 110b. The lead piston 110a and control chamber 120a could likewise be associated with a reduced orifice (not shown) provided the other features of the piston 110a and chamber 120a allow the lead piston 110a to move into the loaded position in advance of the pistons 110b, 110c. In other aspects, the diameter of the control-pressure passages 124a, 124b, 124c may be varied to further restrict the flow of pressurized gas to and from the chambers 120a, 120b, 120c.


In addition to the foregoing, the valve opening 106 of the valve plate 107 may be varied in size to further prevent the inrush of gas when the pistons 110a, 110b, 110c are moved into the raised or loaded position. For example, a valve opening 106 having a large opening will allow a greater flow rate of gas through the valve opening 106 when the pistons 110a, 110b, 110c move from the unloaded position to the loaded position when compared to a valve opening 106 having a smaller opening. In one configuration, a valve opening 106a (FIG. 11) associated with the lead piston 110a is smaller than the valve opening 106b associated with the second piston 110b. The smaller valve opening 106a prevents a large inrush of gas into the suction chamber 18 when the lead piston 110a is moved into the loaded position before the second piston 110b is moved into the loaded position.


With reference to FIGS. 9-12, operation of the compressor 10 will be described in detail. The pressure responsive valve member 300 may be in fluid communication with the control-pressure passages 124a, 124b, and 124c and the chambers 120a, 120b, and 120c, respectively. The chamber 120a may have a reduced volume when compared to the other chambers 120b, 120c. The reduced volume of the chamber 120a may be accomplished by reducing the travel of the piston 110a within the chamber 120a such that the piston 110a is required to travel a shorter distance between the loaded position and the unloaded position when compared to the pistons 110b, 110c.


The passage 124b may have a reduced orifice 126b disposed proximate to the valve member 300 to restrict fluid flow to the chamber 120b and control the rate of movement of the piston 110b during the loaded to unloaded transition and vice versa. Similarly, the passages 124c may have reduced orifices 126c disposed proximate to the valve member 300 that are smaller or larger than the reduced orifice 126b to restrict fluid flow to the chamber 120c at a rate different from that to the chamber 120b, thus establishing a transition time for the piston 110c that is different than the piston 110b. The reduced orifices 126b, 126c could alternatively be disposed proximate to the chambers 120b, 120c (FIG. 11).


The chambers 120a, 120b, and 120c may initially include the lead piston 110a, the secondary piston 110b and one or more third pistons 110c, respectively, all in a raised or loaded position. The solenoid 130 may communicate discharge pressure gas into the passages 124a, 124b, and 124c via the valve member 300. Because the passage 124a is unrestricted, the gas will be communicated therethrough to the chamber 120a with the highest mass flow rate. Because the chamber 120a includes a smaller volume than chambers 120b, 120c, less gas is required to move the lead piston 110a to the down or unloaded position when compared to the chambers 120b, 120c. Therefore, the lead piston 110a will seat into the opening 106 in the valve plate 107 before the pistons 110b, 110c, and prevent fluid flow to the passage 104.


The lead piston 110a could alternatively or additionally include a reduced diameter in addition to a reduced travel, thereby causing the chamber 120a to have a reduced diameter. As shown in FIG. 11, reducing the diameter of the chamber 120a allows the piston 110a to be raised and lowered faster than the piston 110b having a greater diameter, as the volume of gas that must be evacuated from or communicated to the control chamber 120a associated with the piston 110a is reduced.


As described above, the reduced orifices 126c may include a smaller size than the reduced orifice 126b. Due to the relative size of orifice 126c, the valve 300 will deliver a higher flow rate of discharge gas through the control-pressure passage 124b and into the chamber 120b. The chambers 120b and 120c may have the same volume, thus the increased flow rate to the chamber 120b will transition the piston 110b from the loaded position to the unloaded position before the pistons 110c. After the piston 110b is seated into the opening 106 following seating of the lead piston 110a, the smallest flow rate of gas delivered through the passages 124c and into the chambers 120c transitions the pistons 110c into the unloaded position; seated in the opening 106.


The transition from the unloaded position to the loaded position operates in a similar fashion. The solenoid 130 may be de-energized or energized to prevent communication of discharge gas to the valve member 300. Energizing or de-energizing solenoid 130 causes the valve 300 to vent discharge gas out common exhaust port 322. Discharge gas may flow from the chambers 120a, 120b, and 120c through passages 124a, 124b, and 124c to the valve 300 and out exhaust port 322. The lead piston 110a may move to the raised position first due to the reduced volume in chamber 120a and unrestricted passage 124a. As described above, the reduced volume of chamber 120a may be accomplished by shortening a travel of the lead piston 110a and/or by reducing a diameter of the lead piston 110a and the chamber 120a.


The secondary piston 110b may be raised following the piston 110a and before the pistons 110c due to the larger restricted orifice 126b in the passage 124b. Finally, the third pistons 110c may be raised to the loaded position due to the smallest flow rate of discharge gas moving to the exhaust port 322. The cycle may then be repeated.


In the above described aspect, the pistons 110a, 110b, and 110c open in sequence. By staggering the operation of the multiple valve apparatuses 100, the flow rate of pressurized gas flowing through the passage 104 of valve plate 107 may be better controlled and improve compressor performance and efficiency. It should be noted that the compressor 10 and valve apparatus 100 may comprise combinations of one or more of the above components or features, such as the solenoid assembly 130, which may be separate from or integral with the compressor 10.


The above described combination of a reduced volume chamber and reduced orifices is merely exemplary and the present disclosure is not limited to such a configuration. Any number of pistons with reduced-volume piston chambers, reduced orifices, reduced valve openings, or the inclusion of a reduced control-pressure passage diameter to stage opening of each piston 110a, 110b, 110c may be employed.


A specific example of a header 128′ for use with a compressor 10′ is provided in FIG. 13. FIG. 13 illustrates a lead piston 110a′ and a secondary piston 110b′ respectively associated with a chamber 120a′ and a chamber 120b′. The chamber 120a′ includes a smaller diameter when compared to chamber 120b′ as well as a reduced length when compared to chamber 120b′. The reduced length of chamber 120a′ reduces the overall travel of the piston 110a′ within the chamber 120a′ when compared to the overall travel of the piston 110b′ within the chamber 120b′.


The piston 110a′ is moved into the loaded position before the piston 110b′ due to the smaller volume of the chamber 120a′ when compared to the chamber 120b′. Specifically, a smaller volume of gas is required to be evacuated along a passage 124a′ to move the piston 110a′ from the unloaded position to the loaded position when compared to the volume of gas required to be evacuated along a passage 124b′ to move the piston 110b′ from the unloaded position to the loaded position. A restricted orifice 126b′ is disposed proximate to the chamber 120b′ along the passage 124b′ to further reduce the flow rate of gas transferred to and evacuated from the chamber 120b′. As described above, the gas is either supplied to or evacuated from the chambers 120a′, 120b′ by energizing or de-energizing a solenoid 130 associated with the valve 300.


A valve opening 106a′ associated with the piston 110a′ is smaller than a valve opening 106b′ associated with the piston 110b′ The smaller opening prevents gas from rushing from the suction chamber 18 and into passage 104′ at an excessive mass flow rate when the piston 110a′ is moved into the loaded position in advance of the piston 110b′.


Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.


The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a”, “an” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.


When an element or layer is referred to as being “on”, “engaged to”, “connected to” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to”, “directly connected to” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.


Spatially relative terms, such as “inner,” “outer,” “beneath”, “below”, “lower”, “above”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.

Claims
  • 1. An apparatus comprising: a compression mechanism;a valve plate associated with said compression mechanism and including a plurality of ports in fluid communication with said compression mechanism;a header disposed adjacent to said valve plate;a plurality of cylinders disposed adjacent to said valve plate;a plurality of pistons respectively disposed in said plurality of cylinders and movable between a first position separated from said valve plate and permitting flow through said plurality of ports and into said compression mechanism and a second position engaging said valve plate and restricting flow through said plurality of ports and into said compression mechanism;a chamber disposed within each of said cylinders and receiving a pressurized fluid in a first mode to move said piston into said second position and venting said pressurized fluid in a second mode to move said piston into said first position, one of said chambers including a smaller volume than the other of said chambers.
  • 2. The apparatus of claim 1, wherein said pressurized fluid is discharge-pressure gas received from said compression mechanism.
  • 3. The apparatus of claim 1, further comprising a valve member operable to selectively supply said chamber with said pressurized fluid.
  • 4. The apparatus of claim 3, wherein said valve member includes a solenoid valve.
  • 5. The apparatus of claim 4, further comprising a check valve selectively allowing fluid communication between said solenoid valve and said chamber.
  • 6. The apparatus of claim 5, wherein said valve member is responsive to a pressure differential between a vacuum pressure and an intermediate pressure.
  • 7. The apparatus of claim 6, wherein said intermediate pressure is suction pressure.
  • 8. The apparatus of claim 3, wherein said valve member includes a plurality of slave piston seals at least partially defining a plurality of cavities.
  • 9. The apparatus of claim 1, further comprising a device restricting flow of said pressurized fluid to at least one of said chambers.
  • 10. The apparatus of claim 9, wherein said device is a reduced-diameter orifice disposed within a passage supplying said pressurized fluid to said chambers.
  • 11. The apparatus of claim 9, wherein said device is associated with the other of said chambers.
  • 12. The apparatus of claim 1, wherein said one of said chambers is shorter than the other of said chambers.
  • 13. The apparatus of claim 12, further comprising a device restricting flow of said pressurized fluid to at least one of said chambers.
  • 14. The apparatus of claim 13, wherein said device is a reduced-diameter orifice disposed within a passage supplying said pressurized fluid to said chambers.
  • 15. The apparatus of claim 13, wherein said device is associated with the other of said chambers.
  • 16. An apparatus comprising: a compression mechanism;a valve plate associated with said compression mechanism and including a plurality of ports in fluid communication with said compression mechanism;a header disposed adjacent to said valve plate;a plurality of cylinders disposed adjacent to said valve plate;a plurality of pistons respectively disposed within said plurality of cylinders and movable relative to said cylinders between a first position spaced apart from the valve plate to allow flow through said plurality of ports and into said compression mechanism and a second position engaging the valve plate to restrict flow through said plurality of ports and into said compression mechanism;a chamber disposed within each of said cylinders and receiving a pressurized fluid in a first mode to move said piston into said second position and venting said pressurized fluid in a second mode to move said piston into said first position, one of said chambers venting said pressurized fluid at a greater rate than the other of said chambers to move one of said pistons into said first position before the other of said pistons.
  • 17. The apparatus of claim 16, wherein said pressurized fluid is discharge-pressure gas received from said compression mechanism.
  • 18. The apparatus of claim 16, further comprising a valve mechanism selectively supplying said chamber with said pressurized fluid.
  • 19. The apparatus of claim 18, further comprising a check valve selectively allowing fluid communication between said valve mechanism and said piston.
  • 20. The apparatus of claim 18, wherein said valve mechanism selectively vents said chambers to allow said pistons to move from said second position to said first position.
  • 21. The apparatus of claim 16, wherein one of said chambers includes a smaller volume than the other of said chambers.
  • 22. The apparatus of claim 16, wherein one of said chambers includes a smaller diameter than the other of said chambers.
  • 23. The apparatus of claim 16, further comprising a device restricting flow of said pressurized fluid to at least one of said chambers.
  • 24. The apparatus of claim 23, wherein said device is a reduced-diameter orifice disposed within a passage supplying said pressurized fluid to said chambers.
  • 25. The apparatus of claim 16, wherein said movement of said plurality of pistons is staggered such that each of said plurality of pistons moves from said first position to said second position in sequence.
  • 26. The apparatus of claim 16, wherein said plurality of pistons includes a lead piston moving from said second position to said first position before the other of said pistons.
  • 27. The apparatus of claim 16, wherein one of said plurality of ports is smaller than the other of said plurality of ports.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/147,661, filed on Jan. 27, 2009. The entire disclosure of the above application is incorporated herein by reference.

US Referenced Citations (286)
Number Name Date Kind
878562 Reeve Feb 1908 A
1394802 Wineman Oct 1921 A
1408943 Holdsworth Mar 1922 A
1584032 Hoffman May 1926 A
1716533 Redfield Jun 1929 A
1796796 LeValley Mar 1931 A
1798435 Saharoff Mar 1931 A
1878326 Ricardo Sep 1932 A
1984171 Baker Dec 1934 A
2134834 Nordberg Nov 1938 A
2134835 Nordberg Nov 1938 A
2171286 Baker Aug 1939 A
2185473 Neeson Jan 1940 A
2206115 Obreiter, Jr. Jul 1940 A
2302847 Ferguson Nov 1942 A
2304999 Gonzalez Dec 1942 A
2346987 Newton Apr 1944 A
2369841 Neeson Feb 1945 A
2412503 Gerteis Dec 1946 A
2421872 Evelyn Jun 1947 A
2423677 Balogh Jul 1947 A
2470380 Turnwald May 1949 A
2546613 Paget Mar 1951 A
2602582 Garbaccio Jul 1952 A
2626099 Ashley Jan 1953 A
2626100 McIntyre Jan 1953 A
2738659 Heed Mar 1956 A
2801827 Dolza Aug 1957 A
2982467 Corson et al. May 1961 A
3303988 Weatherhead Feb 1967 A
3578883 Cheney May 1971 A
3653783 Sauder Apr 1972 A
3732036 Busbey et al. May 1973 A
3759057 English et al. Sep 1973 A
3790310 Whelan Feb 1974 A
RE29283 Shaw Jun 1977 E
4043710 Bunn et al. Aug 1977 A
RE29621 Conley et al. May 1978 E
4105371 Savage et al. Aug 1978 A
4112703 Kountz Sep 1978 A
4132086 Kountz Jan 1979 A
4149827 Hofmann, Jr. Apr 1979 A
4152902 Lush May 1979 A
4184341 Friedman Jan 1980 A
4220197 Schaefer et al. Sep 1980 A
4227862 Andrew et al. Oct 1980 A
4231713 Widdowson et al. Nov 1980 A
4249866 Shaw et al. Feb 1981 A
4267702 Houk May 1981 A
4336001 Andrew et al. Jun 1982 A
4361417 Suzuki Nov 1982 A
4362475 Seitz Dec 1982 A
4370103 Tripp Jan 1983 A
4384462 Overman et al. May 1983 A
4396345 Hutchinson Aug 1983 A
4406589 Tsuchida et al. Sep 1983 A
4407639 Maruyama Oct 1983 A
4419866 Howland Dec 1983 A
4432705 Fraser et al. Feb 1984 A
4437317 Ibrahim Mar 1984 A
4442680 Barbier et al. Apr 1984 A
4445824 Bunn et al. May 1984 A
4447193 Bunn et al. May 1984 A
4447196 Nagasaku et al. May 1984 A
4452571 Koda et al. Jun 1984 A
4459817 Inagaki et al. Jul 1984 A
4463573 Zeno et al. Aug 1984 A
4463576 Burnett et al. Aug 1984 A
4481784 Elmslie Nov 1984 A
4494383 Nagatomo et al. Jan 1985 A
4506517 Pandzik Mar 1985 A
4506518 Yoshikawa et al. Mar 1985 A
4507936 Yoshino Apr 1985 A
4522568 Gelse et al. Jun 1985 A
4575318 Blain Mar 1986 A
4580947 Shibata et al. Apr 1986 A
4580949 Maruyama et al. Apr 1986 A
4588359 Hikade May 1986 A
4610610 Blain Sep 1986 A
4612776 Alsenz Sep 1986 A
4632145 Machu Dec 1986 A
4632358 Orth et al. Dec 1986 A
4634046 Tanaka Jan 1987 A
4638973 Torrence Jan 1987 A
4651535 Alsenz Mar 1987 A
4655689 Westveer et al. Apr 1987 A
4663725 Truckenbrod et al. May 1987 A
4669272 Kawai et al. Jun 1987 A
4685309 Behr Aug 1987 A
4697421 Otobe et al. Oct 1987 A
4697431 Alsenz Oct 1987 A
4715792 Nishizawa et al. Dec 1987 A
4723895 Hayase Feb 1988 A
4726740 Suzuki et al. Feb 1988 A
4727725 Nagata et al. Mar 1988 A
4737080 Owsley et al. Apr 1988 A
4743168 Yannascoli May 1988 A
4744733 Terauchi et al. May 1988 A
4747756 Sato et al. May 1988 A
4756166 Tomasov Jul 1988 A
4764096 Sawai et al. Aug 1988 A
4789025 Brandemuehl et al. Dec 1988 A
4794759 Lyon Jan 1989 A
4831832 Alsenz May 1989 A
4838766 Kimura et al. Jun 1989 A
4843834 Inoue et al. Jul 1989 A
4848101 Suzuki Jul 1989 A
4856291 Takahashi Aug 1989 A
4860549 Murayama Aug 1989 A
4869289 Hrabal Sep 1989 A
4869291 Hrabal Sep 1989 A
4875341 Brandemuehl et al. Oct 1989 A
4878818 Shaw Nov 1989 A
4880356 Suzuki et al. Nov 1989 A
4892466 Taguchi et al. Jan 1990 A
4893480 Matsui et al. Jan 1990 A
4896860 Malone et al. Jan 1990 A
4909043 Masauji et al. Mar 1990 A
4910968 Yamashita et al. Mar 1990 A
4926652 Kitamoto May 1990 A
4932220 Inoue Jun 1990 A
4932632 Nicol Jun 1990 A
4934157 Suzuki et al. Jun 1990 A
4938684 Karl et al. Jul 1990 A
4946350 Suzuki et al. Aug 1990 A
4951475 Alsenz Aug 1990 A
4962648 Takizawa et al. Oct 1990 A
4968221 Noll Nov 1990 A
4974427 Diab Dec 1990 A
5006045 Shimoda et al. Apr 1991 A
5007247 Danig Apr 1991 A
5009074 Goubeaux et al. Apr 1991 A
5015155 Brown May 1991 A
5018366 Tanaka et al. May 1991 A
5022234 Goubeaux et al. Jun 1991 A
5025636 Terauchi Jun 1991 A
5027612 Terauchi Jul 1991 A
5035119 Alsenz Jul 1991 A
5052899 Peterson Oct 1991 A
5056990 Nakajima Oct 1991 A
5059098 Suzuki et al. Oct 1991 A
5065750 Maxwell Nov 1991 A
5067326 Alsenz Nov 1991 A
5079929 Alsenz Jan 1992 A
5088297 Maruyama et al. Feb 1992 A
5094085 Irino Mar 1992 A
5115644 Alsenz May 1992 A
5129791 Nakajima Jul 1992 A
5156013 Arima et al. Oct 1992 A
5163301 Cahill-O'Brien et al. Nov 1992 A
5189886 Terauchi Mar 1993 A
5190446 Salter et al. Mar 1993 A
5191643 Alsenz Mar 1993 A
5191768 Fujii Mar 1993 A
5199855 Nakajima et al. Apr 1993 A
5203179 Powell Apr 1993 A
5211026 Linnert May 1993 A
5226472 Benevelli et al. Jul 1993 A
5228301 Sjoholm et al. Jul 1993 A
5241833 Ohkoshi Sep 1993 A
5243827 Hagita et al. Sep 1993 A
5243829 Bessler Sep 1993 A
5244357 Bauer Sep 1993 A
5247989 Benevelli Sep 1993 A
5253482 Murway Oct 1993 A
5259210 Ohya et al. Nov 1993 A
5263333 Kubo et al. Nov 1993 A
5265434 Alsenz Nov 1993 A
5282329 Teranishi Feb 1994 A
5282729 Swain Feb 1994 A
5319943 Bahel et al. Jun 1994 A
5331998 Sperry Jul 1994 A
5342186 Swain Aug 1994 A
5363649 McBurnett et al. Nov 1994 A
5381669 Bahel et al. Jan 1995 A
5388968 Wood et al. Feb 1995 A
5392612 Alsenz Feb 1995 A
5396780 Bendtsen Mar 1995 A
5400609 Sjoholm et al. Mar 1995 A
5415005 Sterber et al. May 1995 A
5415008 Bessler May 1995 A
5425246 Bessler Jun 1995 A
5426952 Bessler Jun 1995 A
5431026 Jaster Jul 1995 A
5435145 Jaster Jul 1995 A
5438844 Hoglund et al. Aug 1995 A
5440891 Hindmon, Jr. et al. Aug 1995 A
5440894 Schaeffer et al. Aug 1995 A
5447420 Caillat et al. Sep 1995 A
5463876 Bessler et al. Nov 1995 A
5492450 Bearint et al. Feb 1996 A
5493867 Szynal et al. Feb 1996 A
5502970 Rajendran Apr 1996 A
5507316 Meyer Apr 1996 A
5515267 Alsenz May 1996 A
5533873 Kindl Jul 1996 A
5540061 Gommori et al. Jul 1996 A
5540558 Harden et al. Jul 1996 A
5546756 Ali Aug 1996 A
5562426 Watanabe et al. Oct 1996 A
5572879 Harrington et al. Nov 1996 A
5591014 Wallis et al. Jan 1997 A
5600961 Whipple, III Feb 1997 A
5611674 Bass et al. Mar 1997 A
5613841 Bass et al. Mar 1997 A
5634350 De Medio Jun 1997 A
5642753 Thistle et al. Jul 1997 A
5642989 Keddie Jul 1997 A
5688111 Takai Nov 1997 A
5695325 Sperry Dec 1997 A
5713724 Centers et al. Feb 1998 A
5735134 Liu et al. Apr 1998 A
5741120 Bass et al. Apr 1998 A
5762483 Lifson et al. Jun 1998 A
5765391 Lee et al. Jun 1998 A
5785081 Krawczyk et al. Jul 1998 A
5807081 Schutte et al. Sep 1998 A
5816055 Ohman Oct 1998 A
5855475 Fujio et al. Jan 1999 A
5865604 Kawaguchi et al. Feb 1999 A
5947701 Hugenroth Sep 1999 A
5967761 Mehaffey Oct 1999 A
6026587 Cunkelman et al. Feb 2000 A
6042344 Lifson Mar 2000 A
6047556 Lifson Apr 2000 A
6047557 Pham et al. Apr 2000 A
6077051 Centers et al. Jun 2000 A
6086335 Bass et al. Jul 2000 A
6148632 Kishita et al. Nov 2000 A
6206652 Caillat Mar 2001 B1
6213731 Doepker et al. Apr 2001 B1
6238188 Lifson May 2001 B1
6257848 Terauchi Jul 2001 B1
6361288 Sperry Mar 2002 B1
6393852 Pham et al. May 2002 B2
6401472 Pollrich et al. Jun 2002 B2
6408635 Pham et al. Jun 2002 B1
6431210 Lowe et al. Aug 2002 B1
6438974 Pham et al. Aug 2002 B1
6449972 Pham et al. Sep 2002 B2
6467280 Pham et al. Oct 2002 B2
6481976 Kimura et al. Nov 2002 B2
6499305 Pham et al. Dec 2002 B2
6517332 Lifson et al. Feb 2003 B1
6520751 Fujita et al. Feb 2003 B2
6561482 Okii May 2003 B2
6575710 Wallis Jun 2003 B2
6619934 Loprete et al. Sep 2003 B2
6626645 Okii et al. Sep 2003 B2
6662578 Pham et al. Dec 2003 B2
6662583 Pham et al. Dec 2003 B2
6663358 Loprete et al. Dec 2003 B2
6676388 Lee et al. Jan 2004 B2
6679072 Pham et al. Jan 2004 B2
6715999 Ancel et al. Apr 2004 B2
6772990 Sasaki et al. Aug 2004 B2
6824120 Furuta et al. Nov 2004 B2
6868685 Kim Mar 2005 B2
6971861 Black et al. Dec 2005 B2
7037087 Uemura et al. May 2006 B2
7331767 Spiegl et al. Feb 2008 B2
RE40400 Bass et al. Jun 2008 E
7389649 Pham et al. Jun 2008 B2
7419365 Pham et al. Sep 2008 B2
RE40554 Bass et al. Oct 2008 E
RE40830 Caillat Jul 2009 E
7654098 Pham et al. Feb 2010 B2
7819131 Walpole Oct 2010 B2
20010001463 Hayasaki et al. May 2001 A1
20010003573 Kimura et al. Jun 2001 A1
20010011463 Pollrich et al. Aug 2001 A1
20010031207 Maeda et al. Oct 2001 A1
20020182087 Okii et al. Dec 2002 A1
20020195151 Erickson et al. Dec 2002 A1
20030070441 Moon et al. Apr 2003 A1
20040079096 Itoh et al. Apr 2004 A1
20040093881 Kim May 2004 A1
20040231348 Murase et al. Nov 2004 A1
20050025648 Shimizu et al. Feb 2005 A1
20050031459 Hibino et al. Feb 2005 A1
20060218953 Hirota Oct 2006 A1
20060218959 Sandkoetter Oct 2006 A1
20070022771 Pham et al. Feb 2007 A1
20080131297 Hibino et al. Jun 2008 A1
20080175727 Umemura et al. Jul 2008 A1
20090028723 Wallis et al. Jan 2009 A1
Foreign Referenced Citations (72)
Number Date Country
1135368 Nov 1982 CA
1137614 Dec 1996 CN
1159555 Sep 1997 CN
764179 Apr 1953 DE
3422398 Dec 1985 DE
42 12 162 Oct 1993 DE
0060315 Sep 1982 EP
0085246 Aug 1983 EP
0087818 Sep 1983 EP
0222109 May 1987 EP
0 281 317 Sep 1988 EP
0309242 Mar 1989 EP
0403239 Dec 1990 EP
0482592 Apr 1992 EP
0747597 Dec 1996 EP
0747598 Dec 1996 EP
0777052 Jun 1997 EP
0814262 Dec 1997 EP
0871818 Oct 1998 EP
1 489 368 Dec 2004 EP
1 710 435 Oct 2006 EP
551304 Feb 1943 GB
654451 Jun 1951 GB
733511 Jul 1955 GB
762110 Nov 1956 GB
889286 Feb 1962 GB
1054080 Jan 1967 GB
1248888 Oct 1971 GB
2043863 Oct 1980 GB
2116635 Sep 1983 GB
2247543 Mar 1992 GB
2269246 Feb 1994 GB
2269684 Feb 1994 GB
54064711 May 1979 JP
57-162988 Apr 1981 JP
57-204381 Dec 1982 JP
57200685 Dec 1982 JP
58195089 Nov 1983 JP
S58-214644 Dec 1983 JP
59145392 Aug 1984 JP
61-107989 Jul 1986 JP
62-003190 Jan 1987 JP
62-003191 Jan 1987 JP
62-29779 Feb 1987 JP
62-125262 Jun 1987 JP
62-125263 Jun 1987 JP
63205478 Aug 1988 JP
63-138490 Sep 1988 JP
S61-138490 Sep 1988 JP
63266178 Nov 1988 JP
01200079 Aug 1989 JP
2115577 Apr 1990 JP
02-173369 Jul 1990 JP
02191882 Jul 1990 JP
03138473 Jun 1991 JP
3199677 Aug 1991 JP
04284194 Oct 1992 JP
05164043 Jun 1993 JP
05187357 Jul 1993 JP
06093971 Apr 1994 JP
6 207602 Jul 1994 JP
7190507 Jul 1995 JP
07305906 Nov 1995 JP
08284842 Oct 1996 JP
09280171 Oct 1997 JP
10037863 Feb 1998 JP
2005256793 Sep 2005 JP
2008208757 Sep 2008 JP
8910768 Nov 1989 WO
9007683 Jul 1990 WO
9306423 Apr 1993 WO
2005022053 Mar 2005 WO
Related Publications (1)
Number Date Country
20100189581 A1 Jul 2010 US
Provisional Applications (1)
Number Date Country
61147661 Jan 2009 US