The invention relates to an unlocking device for actuating a control part in the locked state to release it, with an actuating magnet guided in a coil base and/or in housing parts of the actuating magnet. An actuating element can be moved and, in the actuating position, clears an unlocking path for a control unit having a locking part. The locking part, unlocked by the actuating element via the control unit, clears the path of movement for the control part to be actuated.
Unlocking devices such as these can be used for a plurality of applications. Especially wherever it is important to execute an initiation process for a technical component in a dedicated and reliable manner, unlocking devices with actuating magnets are preferred. This actuating magnet even in rough, everyday operation, for example, when exposed to vibrations or impacts, is reliable in use, as experience shows. With the unlocking device according to the invention, especially in the motor vehicle domain, safety-relevant parts can be unlocked and caused to operate, whether in the form of a roll bar which is to be deployed or in the form of a headrest which moves forward in a crash, in order to reduce the free impact path between the back of the head of the seat occupant and the head impact surface on the headrest, etc.
In these unlocking devices, the actuating magnet with the actuating element and movable control unit can be housed in a very small installation space. These devices can then be accommodated in a space-saving manner within motor vehicles. As a result of the space-saving structure, these unlocking devices can also be used directly at the site of the initiation process, where previously, in the prior art, optionally Bowden cables which are complex to manage have accomplished the initiation process over greater path distances.
On the other hand, for safety-relevant applications of these unlocking devices, there is, however, the danger of loss of operating reliability. After an initiation process in which the pertinent safety means has been activated by triggering the control part, in many cases it is necessary, in order to ensure operating reliability, to replace the safety means itself or its parts by new parts before reactuation. In other words, there is the risk that an already activated safety means will be inadvertently returned to the initial position, the control part will be returned to the locked state by the unlocking device, and the safety means which is no longer reliable after completed activation is “armed” again.
An object of the invention is to provide an unlocking device in which the danger of this loss of operating reliability of an assigned safety means is avoided.
According to the invention, this object is basically achieved by an unlocking device having a locking part guided in the housing part of the actuating magnet. A blocking part keeps the locking part in the unlocked position corresponding to the release of the control part to prevent unintentional re-locking of the control part.
In one especially advantageous embodiment, the blocking part is formed by a spring clamp guided with its free spring ends at least partially along the housing part for movement between the blocking position in which the locking part is held by the spring clamp in the unlocked position, and the position in which the locking part is released for re-locking of the control part. The arrangement can preferably be made such that the spring clamp is accessible to manual movement out of the blocking position.
The spring clamp can be shaped such that the free spring ends in the blocking position between themselves form a clamping gap for clamping the locking part in the unlocking position.
In embodiments characterized by a design enabling simple and comfortable handling, oblique guides are on the housing part. When the spring clamp moves out of the blocking position into the position releasing the locking part, the oblique guides form control surfaces for the spring ends. The central surfaces spread the spring ends apart from one another and widen the clamping gap to release the locking part for return into the position locking the control part.
Other objects, advantages and salient features of the present invention will become apparent from the following detailed description, which, taken in conjunction with the annexed drawings, discloses a preferred embodiment of the present invention.
Referring to the drawings which form a part of this disclosure and which are schematic and not to scale:
The unlocking device for the control part 10, according to the perspective view of
The actuating magnet 12, made in the manner of a conventional electromagnet, is designed such that when power is supplied to the coil base 14 via a connector 18, the actuating element 16 is pulled to the inside, that is, in the view of
In the actuating position of the unlocking device shown in
The control unit 24 has a pivoting lever 34, as shown in
As shown in
In certain application tasks, a rotary spring or the like can be attached to the second axis 26 to move the pivoting lever along the swiveling path 22 as soon as the actuating element 16 has been pulled into the coil base 14. In this case, however, in the actuated state of the actuating magnet 12, the control part 10 by an energy storage device will cause unlocking for the pivoting lever 34 from the outside which then pivots around the second axis 26 into the unlocked position. For this reason, the control part 10 provides for a spring clamp, preferably in the form of a double spring clamp 40, with an energy storage device in the form of spring energy in the unlocked state enabling pivoting away along the path 32 of movement from the control unit 24 for the control part 10. Specifically, control part 10 pivots around a third axis 42 extending parallel to the first axis 20 and the second axis 26. Based on the inherent dynamics of the control part 10 in the form of the double spring clamp 40, it is therefore sufficient to actuate the actuating magnet 12 to be able to undertake unlocking, controlled from the outside.
The actuating magnet 12 is made in the shape of a cup. In this respect, actuating magnet 12 has an annular coil base 14 with winding ends connected respectively to the connector 18. As the actuating element 16, the coil base 14 encompasses a flat-cylindrical actuating rod. The rod comparably has a cup shape to the annular coil base 14 and is guided to be able to move lengthwise therein. As
If, as shown in
The blocking part 48 includes a spring clamp 50 with free spring ends 52 guided at least partially along the housing part 28 and movable into the position to release the locking part 30. To better illustrate these conditions, in
The spring ends 52 between themselves then clamp a portion of the locking part 30 as shown in
The unlocking means according to the invention can be used for a plurality of applications. Instead of a control part 10 in the form of a double-spring clamp arrangement 40, a single spring (not shown) can be used. Other technical components such as, for example, parts of a roll bar system can be held by the claw or jaw opening 36 of the locking part 30 so that in this respect the range of application can be expanded at will.
The solution according to the invention is characterized especially by the fact that operation is controlled by a single lever in the form of the pivoting lever 34.
While one embodiment has been chosen to illustrate the invention, it will be understood by those skilled in the art that various changes and modifications can be made therein without departing from the scope of the invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 056 816 | Nov 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/010212 | 10/24/2006 | WO | 00 | 4/30/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/059835 | 5/31/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
971423 | Walters | Sep 1910 | A |
1199199 | Mason | Sep 1916 | A |
2381633 | Young | Aug 1945 | A |
3325203 | Moler | Jun 1967 | A |
4088354 | Kolendowicz | May 1978 | A |
5042857 | Burrows et al. | Aug 1991 | A |
5176417 | Bauer | Jan 1993 | A |
5263347 | Allbaugh et al. | Nov 1993 | A |
6036241 | Ostdiek et al. | Mar 2000 | A |
6139073 | Heffner et al. | Oct 2000 | A |
7004517 | Vitry et al. | Feb 2006 | B2 |
Number | Date | Country |
---|---|---|
198 30 407 | Jan 2000 | DE |
199 49 944 | Dec 2000 | DE |
102 15 054 | Oct 2003 | DE |
10 2004 017 688 | Nov 2005 | DE |
WO 9961730 | Dec 1999 | WO |
WO 0187666 | Nov 2001 | WO |
WO 2004056606 | Jul 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20090151403 A1 | Jun 2009 | US |