1. Technical Field
Aspects of this document relate generally to control and position reporting systems for unmanned systems, such as aircraft and vehicles.
2. Background Art
Unmanned systems, particularly aircraft and ground vehicles, perform a wide variety of tasks, including mapping, reconnaissance, range finding, target location, combat, ordinance destruction, and sample collection. The use of ground or water-based unmanned vehicles conventionally involves a remote operator guiding the vehicle while manned vehicles detect the presence of the unmanned vehicle using position tracking systems and methods (visual, radar, sonar). Because of the speed and relatively small size of unmanned aerial systems (UASs) however, the use of visual and/or radar techniques to detect the presence of the UAS may make it difficult for pilots of manned aircraft to avoid a collision. To reduce the risk of collision, many conventional UASs are operated in “sterilized” airspace which has been previously cleared of all manned air traffic by air traffic controllers.
Implementations of unmanned aerial system position reporting systems may utilize implementations of a first method of communicating the location of an unmanned aerial system (UAS). Implementations of the method may include receiving position data for a UAS with an air traffic control reporting system (ATC-RS) from a ground control station (GCS) in communication with the UAS, where the ATC-RS and the GCS are coupled together and located on the ground. The method may include transmitting the position data using one or more telecommunication modems included in the ATC-RS to an air traffic control center (ATC) and transmitting the position data using an automatic dependent surveillance broadcast (ADS-B) and traffic information services broadcast (TIS-B) receiver to one or more aircraft.
Implementations of first method of communicating the location of a UAS may include one, all, or any of the following:
The method may include receiving a voice signal from an operator of the UAS using the ATC-RS and transmitting the voice signal using the one or more telecommunication modems included in the ATC-RS to the ATC.
The method may include defining a beacon line of sight region using characteristics of the ADS-B and TIS-B transceiver.
The method may include defining a radio frequency line of sight (RFLOS) region using the ATC-RS from characteristics of a radio frequency connection between the GCS and the UAS where the RFLOS region surrounds the ATC-RS.
The method may include defining one or more terrain shadowed regions within the RFLOS region by using the ATC-RS to locate a contour of the one or more terrain based obstructions and to specify that the one or more terrain shadowed regions exist within a predetermined distance from the contour.
The method may further include automatically rerouting the UAS as it enters the one or more terrain shadowed regions.
Implementations of unmanned aerial system position reporting systems may utilize implementations of a second method of communicating the location of a UAS. Implementations of the second method may include defining an RFLOS region surrounding an ATC using the ATC-RS and defining a beacon line of sight region surrounding the ATC-RS using the ATC-RS where the ATC-RS includes an ADS-B and TIS-B transceiver. The method may further include transmitting position information of the UAS located within the RFLOS region to an ATC using one or more telecommunication modems included in the ATC-RS where the position information is generated using position data received from a GCS coupled to the ATC-RS and in communication with the UAS. The method may also include transmitting position information of the UAS using the ADS-B and TIS-B transceiver of the ATC-RS to one or more aircraft located within the beacon line of sight region, where the one or more aircraft include an ADS-B and TIS-B transceiver.
Implementations of a second method of communicating the location of a UAS may include one, all, or any of the following:
Defining the RFLOS region may further include using one or more characteristics of a radio frequency connection between the GCS and the UAS in defining the RFLOS region. Defining the beacon line of sight region may further include using one or more characteristics of the ADS-B and TIS-B transceiver in defining the beacon line of sight region.
Defining the RFLOS region and defining the beacon line of sight region may further include defining a beacon line of sight region larger than the RFLOS region.
The method may further include transmitting a voice signal from an operator of the UAS received by the ATC-RS using the one or more telecommunication modems.
The method may further include defining one or more terrain shadowed regions within the RFLOS region by locating a contour of one or more terrain based obstructions and specifying that he one or more terrain shadowed regions exist within a predetermined distance from the contour. The method may further include automatically rerouting the UAS as it enters the one or more terrain shadowed regions.
Implementations of unmanned aerial system position reporting systems may utilize implementations of a method of enabling tracking of the position of a UAS using a first ATC and at least a second ATC. Implementations of the method may include establishing a first data connection and a first voice connection with the first ATC using one or more telecommunications modems included in an ATC-RS coupled with a GCS in communication with the UAS, where the ATC-RS and the GCS are located on the ground. The method may include transmitting position information and a voice signal to the first ATC using the first data connection and the first voice connection where the position information is generated using the ATC-RS from position data received by the ATC-RS from the GCS. The method may also include defining at least a first ATC sector and a second ATC sector, where the first ATC is located in the first ATC sector and the second ATC is located in the second ATC sector. The method may also include establishing a second data connection and a second voice connection with the second ATC using the one or more telecommunications modems in response to the UAS entering the ATC transition zone and closing the first data connection and the first voice connection with the first ATC after confirming the existence of the second data connection and the second voice connection with the second ATC.
Implementations of a method of enabling tracking of the position of a UAS using a first ATC and at least a second ATC may include one, all, or any of the following:
Defining an ATC transition zone may further include defining a size of the ATC transition zone using the speed of the UAS and the average time required to make a data connection and a voice connection with an ATC.
The foregoing and other aspects, features, and advantages will be apparent to those artisans of ordinary skill in the art from the DESCRIPTION and DRAWINGS, and from the CLAIMS.
Implementations will hereinafter be described in conjunction with the appended drawings, where like designations denote like elements, and:
This disclosure, its aspects and implementations, are not limited to the specific components or assembly procedures disclosed herein. Many additional components and assembly procedures known in the art consistent with the intended unmanned aerial system (UAS) position reporting system and/or assembly procedures for a UAS position reporting system will become apparent for use with particular implementations from this disclosure. Accordingly, for example, although particular implementations are disclosed, such implementations and implementing components may comprise any shape, size, style, type, model, version, measurement, concentration, material, quantity, and/or the like as is known in the art for such UAS position reporting systems and implementing components, consistent with the intended operation.
Referring to
As illustrated in
As illustrated in
Referring to
As illustrated, one or more terrain based obstacles 42 may be present in on the ground in the area around the ATC-RS 28. These one or more terrain based obstructions 42 may be, by non-limiting example, mountains, hills, buildings, vehicles, trees, or any other fixed or semifixed object capable of blocking radio frequency transmissions. Because of the existence of the one or more terrain based obstructions 42, the radio frequency transmissions emanating from the GCS 26 to the UAS 24 and the ADS-B and TIS-B signal 34 will not be received in areas out of sight of the respective antennas of the GCS 26 and the ATC-RS 28. In other words, only those regions within radio signal line of sight of the GCS 26 and the ATC-RS 28 will be able to receive the radio signals. In some implementations, radio line of sight may substantially correspond to visual line of sight and the radio signals may be received only when the GCS 26 and ATC-RS 28 are actually visible; in other implementations, the radio signal line of sight may exceed or be smaller than the visual line of sight. Based on various characteristics of the radio signal and of the antennas and radio used in the GCS 26 and/or in the ATC-RS 28, a two-dimensional and/or three dimensional radio frequency line of sight (RFLOS) region 44 can be defined. Examples of characteristics that may be considered include, by non-limiting example, waveform characteristics (frequency, amplitude, intensity, etc.), power output, antenna data, antenna orientation, interference, noise, and any other parameter or system characteristics affecting the transmission of a radio signal.
As illustrated, using these characteristics, the ATC-RS 28 can calculate the extent of the RFLOS region 44 using a wide variety of algorithms and techniques. Some of these algorithms and techniques will permit the calculating of the RFLOS region 44 to include terrain shadowed regions, which indicate where the terrain based obstructions 42 prevent transmission of the radio signals. In addition, and as illustrated in
Referring to
As illustrated in
Referring to
Once one or more terrain shadowed regions 78 have been identified, implementations of the UAS position reporting system 66 may employ various methods of auto rerouting the UAS 76 to avoid the regions 78, thereby preventing collision of the UAS 76 with the obstacles located within the regions 78. The various methods may include a wide variety of conventional algorithms and techniques for auto rerouting or automatically directing a UAS. An example of such a conventional algorithm may be found in U.S. Pat. No. 7,228,232 to Bodin et al., entitled “Navigating a UAV with Obstacle Avoidance Algorithms,” issued Jun. 5, 2007, the disclosure of which is hereby incorporated entirely herein by reference.
Implementations of UAS position reporting systems 2, 22, 48, and 66 disclosed in this document may utilize implementations of a method of enabling tracking of the position of an UAS using a first air traffic control center (ATC) and at least a second ATC. Referring to
As the UAS 84 continues to move toward the second ATC sector 94, it will enter the ATC transition zone 96. When this occurs, the ATC-RS 82 will contact the second ATC/C2 communication center 100 using one or more telecommunication signals while remaining in communication with the first ATC/C2 communication center 98. Once communication has been established or the existence of communication with the second ATC sector 94 setting up a second data connection and a second voice connection has been established, the ATC-RS 82 ends communication with the first ATC/C2 communication center 98. In this way, controllers in an ATC/C2 communication center are always receiving position information and maintaining voice contact with the operator of the UAS 84 at all times until a hand off between the two ATC/C2 communication centers 98, 100 has been accomplished.
Any of a wide variety of factors can be used to calculate the size of the ATC transition zone 96, including, by non-limiting example, the speed of the UAS, the average time required to make a data connection and a voice connection with an ATC or ATC/C2 communication center, the altitude of the UAS, interference effects, or any other parameter affecting safety or the ability of the ATC-RS 82 to make a data connection and voice connection with an ATC.
Implementations of UAS position reporting systems 2, 22, 48, 66, and 80 disclosed in this document may utilize any of a wide variety of implementations of a first method of communicating the location of a UAS. Referring to
Implementations of UAS position reporting systems 2, 22, 48, 66, and 80 disclosed in this document may utilize any of a wide variety of implementations of a second method of communicating the location of a UAS. Referring to
Implementations of UAS position reporting systems 2, 22, 48, 66, and 80 disclosed in this document may utilize any of a wide variety of implementations of a method of enabling tracking of the position of an unmanned aerial system (UAS) using a first air traffic control center (ATC) and at least a second ATC. Referring to
In places where the description above refers to particular implementations of UAS position reporting systems, it should be readily apparent that a number of modifications may be made without departing from the spirit thereof and that these implementations may be applied to other UAS position reporting systems.
This document claims the benefit of the filing date of U.S. Provisional Patent Application 61/029,094, entitled “Unmanned Aerial System Position Reporting Systems and Related Methods” to Limbaugh, et al., which was filed on Feb. 15, 2008, the disclosure of which is hereby incorporated entirely herein by reference.
This invention was made with Government support under Contract FA8750-07-C-0096 awarded by the Air Force. The Government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
3564134 | Rue et al. | Feb 1971 | A |
5111400 | Yoder | May 1992 | A |
5574648 | Pilley | Nov 1996 | A |
5716032 | McIngvale | Feb 1998 | A |
5890079 | Levine | Mar 1999 | A |
6147980 | Yee et al. | Nov 2000 | A |
6173159 | Wright et al. | Jan 2001 | B1 |
6176451 | Drymon | Jan 2001 | B1 |
6338011 | Furst et al. | Jan 2002 | B1 |
6677888 | Roy | Jan 2004 | B2 |
6799114 | Etnyre | Sep 2004 | B2 |
6806829 | Smith | Oct 2004 | B2 |
6857601 | Akahori | Feb 2005 | B2 |
6908061 | Akahori | Jun 2005 | B2 |
6995688 | Reynolds | Feb 2006 | B2 |
7130741 | Bodin et al. | Oct 2006 | B2 |
7228232 | Bodin et al. | Jun 2007 | B2 |
7269513 | Herwitz | Sep 2007 | B2 |
20020075179 | Hudson et al. | Jun 2002 | A1 |
20030114115 | Overy et al. | Jun 2003 | A1 |
20040148067 | Griffith et al. | Jul 2004 | A1 |
20040232285 | Akahori | Nov 2004 | A1 |
20050200501 | Smith | Sep 2005 | A1 |
20060032978 | Matos et al. | Feb 2006 | A1 |
20060197700 | Stevens et al. | Sep 2006 | A1 |
20060253254 | Herwitz | Nov 2006 | A1 |
20070222665 | Koeneman | Sep 2007 | A1 |
20070252760 | Smith et al. | Nov 2007 | A1 |
20080033604 | Margolin | Feb 2008 | A1 |
20080055149 | Rees et al. | Mar 2008 | A1 |
20080158041 | Crudeli et al. | Jul 2008 | A1 |
20080191942 | Smith et al. | Aug 2008 | A1 |
20080201024 | Matos | Aug 2008 | A1 |
20080215204 | Roy et al. | Sep 2008 | A1 |
20080221745 | Diamandis et al. | Sep 2008 | A1 |
20080243314 | Ridenour | Oct 2008 | A1 |
20080255711 | Matos | Oct 2008 | A1 |
20090012657 | Knotts et al. | Jan 2009 | A1 |
20090222148 | Knotts et al. | Sep 2009 | A1 |
20100224732 | Olson et al. | Sep 2010 | A1 |
20110130913 | Duggan et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
1884908 | Jun 2008 | EP |
Entry |
---|
Hartford, Robin, UAT Puts UAVs on the Radar,www.mitre.orginews/digest/aviation/06 08/av uat.html, Jun. 2008, p. 1-3. |
Strain, Robert, A Lightweight, Low-Cost ADS-B System for UAS Applications, Distribution Unlimited Case 07-0634, 2007, p. 1-9. |
Strain, Robert, Lightweight Beacon System for UAS and Other Aviation Applications, Mitre Corporation, 2007, p. 1-9. |
PCT International Search Report for related PCT/US2009/034088, dated Dec. 14, 2009, 3 pages. |
PCT International Preliminary Report on Patentability and Written Opinion of the International Search Authority for related PCT/US2009/034088, dated Aug. 17, 2010, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20090248287 A1 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
61029094 | Feb 2008 | US |