The present invention relates to devices and methods for exercising the human body.
It is well known that the human body is incredibly adaptive and will continuously adapt and adjust to its environment. This adaptive ability is sometimes referred to as a correlative adaptive physiological response.
Our cultural transition to becoming a primarily sedentary population has been developing respectively as we have moved toward a more informational based economy. As a result, people find themselves spending an ever-increasing amount of time in various types of seated/sedentary environments. While transcending the more physically arduous labor intensive lifestyles of previous agricultural industrial generations, this cultural transition has yielded some undesired human physiological adaptations.
Research directed towards studying the adverse physiological effects of this sedentary shift clearly indicates that a chronically sedentary lifestyle increases the risk of conditions like obesity, cardiovascular disease, and hypertension.
What is perhaps less obvious is that a primarily sedentary lifestyle also affects our ability to adequately support our center bodies. At least in part, this systemic deactivation of our center body support system (i.e., our “core” muscles) is evidenced by the more than 100 billion dollars spent annually in this country to treat spine related disorders.
More specifically, prolonged artificial stabilization of the pelvis and/or spine, by sitting in a chair for example, deactivates the “inner unit”, i.e., the very muscles designed to support the body's spine. For purposes of this specification, the term “inner unit” refers to the set of muscles that provides center body foundational support (i.e., the pelvic floor, diaphragm, transverse abdominus, internal oblique, multifidus). Likewise, the term “outer unit” refers to the muscles that move the center body (i.e., rectus abdominus, external oblique, latissimus dorsi). Together, the inner unit and the outer unit comprise what is known in the art as the body's “core.”
While methods for strengthening the “outer unit” are well known in the art and effective, methods for strengthening the “inner unit” tend to be difficult for the user to perform correctly. As a result, users of the presently known methods for training the inner unit typically fail to activate, optimally strengthen, or “re-educate” the user's inner unit.
Among other things, none of today's currently accepted methods for re-educating or optimizing core function via the deep spinal stabilizers have proven equal to the task of meeting the needs of an ever increasingly sedentary population. More specifically, current bridging and bracing techniques, standing functional trainers, and traditionally designed exercise equipment simply fail to meet the mandated activation criteria compulsory for re-educating the deep spinal stabilizers of the inner unit. The inherent vertical user orientation of standing functional trainers (while having some functional merit) promote compressive spinal loading, which also does not mandate optimal activation and should be avoided until users have acquired the necessary “inner unit” strength to resist compressive loads.
Lastly, traditionally designed exercise equipment fails entirely because such equipment artificially stabilizes a user's pelvis and/or spine during various types of upper extremity force production. Artificial stabilization of the pelvis/spine is completely antithetical to optimizing core function, as being chronically sedentary is the primary culprit for the weakening of our center bodies. These prior art strategies have proven only to perpetuate an already per-existing imbalance between our body's core and our extremities.
What is needed is an exercise system that is capable of inherently optimizing core function and thereby effectively counterbalancing the undesired physiological effects of living in a primarily sedentary culture.
The physical problems associated with a predominantly sedentary lifestyle are solved by the combination of (a) supporting the lower body in a manner that permits a user's hips to operate as a fulcrum, unsupported above the greater trochanter; and (b) engaging in open kinetic chain resistance exercises with the upper body in a horizontal position (i.e. operating as a “third class lever”). For the purposes of this specification, the word “torso” means main part of the human body not including the head, arms, and legs. In other words, a reader should understand the use of the word “torso” to mean the region of a human body housing the spine and pelvis, which is sometimes also referred to as body's “trunk.”
By supporting the legs below the greater trochanter so that the upper body can perform open kinetic chain resistance exercises in horizontal unsupported-torso positions, the invention effectively mandates that the upper body act as a third class lever with the hips as the fulcrum, both when the upper body is held static and when the upper body engages in movement. In this way, the invention provides maximum functional transfer to strengthening the inner unit, while exploiting the mechanical disadvantage created at the user's hip fulcrum when the upper body attempts to resist an external force (including gravity alone). In this way, the invention effectively mandates optimal center body activation, particularly when the upper extremities generate force in an open kinetic chain environment. It is believed that this is the optimum exercise environment when training the center body and strengthening the inner unit.
The presently preferred embodiment of the invention is a combination of (a) supporting the lower body in a manner that permits a user upper body to act as a third class lever in at least three positions: an up-facing position, a down-facing position, and a side-facing position. Then, once the body is in one of the three positions, engaging in open kinetic chain resistance exercises with the upper body (i.e., the torso) unsupported. Alternate embodiments include stand-alone versions of the device to support a user in one of the following positions: (1) a face-down position, (2) a side-facing position, or (3) a face-up position.
One object of this invention is to allow users to engage in progressive resistance exercises in a relatively non-compressive spinal loaded third class lever environment, wherein a mandated optimal ratio of co-contraction in the body's core will ensure ideal foundational support during extremity force production.
Another object of this invention is to introduce exercise equipment (aside from a standing functional trainer), that do not artificially support either the pelvis or the spine (together the “torso”) during upper extremity force production. In this way, the invention provides the mechanical design to counterbalance the unwanted impacts of living in a primarily sedentary culture.
Another object of this invention is to teach the use of an apparatus that only supports a user's tibia and femur. In this way, the invention allows a user's upper body to act as a third class lever with the user's hips as the fulcrum while the user engages in a variety of upper body resistance exercises.
Another object of this invention is to create a method that more accurately reflects the functional anatomical demands of real life; it will provide the users with more effective maximum potential transfer into improving daily activities.
Another object of this invention is to introduce a healthier and more effective selection of machine-based training equipment.
Another object of this invention is that people can achieve safer and more effective muscle strengthening in a shorter period of time.
Another object of this invention is to provide the necessary intellectual and application framework necessary to re-write the currently accepted scientific protocols for spinal segmental stabilization. This will in turn provide physical therapists with improved techniques to more effectively ameliorate today's spinal stabilization demands.
Another object of this invention is to provide the athletic performance communities with the much awaited next logical progression in core stabilization. This method can then be more effectively assimilated into current functional training paradigms in the most effective manner possible. That is because the application of this system doesn't require a separate time allocated approach to facilitate. Rather, it can be facilitated while engaging in otherwise conventionally administered strength and conditioning protocols.
Another object of this invention is to introduce a technologically advanced alternating plane elbow enhanced arm assembly that will also revolutionize the “functional trainer” genre of exercise equipment. The advanced design technology will provide users with increased versatility during various types of standing force generated movement patterns.
The structure, overall operation and technical characteristics of the present invention will become apparent with the detailed description of a preferred embodiment and the illustration of the related drawings as follows.
Today's fitness industry offers a seemingly limitless variety of exercise theories and styles. While some of the available theories and styles are directed to training the “core” in an effort to counteract today's sedentary lifestyle, none of them are configured to only support a user's lower body below the greater trochanter and intentionally not supporting a user body above the greater trochanter while the user engages in various degrees of movement and force production with the upper body in a substantially horizontal position. As demonstrated below, the preferred embodiment of the invention effectively requires a user's upper body act to act as a third class lever when resisting external loading, with the hips as the fulcrum.
The three positions shown in
It is important to note that the fitness device 4 offers no external support of the user's torso in
In operation, a user can begin a training continuum by acquiring the necessary pre-requisite center body and cervical spine stabilization strength. This can be accomplished by statically holding oneself in an unsupported-torso in a face-up, face-down, or side-facing position without any moving or generating any force with the upper extremities.
Once sufficient center body stabilization has been acquired, users can further increase strength by generating various degrees of resisted open kinetic chain upper extremity force production via a plurality of movement patterns. Additionally, once users have realized preferred levels of optimal functional anatomy and biomechanics during force production, they can safely and effectively engage in enhancing power production.
Power training involves producing force by coordinating center body and extremity movement together, coupled with a speed or velocity element. The entire spectrum of resistance training described can be thought of as the progressive exercise continuum.
By way of the examples, as shown in
The additional combinations and permutations available to a user of fitness device 4 are both wide and deep. For example, although not shown, one could generate power by the throwing of a lightly weighted ball from one hand to the other in the face-up position 10. One could utilize two handed movements, such as shown in
The various embodiments of the invention provide both an exercise methodology and facilitative apparatus. By exploiting a mechanical disadvantage of putting a user's upper body into a third class lever environment, the fitness device 4 provides heightened return of muscle strength to support anatomically correct leg/hip/spine movement—which translates directly into supporting correct anatomical movement in all aspects of real life human function.
In part, the mechanical disadvantage a user faces when exercising in the unsupported torso positions is believed to create an inverse functional anatomical advantage as a result of the resulting muscle growth. Namely, that it more effectively mandates optimal center body activation during hips fulcrum third class levered horizontal loading, wherein the upper extremities generate force in an open kinetic chain environment.
Preferred Re-Configurable Lower Body Support
As shown in
Although a fixed femur pad 50 is suitable, it is preferred that the femur pad 50 be configured to rotate about the center bar 56. Such rotatability can be accomplished in many ways. It is preferred to achieve at least 90 degrees of selectorized rotation 65 by employing a pair of perforated plates 60 and a pop pin 62. See,
While there are a variety of ways the tibia pad 68 can be made selectively re-configurable to the face-up 10, face-down 20 and side-facing 30 positions described above, it is preferred to achieve such configurability with the tibia pad support structure (or “rear assembly”) shown in the figures. See, e.g.,
The preferred tibia pad 68 is a set of four pads (122-125) connected by a rigid center member 104. See,
While there are a variety of ways to configure the tibia support structure 70 to achieve rotation in at least one plane at the first joint 78 and the second joint 84, it is preferred to achieve such rotation by employing a pair of perforated plates 60 and a pop pins 62 in much the same fashion as previously described for the rotating femur pad 50. Similarly, it is preferred to permit adjustability of the distance between the first joint 78 and the second joint 84 by again employing pop pins 62, this time via a telescoping female connection 98 that allows the first member 82 to slide through the telescoping female connection 98. Perforations in the first member 82 receive pop pin 60 to lock the first member 82 relative to connection 98.
Together, the preferred tibia pad support structure 70 creates bi-rotational and translational capacity 96 of the tibia pad 68. The combined rotational capacity of the first and second joints (78, 84) and the telescoping ability of the first member 78, permit selective adjustability of the angular relationships relative to the rotational femur pad 50 and the user's desired degree of knee flexion in the center body face-up or face-down positions, lower extremity positioning for the center body side position, as well as the degree of difficulty in the up and side cervical positions.
Adjustment of the different combinations of rotation and translation can be made easier by the additions of handgrips 94 to a distal end of the first member 78. Handgrips 94 can assist sliding the first member 78 in relation to the telescoping female connection 98. Among other things, the gliding telescoping aspect of the first member 78 provide the user with the ability to appropriately adjust the tibia pad 68 to accommodate individually differing tibia lengths in the center body positions, and to respective torso lengths in the cervical positions.
Upper Body Resistance Options
The variety of upper body resistance options are, as a practical matter, limited only by the imagination. At a minimum, a user can begin by merely attempting to hold the upper body in an unsupported-torso horizontal position for a length of time, preferably an ever-increasing length of time, in either of the three base positions: face-up, face-down, and side-facing. Gravity alone provides a force that mandates contraction of the deeper spinal stabilizers (the “inner unit”) as well as an ideal ratio of co-contraction between deeper stabilizers (the “inner unit”) and more superficial prime movers (the “outer unit”), which together comprise the body's “core.”
Adding external loading to the upper body increases the effect. External loading can take the form of traditional resistance devices. For purposes of this specification, the term “resistance device” should be broadly understood to include devices known in the art to provide resistance (e.g., dumbbells, kettle bells, magnetic resistance, pneumatic resistance, compressed air, spring, rotational inertial resistance, etc.). Of course, resistance devices like traditional cable/pulley/selectorized weight stack mechanisms will work and, as discussed below, are presently preferred.
Triple Articulating Arm
The preferred resistance device 130 starts with a traditional handle 134 connected to a selectorized weight stack 138 by a cable 142, all of which are well-known in the art. But to enable the handle 134 to be selectively located in a space above a user's lower body 184 (see
Turning to
While there are a variety of ways to configure the cable support structure to achieve rotation in at least one plane 174 at the elbow joint 162 and preferably at least two planes 178, 182 in the shoulder joint 170, it is preferred to achieve such rotation by employing a pair of perforated plates 60 and a pop pins 62 in much the same fashion as previously described for the rotating femur pad 50 and the tibia pad support structure 70.
As shown in most of the figures, and particularly
Elastic Strap
For use with or without the resistance devices 130 described above, it is also preferred to have the option of one or more elastic straps (bands) 210 removably connected to a plurality of mounts 192. The mounts are preferably secured to the fitness device 4 in pairs, in a horizontal plane below a top of the femur pad 50, with the mounts 192 straddling a centerline 52 of the femur pad 50 in a vertical plane. See, e.g.,
In operation, a user of fitness device 4 connects the elastic strap 210 to the pair of mounts to create a force vector 212 on the user's torso when the user is exercising. See, e.g.,
Cervical
A user can strengthen the muscles supporting the cervical spine by adopting the positions shown in
The training continuum for the cervical spine is the same as previously discussed: a user begins with a static hold for increasing lengths of time and then adds external loading as a user's strength permits. For example, once a user can maintain a static hold, the user can progress to holding dumbbells by hand in any of the positions to increase the cervical spine strength needed to resist the load.
Hyperextension Pad
In the early stages of strength development, some users will benefit from external torso support in the face-up position 10. In such case, a hyperextension pad 220 to support the user's torso can be useful. The hyperextension pad 220 can be rotationally connected to the base frame 34 so that it can be stored upright and out of the way most of the time. When needed, the hyperextension pad 220 can be rotated down and selectively adjusted to the desired height and angle using perforated plates 60 and pop pins 59 as previously described. In this way, a user can use the pad 220 as needed for support while gaining the core strength to achieve the unsupported torso positions 10, 20, and 30.
Upright Handles
To assist a user enter and exit the device 4, access handles 64 can be added. It is preferred to add access handles 64 in the locations shown in
Stand Alone Machines
While the fitness device 4 shown in
Likewise if desired, movement-specific, stand-alone devices can also be made and used, too. For the purposes of this specification, a “movement-specific, stand-alone” device refers to a device devoted to one movement (e.g. shoulder press) in one position (e.g., side-facing). Movement-specific stand-alone devices are advantageous for creating a training circuit as is well-known in the art.
In addition to the above simplification of the tibia pad support structure, the cable support structure 150 can be simplified to support only a subset of exercise movements. For example, a standalone device can be made and used to support a stand-alone side facing shoulder press (see,
While the invention has been described by means of specific embodiments, modifications and variations could be made thereto by those ordinarily skilled in the art without departing from the scope and spirit of the invention set forth in the claims. Likewise, the invention is not limited in its operational application to the above details of mechanical angular and special relationships, users biomechanical positioning, various extremity force producing embodiments and of being practiced or of being potentially operationally carried out in various other ways. The phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. Unless specified or limited otherwise, the terms “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect operational possibilities.
Number | Name | Date | Kind |
---|---|---|---|
4398713 | Ellis | Aug 1983 | A |
6152866 | Kuo | Nov 2000 | A |
6248047 | Abdo | Jun 2001 | B1 |
6287244 | Boos | Sep 2001 | B1 |
6387024 | Monti | May 2002 | B1 |
6443877 | Hoecht | Sep 2002 | B1 |
7322911 | Webber | Jan 2008 | B2 |
8096926 | Batca | Jan 2012 | B1 |
20060217249 | Webber | Sep 2006 | A1 |
20070129225 | Hammer | Jun 2007 | A1 |
20080200319 | Fong | Aug 2008 | A1 |
20090264265 | Contreras | Oct 2009 | A1 |
20130337984 | Lung | Dec 2013 | A1 |
20130345031 | Chiu | Dec 2013 | A1 |
20140087928 | Luedeka | Mar 2014 | A1 |
Entry |
---|
Weight Watchers, “Roman Chair Side Bends—Women”; http://www.weightwatchers.com/util/art/index_art.aspx?tabnum=1&art_id=46921&sc=3042, Screen shot taken Feb. 23, 2014. |
Author Unknown, “Roman Chair Side Bends”; http://www.ucgenvucut.com/hareketler/karin-kasi-gelistirme-hareketleri/roman-chair-side-bends.html; Screen shot taken Feb. 23, 2014. |
Jorge Cruise, “Oblique Exercise”; http://www.lifescript.com/diet-fitness/tips/b/bend_it_like_jorge.aspx; Screen shot taken Feb. 23, 2014. |
Author Unknown, “Side Bends on the 45 Degree Slant Board Hands Behind The Head Variation”; http://www.ab-core-and-stomach-exercises.com/abdominal-exercise-equipment.html; Screen shot taken Feb. 23, 2014. |
Shawn Shelstad, “Side Bends at Hyperextension”; http://www.youtube.com/watch?v=T3QxGOZOOKk; Screen shot taken Feb. 23, 2014. |
Heynow951; “Hyper Extension Machine—Yukon Fitness (HYP-156)”; http://www.youtube.com/watch?v=zUJNYXjku60; Screen shot taken Feb. 23, 2014. |
Tom Lambert; “Core exercises for skiing (and life!)”; http://ultraskier.com/ski-fitness/core; Screen shot taken Feb. 23, 2014. |
Uknown Author; “Roman Chair—Powerline by Body-Solid (PCH24X)”; http://www.ironcompany.com/romanchairpowerlinebybody-solidpch24x.aspx#.Uwtv9YVstEQ; Screen shot taken Feb. 23, 2014. |
Joe Wuebben, “Roman Chair Twist Train your abs hard. Here's one exercise that does it all.”; http://www.muscleandfitness.com/workouts/abs-exercises/roman-chair-twist; Screen shot taken Feb. 23, 2014. |
Author Unknown, http://natal-fitness.com/wp-content/uploads/2012/07/a1.jpg;Screen shot taken Jan. 8, 2013. |
Lucy Oliver; “5, tough, abs, exercises, flat, fast, abdominal, workout, greenster.com, pike side bend roman chair”; http://www.greenster.com/magazine/5-tough-abdominal-exercises-flat-abs-fast/5-tough-abs-exercises-flat-fast-abdominal-workout-greenster-com-pike-side-bend-roman-chair/; Screen shot taken Feb. 23, 2014. |
Greg Glassman The Glute-Ham Developer Sit-Up, The CrossFit Journal, Oct. 2005, Issue #38. |
Author Unknown; “Most Popular Great Value”; http://www.backtrainer.com/; Screen shot taken Feb. 23, 2014. |
Number | Date | Country | |
---|---|---|---|
20220072366 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
61771729 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15268300 | Sep 2016 | US |
Child | 17531757 | US | |
Parent | 14192150 | Feb 2014 | US |
Child | 15268300 | US |