1. Field of the Invention
The subject invention relates to an unmanned utility vehicle for traversing a plot of land, and more specifically to an unmanned, or autonomous, utility vehicle free of hydraulic and belt drive systems.
2. Description of the Related Art
Various unmanned utility vehicles, such as autonomous lawn mowers, are known to those of ordinary skill in the art and typically include a carriage having a plurality of drive wheels for moving over the plot of land. The drive wheels are driven by an electric motor powered by batteries. The vehicle also includes at least one tool, such as a cutting assembly, supported by the carriage that is powered by an internal combustion engine. In other words, the internal combustion engine is directly engaging and driving the cutting assembly and the electric motors are only driving the drive wheels to propel the vehicle.
One disadvantage of these vehicles is that operation of the internal combustion engines to power the tool is a drain on the internal combustion engine and requires operating the internal combustion engine at various speeds to perform the task. For instance, if the tool is a cutting assembly, the internal combustion engine must operate at different speeds, or revolutions per minute (RPM), in order to cut different thicknesses of grass. The internal combustion engine may operate at lower RPM for thinner grass, but have to operate at higher RPM for thicker grass to prevent stalling of the internal combustion engine. Operating at various RPM uses significantly more gas and also produces different harmonics at each of the different speeds which results in additional noise from the vehicle. Another disadvantage is that if the electrical motors malfunction, the vehicle may continue to operate without the malfimction being detected. When such a malfunction is detected, the complexity of these unmanned systems requires the vehicle to be out of commission for various lengths of time. Further, these systems tend to be quite expensive so additional vehicles are generally not available to continue in place of the malfunctioning vehicle.
Various manned vehicles, such as riding lawn mowers, are known to those of ordinary skill in the art and include the electric drive motors for propelling the vehicle, as well as having electric motors for running the cutting assembly. Since the vehicles are manned, the drive motors must be sufficiently large to accommodate the weight of the operator in addition to the weight of the vehicle. This requires the electric motors to be significantly more powerful and larger to propel the vehicle, which results in heavier vehicles. These heavier vehicles are likely to damage terrain by leaving large ruts or gouges during operation. Another disadvantage is that these electrical motors tend not to be modular, such that if one of the motors malfimctions or breaks, a new motor specific for such operation must be utilized on the vehicle. Said another way, the electrical motors of these manned vehicles generally are not modular.
The subject invention provides an unmanned utility vehicle for traversing a plot of land. The vehicle comprises a carriage having first and second drive wheels for moving over the plot of land and first and second electric drive motors operatively connected to first and second drive wheels. A first drive motor controller is operatively connected to the first electric drive motor and a second drive motor controller is operatively connected to the second electric drive motor. The vehicle also comprises at least one tool supported by the carriage for operation, at least one electric tool motor engaging the tool and supported by the carriage, and a tool motor controller operatively connected to the electric tool motor. A power supply is supported by the carriage for powering each of the electric drive motors and the electric tool motor. A main controller communicates with the drive motor controllers and the tool motor controller to control the electric drive and tool motors. A controller area network interconnects the main controller, the drive motor controllers, and the tool motor controller for facilitating communication therebetween to improve operation and modularity of the vehicle.
Another embodiment of the subject invention provides an autonomous lawn mower that comprises a carriage, a guidance assembly supported by the carriage for navigating the vehicle, and first and second electric drive motors connected to first and second drive wheels. A first drive motor controller is operatively connected to the first electric drive motor and a second drive motor controller is operatively connected to the second electric drive motor. The lawn mower further comprises at least one mower deck supported by the carriage and at least one electric mower deck motor engaging the mower deck. A mower deck motor controller is operatively connected to the electric mower deck motor. A main controller communicates with the guidance assembly, the drive motor controllers and the mower deck motor controller to control the electric drive and mower deck motors.
The lawn mower includes a plurality of rechargeable batteries for powering each of the electric drive motors and the electric mower deck motor. An internal combustion engine is used in combination with a generator disposed between the internal combustion engine and the batteries for recharging the batteries. The electric drive and the mower deck motors are brushless electric motors such that the electric drive and the mower deck motors are controlled by the main controller.
In another embodiment, the lawn mower includes a fuel cell for powering each of the electric drive motors and the electric mower deck motor.
The subject invention overcomes the disadvantages that characterized the related art vehicles. Specifically, the subject invention provides a small, lightweight, and energy efficient vehicle. The vehicle is free of any belt or hydraulic systems resulting in a lighter vehicle with reduced potential for damaging the terrain. The vehicle also has a modular design that is able to adjust operation of various electric motors in real time to reduce or eliminate any down time. Further, if any of the motors become inoperable, the modular design allows any other electric motor to be switched for the defective motor and replaced in order to continue operation. Additionally, the subject invention allows for very precise operation of the vehicle and the tool that has not previously been possible with the related art assemblies at a reasonable cost.
Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
Referring to the Figures, wherein like numerals indicate corresponding parts throughout the several views, an unmanned utility vehicle 30 for traversing a plot of land is shown generally at in
The vehicle 30 includes a carriage 32 having first and second drive wheels 34, 36 for moving over the plot of land, a bumper 38, and a cover 40. With reference to
A guidance assembly 44 is supported by the carriage 32 for guiding the vehicle 30 about the plot. The guidance assembly 44 may be selected from at least one of a laser navigation system, a radio frequency navigation system, a GPS navigation system, and a camera navigation system. The guidance assembly may also include a platform roll pitch controller 43 and a turret rotation controller 45. However, it is to be appreciated that other guidance assemblies 44 may be employed with the subject invention so long as the vehicle 30 is autonomous or unmanned. Such guidance assemblies 44 are disclosed in U.S. Pat. Nos. 6,556,598 and 6,598,692, which are commonly assigned to assignee of the subject invention and which are incorporated herein by reference. As discussed above, the related art assemblies have additional weight due to an operator having to ride the vehicle 30 and due to the vehicle 30 needing to be sufficiently large to support the operator. Since the subject invention is unmanned, the vehicle 30 has lesser weight and does not need to be as heavy, thereby reducing the amount of damage that may be done during operation. Still another advantage is that the vehicle 30 has reduced fuel consumption as well.
Depending upon the particular type of vehicle 30, the vehicle 30 includes at least one tool 46 supported by the carriage 32 for performing an operation. It is to be appreciated that the tool 46 may be carried by the carriage 32, pulled behind the carriage 32, or pushed in front of the carriage 32. Referring to
The vehicle 30 further includes a power supply 64 supported by the carriage 32 for powering the electric lift motor 52, the electric drive motors 56, 58, and the electric tool motor 60. In the embodiment shown in
With reference to
Each of the above motors 52, 56, 58, 60 also includes a motor controller operatively connected thereto. For example, a lift motor controller 78 is operatively connected to the lift motor 52, a first drive motor controller 80 is operatively connected to the first electric drive motor 56, a second drive motor controller 82 is operatively connected to the second electric drive motor 58, and a tool motor controller 84 is operatively connected to the electric tool motor 60. As one example, the controllers may include printed circuit boards having the necessary components to receive signals from the main controller 54 through the wiring harness 62 and then interpret the signal from the main controller 54 and generate and transmit a signal to operate the respective motor.
The main controller 54 communicates with the lift motor controller 78, the drive motor controllers 80, 82 and the tool motor controller 84 to control the lift, electric drive, and tool motors. Further, each controller may include a unique identifier to identify the controller and motor to the main controller 54. A controller area network 86, commonly referred to as CAN BUS, interconnects the main controller 54, the drive motor controllers 80, 82, and the tool motor controller 84 for facilitating communication therebetween to improve operation of the vehicle 30. The CAN BUS also communicates with a data collection system 88 for collecting various information relating to each of the motors 52, 56, 58, 60 and a user interfaces 90. A chassis control 92, including a global positioning system receiver, is also in communication with the CAN BUS. Multiple sonar sensors 94 are positioned about the carriage 32 and bumper sensors 96 communicates with the chassis control 92 and with the CAN BUS to provide safety.
In one embodiment, each of the motors 52, 56, 58, 60 may operate using sinusoidal control. To ensure accuracy of the vehicle 30, at least the drive motors 56, 58 should operate using sinusoidal control. The sinusoidal control allows the main controller 54 to precisely control the operation of each of the motors 52, 56, 58, 60. This is particularly advantageous because the movement of the vehicle 30 can be precisely controlled. Another advantage is that the tool motors 60 can be adjusted for varying types and thickness of grass. For example, if the grass is overly thick, then the main controller 54 may operate the tool 46 at a faster RPM, whereas if the grass is a very thin grass, then the tool 46 may operate at a slower speed. The main controller 54 is also able to detect when any one of the tool motors 60 fails. If the tool motor 60 fails, then the main controller 54 recalculates the cutting pattern for the specified area with the remaining tool motors 60. In this manner, the vehicle 30 assembly is still able to complete the cut even if the tool motor 60 fails.
The user interface 90 may be used for programming a route to be followed by the vehicle 30 as best shown in
The vehicle 30 also includes a communication device 98 supported by the carriage 32 and in communication with the main controller 54 for wirelessly transmitting signals from the vehicle 30 to a base (not shown). The communication device 98 may be used to alert the operator of an error or problem with the vehicle 30. One such communication device 98 is disclosed in copending U.S. patent application Ser. No. 10/179,558 titled “Automatic billing system for a lawn mowing service using GPS”, which is incorporated herein by reference.
The drive motor assemblies 100 are spaced from the main controller 54 such that the main controller 54 communicates with the drive motor controllers 80, 82 via the wiring harness 62. The subject invention provides the vehicle 30 having each of the motors 52, 56, 58, 60 being modular such that if any one of the motors 52, 56, 58, 60 becomes inoperative, any other motor may be substituted in a different motor assembly. The motor controllers 78, 80, 82, 84 drive the motors 52, 56, 58, 60 thereby reducing any maintenance or repair time by being able to switch out one motor for another in a short period of time. Further, the subject invention does not require specialized motors.
For clarity, the following description is directed toward the first drive motor assembly and it is to be appreciated that the other drive motor assemblies 100 are substantially identical.
Referring to
The subject invention provides additional advantages such as the vehicle 30 is more energy efficient by a ratio of 3:1 because the vehicle 30 uses small, electric motors 52, 56, 58, 60 that use less power than a gas engine. For exanple, a 360-watt electric motor (Toro battery powered 18-inch mower) can produce the equivalent cutting power of a 5-Horsepower gas engine, or about 3,700 watts (there are about 740 watts per HP). Therefore, the electric motor is more efficient because gas engines that are used have considerably more power than what is actually required to cut grass. Still another advantage of electric motors 52, 56, 58, 60 is that they can temporarily exceed their rated capacity by drawing more current, whereas the gas engine is limited to its rated capacity. In fact, when the gas engine encounters a situation requiring more power than it can produce, it bogs down and becomes less powerful because it slides off its maximum point on the power curve.
While the invention has been described with reference to an exemplary embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. In addition, the reference numerals in the claims are merely for convenience and are not to be read in any way as limiting.
This application claims the benefit of U.S. Provisional Patent Application Ser. Nos. 60/584,296 filed Jun. 30, 2004 and 60/609,309 filed Sep. 13, 2004.
Number | Date | Country | |
---|---|---|---|
60584296 | Jun 2004 | US | |
60609309 | Sep 2004 | US |