Unmanned aerial systems are used in civil and military applications to gain situational awareness. Existing and proposed situational awareness solutions are generally complicated and include UAV's that are expensive, require large amounts of training, and are slow to respond, with some requiring the troop to become a pilot whilst in a high-pressure situation confronting other threats.
In one example, fixed-wing, military UAV systems currently in use include the Reaper and Predator drones, which may, in many missions, be replaced in the near future by the MQ-X. These systems provide high performance surveillance, attack options (including the use of cannon, bomb, and missile payloads), as well as cargo capacities. However, such systems are large, costly, and complex. They require significant real estate, having a runway and storage facilities. Accordingly, such systems are not practical for military or civilian use in the field on a moments notice. They cannot be carried easily into hostile environments by light infantry or hazardous duty personnel. Such applications require systems that are easily carried, with additional equipment, by individuals in life-threatening environments. This requires relatively small sizes and light weights. Just as important, however, such applications require that the user be able to focus on the user's environment and concentrate on potential threats. Traditional fixed-wing UAVs are controlled remotely from the environments in which they patrol. They require all of their pilots' attention to successfully complete complex mission sorties.
Other examples of surveillance UAVs include various one-use shells, launched much like a mortar. Such systems can include cameras that transmit images to remote receivers. They are also relatively inexpensive due to their simple construction and non-reusable design. However, these designs also have several shortcomings that prevent them from fulfilling all of the needs in the technology. For example, the manner in which the shells travel along their flight path is very quick. Any equipment that is used to capture images must work quickly to gather fleeting images of a surrounding environment. The manner in which they are launched is dangerous, too. There are no safeties in such systems that prevent a user from shooting the device at an angle that risks harm to adjacent personnel or property. It is conceivable that a user could, for example, discharge the shell into the user's own foot. Finally, such systems typically require a rotational movement to all or part of the shell to provide flight path stability. Payload portions of such shells must be stabilized against the rotation of the shell in order to provide quality imagery. Such systems add complexity and expense to such systems and cannot be guaranteed to accurately stabilize both the shell and the image capture systems on board.
Still other examples of prior surveillance, UAVs include relatively complex control surfaces and systems to “pilot” a payload section through a planned trajectory. Such systems add to the cost and complexity of a system and reduce the systems reliability over time. Just as problematic, however, is the fact that they require the user to be a pilot in hostile environments, which is not practical. As such control surfaces and systems are added to UAVs, they move further away from being practically expendable due to their cost. Moreover, such systems require extensive training to pilot the systems, similar to the training provided for fixed-wing systems. Despite their complexity and sophistication, however, such systems remain unduly dangerous in the field because they lack systems for preventing a launch of the system at dangerous or otherwise ineffective angles.
Irrespective of the platform previously used for surveillance UAVs, none of the systems provide quick imagery of neighboring environments, in an easy to use format, that accurately overlays obtained images with directional data. Certainly, hostile environments can provide instances with unfamiliar or obscured landmarks. Images that provide feedback on who or what is near or approaching a user of the UAV are useless if they do not tell the user where the subject of the images is located. Most compact, portable systems do not provide any such feedback. However, none provide information as to the location of the subject of the images, relative to the UAV or the user. Similarly, such systems do not provide feedback as to the position and altitude of the UAV when the images were taken.
Surveillance UAVs have been provided in reusable and single-use formats. However, not all UAVs are recovered, even if they were intended to be recovered. Accordingly, UAVs lost in hostile environments pose a number of security risks. Certainly, imagery and positioning data obtained by a UAV is sensitive to the extent it gives away the intended purpose or future plans of the user. Technology and data native to the UAV is also sensitive and should be guarded from falling into the hands of unauthorized personnel. Accordingly, surveillance UAVs of the prior art that do not provide self destruct systems create potential security risks for their users. It is important, however, that such self destruct systems not only be thorough but timed properly so as to not interrupt the mission with a premature destruction of the UAV, which would only be a slim improvement to the UAV self-destructing after falling into unauthorized hands.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary, and the foregoing Background, is not intended to identify key aspects or essential aspects of the claimed subject matter. Moreover, this Summary is not intended for use as an aid in determining the scope of the claimed subject matter.
In at least one aspect, the present technology invention may broadly be said to consist of an unmanned aerial vehicle (UAV) that, in various embodiments, includes: a rocket body, having a rocket motor and a payload section; a parachute within the body that is coupled with the payload section of the rocket body and configured to regulate a descent of the payload section; an image capture device in the payload section that is configured to provide one or more aerial images; a magnetometer in the payload section that is configured to provide a compass reference for the one or more images taken from the image capture device; and a radio transmitter in the payload section that is configured to communicate image and magnetometer data to a ground station receiver. In various embodiments, the payload section is separable from the motor during flight.
In various embodiments, the image capture device is located at a nosecone portion of the payload section and provides images of the environment during descent of the payload section. Some embodiments include an optically clear nosecone at an end of the payload section, adjacent to the image capture device, which allows one or more aerial images of the area beneath the nosecone to be taken while the payload section descends. In some embodiments, the image capture device may be provided to take still images or video. Alternatively, or in addition, the image capture device may include other sensors used for gaining situational awareness, such as infrared sensors, synthetic aperture radar, or the like.
Various embodiments of the vehicle further includes a processor in the payload section that controls operation of the image capture device or other equipment that may include a magnetometer, radio transmitter, or the like. Some embodiments of the vehicle payload section include equipment that provides data indicative of location, such as latitude and longitude, altitude and/or attitude of the vehicle. This equipment may be one or more various combinations of a GPS antenna and receiver, one or more barometers, and one or more inertial measurement units, such as a unit comprising accelerometers and/or gyroscopes. The data can be transmitted to a ground station receiver via the radio transmitter.
Various embodiments of the vehicle include one or more fins that are positioned adjacent a rear portion of the body for aerodynamic stability during flight. The fins may be retractable toward or within the body for storing the vehicle. In at least one embodiment, the fins may be foldable, flip out fins. Alternatively, the fins may be detachable from the body.
Embodiments of the UAV may further include a self-destruct system, which may be activated at a pre-determined time after launching the vehicle, such as when the payload section comes to rest. The self-destruct system may include a software erase system that is arranged to command all data and programming carried by the payload section to be erased on activation of the system and/or a mechanical hardware destruction system including a pyrotechnic device, for instance, arranged to physically damage hardware carried by the payload section on activation of the system.
In another aspect of the present technology, the system includes: a UAV; a launch unit for receiving the UAV; an ignition system that activates the rocket motor and launches the UAV from the launch unit; and a ground station having a receiver that receives data from a radio transmitter associated with the UAV.
In various embodiments, the launch unit includes a handheld launch tube. In some embodiments, the handheld launch tube is provided with a length of less than 24 inches and a diameter of less than or equal to 2 inches. The launch tube may also serve as a storage unit for the UAV. In some embodiments, the launch tube may incorporate a blast cover to protect the operator during launch. It is contemplated that various embodiments of the blast cover may be collapsible and/or flexible.
The ground station may be provided as a portable ground unit. In various embodiments, the ground unit includes an onboard processor that manipulates and processes images and data received from the UAV. The ground unit may include one or more various systems for transferring the data to one or more user devices. The user device, in various embodiments, may be an LCD display, a handheld PDA or a cellular phone, for example. Any processors in the UAV, ground station unit, or other user devices may use the data from one or more magnetometers to overlay a compass bearing over an image received from the image capture device.
The ignition system of the present technology may, in various embodiments, include: a processor that controls operation of the system; an activation mechanism for initiating a timer; and a pyrotechnic igniter that is configured to activate a rocket motor within the vehicle after a pre-determined amount time.
The activation mechanism may be provided as a pin within the UAV that projects outside the vehicle body so that it may be pulled by a user. In such embodiments, the pin prevents electrical current from flowing to the igniter until the pin is removed. In some embodiments, the ignition system further includes an accelerometer and/or magnetometer that determines the angle of the UAV, wherein the processor is arranged to verify that the angle is within a user-defined safety limit before activating the pyrotechnic igniter. In some embodiments, audio or visual systems are provided that enable a user to find an optimum launch angle. The optimum launch angle may be determined by pre-programmed or calculated trajectory angles for launch that depend on the desired location and altitude of the UAV for capturing aerial images of a particular area of interest.
In another aspect of the present technology, a method for providing frames of reference for aerial reconnaissance images includes: receiving image data indicative of one or more images captured from a UAV; receiving magnetometer data associated with the images; and referencing compass bearings to each image using the magnetometer data to determine the orientation of the image capture device of the UAV with respect to magnetic north. The method may further include referencing distance in an image using pre-determined scales dependent on altitude data. The method may further include referencing GPS co-ordinates to any point in an image. In some embodiments, location grid-boxes may be laid over an image to associate GPS co-ordinates with the image.
These and other aspects of the present system and method will be apparent after consideration of the Detailed Description and Figures herein.
Non-limiting and non-exhaustive embodiments of the present invention, including the preferred embodiment, are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.
Embodiments are described more fully below with reference to the accompanying figures, which form a part hereof and show, by way of illustration, specific exemplary embodiments. These embodiments are disclosed in sufficient detail to enable those skilled in the art to practice the invention. However, embodiments may be implemented in many different forms and should not be construed as being limited to the embodiments set forth herein. The following detailed description is, therefore, not to be taken in a limiting sense.
With reference to
In various embodiments, the UAV 100 contains a payload of surveillance equipment mounted within the payload section 118, adjacent the nosecone 120. For example, with reference to
In various embodiments, the payload section 118 of the UAV 100 carries positioning/locating equipment 126 that is able to provide data relative to the position of the UAV during its use. For example, in some embodiments, one or more magnetometers may provide compass reference data relative to magnetic north during descent of the payload section 118. This allows the orientation of the device to be determined with respect to magnetic north, enabling compass bearings to be laid over the images captured from the image capture device 122.
With reference to
The launch unit 200 uses an ignition system associated with the rocket motor 114 to attain an aerial surveillance path. The rocket motor 114 is provided with performance parameters that deliver the UAV 100 to apogee as rapidly as possible, within the acceleration and force constraints of all the systems onboard. In some embodiments, the rocket motor 114 is also designed to have a short burn-time to ensure tracking or identification of the launch source is not easily determined. For example, the rocket motor 114 may use a propellant, such as low smoke composite, which may provide a burn time of less than one second and generate low amounts of visual exhaust. In some embodiments, a separation system separates the propulsion section 112 from the payload section 118 at a predetermined time or at a certain altitude after launch. In such embodiments, the rocket body 110 is effectively divided into at least two component parts; a propulsion section 112 that includes the rocket motor 114 and the payload section 118. The two component parts can be secured to one another in a variety of methods known to those of skill in the art. For example, opposing collar and socket structures associated with the component parts may be secured to one another in a friction-fit manner or with one of various low-bond adhesives or other mechanical fasteners. As those of skill in the art will appreciate, some embodiments of the separation system include within the rocket motor 114 a separation charge at a terminal end of a propellant charge. The separation charge will be provided in an amount sufficient to separate the propulsion section 112 aspect of the rocket body 110 from the payload section 118 aspect. Other embodiments include a separate electronically controlled separation system. In such embodiments, software associated with the computing device 124 will send a signal, timed relative to a preplanned position along the flight path of the UAV 100, to a separation charge located adjacent a coupling point between the propulsion section 112 and the payload section 118, which will generate a sufficient charge of gas to separate the structures. In another embodiment, the propulsion section 112 may not separate from the payload after launch.
With reference to
After capturing the desirable data (such as the combination of image and magnetometer data) from the payload equipment, the UAV 100 broadcasts the data using onboard transmitting equipment, such as a radio transmitter 130 (or any other suitable transmission mechanism), that is electrically associated with the computing device 124. In various aspects of the present technology, minimal processing is done on board the UAV 100 to eliminate complication in hardware and software on the expendable UAV unit 100. In some embodiments, the radio transmitter 130 is also contained within the payload section and preferably operates on IEEE802.11 wireless standard where any device, such as a laptop, FDA or iPhone, with the capability to communicate on this standard shall be able to receive and interpret images and other data from the UAV 100. Any other feasible radio transmission standard may be used by the system in alternative embodiments. Information and data transmitted by the transmitting equipment can include computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, contemplated transmission media includes various wireless media such as acoustic, RF, infrared, or other wireless media.
In various embodiments, operation of the computing device 124 with the various sensors and equipment associated with the UAV 100 may be described in the general context of computer-executable instructions, such as program modules, being executed by the computing device 124. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. In a basic configuration, computing device 124 includes at least one processing unit and system memory. Depending on the exact configuration and type of computing device 124, system memory may be volatile (such as RAM), non-volatile (such as ROM, flash memory, and the like) or some combination of the two. The system memory typically includes at least one or more application programs and may include program data.
The computing device 124, through operation of the transmitting equipment, may relay data and other information to one or more remote devices, such as a ground station receiving unit 300. For purposes of simplicity, the receiving unit 300 is depicted in
In various embodiments, the display unit, whether it be on the ground station receiving unit 300 or another remote user device, includes software functionality to allow the user to easily zoom in on various elements of the captured images. Updated information from a closer range can be constantly received by the display unit as new images are obtained during the UAV's descent. The visual display unit may have touch screen functionality or other means of user interface and control such as keypads or mouse/joystick-type devices coupled thereto.
In the preferred embodiment, the ground station receiving unit 300 or display unit/user device uses the magnetometer data from the UAV 100 to overlay compass markings over the image data from the UAV 100 and orient the image to north on the display. Furthermore, software functionality within the ground station receiving unit 300 can use the GPS location of the UAV, together with the attitude and altitude of the UAV, to determine exactly what location the image was captured in and to overlay a co-ordinate system (latitude and longitude) on the imagery. The user can then easily extract GPS co-ordinates of any selected point in the image through the visual display. In an alternative embodiment, the overlaying of compass markings and/or co-ordinate systems may be done by the computing device 124 prior to transmission to the ground station receiving unit 300 and the ground station receiving unit 300 may simply display the image with the overlaid information and/or relay it to other visual devices.
The UAV's 100 ascent may be unguided with aerodynamic stability maintained through fins 140 positioned at the rear of the UAV. Any suitable number and shape of fins 140 may be used and they can be designed or assembled such that a spin is imparted on the UAV during its ascent to passively stabilize the UAV. Storable volume of the UAV may be decreased by designing the fins to fold, retract, or otherwise collapse or detach and flip out, or with a necked-down rear section of the rocket body which allows for fixed fins to be used. This allows the overall stored diameter of the UAV 100 to be nearly the same as a rocket body 110 and minimize the overall size of the launch unit 200 and, specifically, the launch tube 210.
In some embodiments launch hardware is provided to allow the UAV 100 to be safely pointed toward its intended location and launched. This will guide the UAV 100 during initial engine firing when speed and, therefore, aerodynamic stability is insufficient to ensure accurate trajectory of the UAV 100.
An ignition system is provided for activating the rocket motor 114 and launching the UAV 100 out of the launch unit 200. In various embodiments, the ignition system includes a processor for controlling operation of the system, an activation switch for initiating a timer (which can be coded as software on the processor), and a pyrotechnic igniter to be activated by the processor after a pre-determined time upon initiation of the timer to thereby activate the rocket motor 30. The processor may be onboard the UAV 100 and separate from or integrated with the computing device 124. The ignition system may provide a safety system that ensures that the rocket motor 114 cannot be accidentally ignited through electrical current passing to the igniter. As such, the activation switch may be provided as a pin placed within the UAV 100 and projecting outside the body to be pulled by a user. The pin prevents electrical current from flowing to the igniter until the pin is removed, at which point the timer is started. At a predetermined interval, after the timer has started, the electrical circuit to the igniter is completed causing the engine to fire up and launch the rocket body 110.
In some embodiments, the ignition system further includes an angle-of-launch safety system that includes an accelerometer and/or magnetometer to determine the angle of the UAV 100. The accelerometer and/or magnetometer may or may not be the same as those used by the UAV 100 to provide additional UAV data as described above. In various embodiments, the accelerometer and/or magnetometer may be controlled by a dedicated processor or the computing device 124. In either case, software on the processor/computing device operates to verify that the angle of launch is within a safety limit before activating the pyrotechnic igniter. In some embodiments, audio or visual indicators are provided to enable a user to find an optimum launch angle. For example, a series of audible beeps or flashing indicators such as LEDs, with varying frequency depending on how far/close the launch angle is to the optimum angle, are provided to enable intuitive finding of the optimum angle. The optimum launch angle may be determined by pre-programmed or calculated trajectory angles for launch that depend on the desired location and altitude of the UAV 100 for capturing aerial images of a particular area of interest. In some embodiments, standard two degree of freedom trajectory models are used in calculating the optimum launch angles. However, it will be understood that the final launch angle used in a given situation will depend on how far down range the user wishes to send the UAV 100.
In some embodiments, the UAV 100 carries a self-destruct system, able to render the UAV 100 useless to undesirable users and prevent them from gathering information captured by the UAV 100. The self destruct system is arranged to be activated at a pre-determined time after ground impact of the payload section, determined by an onboard accelerometer. A backup timer, initiated at launch and set for a predetermined time interval, may also be used in case ground impact is not detected. The self-destruct system may be a software erase system commanding all data and programming carried by the payload section to be erased upon activation of the system and/or a mechanical hardware destruction system including a pyrotechnic device, for instance, arranged to physically damage hardware carried by the payload section upon activation of the system. In any such embodiment, the self-destruct system may be controlled by software associated with the computing device 124 or other dedicated processor on board the UAV 100. In some embodiments, a hardware destruct system will include an electronic switch and fuse. The electronic switch shorts the main power to the system, resulting in all fuses being blow rendering the hardware useless. In such embodiments, it is contemplated that the fuses may be provided in the form of small surface mount items.
With reference to
In many embodiments, the UAV 100 deploys in a matter of seconds and imagery can be obtained in under 20-30 seconds after launch. The rocket body 110 and payload section 118 will descend slowly under the parachute 128 giving the operator and command network continuously captured high-resolution images of the ground throughout its descent. The descent and ascent is unguided and not actively stabilized in the embodiment described above; however, the UAV 100 in alternative embodiments may use stabilization or other propulsion systems to control the attitude, stability and position of the UAV 100. For instance, passive or active mechanical aerodynamic methods could be used to achieve this stabilization.
Although the technology has been described in language that is specific to certain structures, materials, and methodological steps, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific structures, materials, and/or steps described. Rather, the specific aspects and steps are described as forms of implementing the claimed invention. Since many embodiments of the invention can be practiced without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended. Unless otherwise indicated, all numbers or expressions, such as those expressing dimensions, physical characteristics, etc. used in the specification (other than the claims) are understood as modified in all instances by the term “approximately.” At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the claims, each numerical parameter recited in the specification or claims which is modified by the term “approximately” should at least be construed in light of the number of recited significant digits and by applying ordinary rounding techniques. Moreover, all ranges disclosed herein arc to be understood to encompass and provide support for claims that recite any and all sub ranges or any and all individual values subsumed therein. For example, a stated range of 1 to 10 should be considered to include and provide support for claims that recite any and all sub ranges or individual values that are between and/or inclusive of the minimum value of 1 and the maximum value of 10; that is, all sub ranges beginning with a minimum value of 1 or more and ending with a maximum value of 10 or less (e.g., 5.5 to 10, 2.34 to 3.56, and so forth) or any values from 1 to 10 (e.g., 3, 5.8, 9.9994, and so forth).
The invention claims priority from U.S. Provisional Patent Application No. 61/350,203 entitled UNMANNED AERIAL VEHICLE SYSTEM by Peter Joseph Beck and Nikhil Raghu, filed on Jun. 1, 2010, which Provisional Patent Application is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61350203 | Jun 2010 | US |