Devices, systems, and methods for autonomous or semi-autonomous downhole delivery of one or more wellbore tools in an oil or gas wellbore. More specifically, devices, systems, and methods for improving efficiency of downhole wellbore operations and minimizing debris in the wellbore from such operations.
Hydraulic Fracturing (or, “fracking”) is a commonly-used method for extracting oil and gas from geological formations (i.e., “hydrocarbon bearing formations”) such as shale and tight-rock formations. Fracking typically involves, among other things, drilling a wellbore into a hydrocarbon bearing formation; installing casing(s) and tubing; deploying a perforating gun including shaped explosive charges in the wellbore via a wireline or other methods; positioning the perforating gun within the wellbore at a desired area; perforating the wellbore and the hydrocarbon formation by detonating the shaped charges; pumping high hydraulic pressure fracking fluid into the wellbore to force open perforations, cracks, and imperfections in the hydrocarbon formation; delivering a proppant material (such as sand or other hard, granular materials) into the hydrocarbon formation to hold open the perforations, fractures, and cracks (giving the tight-rock formation permeability) through which hydrocarbons flow out of the hydrocarbon formation; and, collecting the liberated hydrocarbons via the wellbore.
Perforating the wellbore and the hydrocarbon formations is typically done using one or more perforating guns. For example, as shown in
Another known perforating gun type is an “exposed” perforating gun 200, as shown in
Gun strings including multiple perforating guns help to improve operational efficiency by allowing multiple perforating intervals to be perforated during one wireline run into the wellbore. The gun string may also include wellbore tools such as one or more fracking plugs (“frac plug”) or bridge plugs, tubing cutters, etc. for downhole operations. For ease of reference in this disclosure, a “gun string” may include any combination of perforating guns and wellbore tools, which further encompasses control devices and the like for use in downhole wellbore operations. Each of the individual perforating guns and/or wellbore tools in the string may have selective detonation/initiation capability. By “selective” what is meant is that a detonator or initiator assembly of an individual perforating gun or wellbore tool is configured to receive one or more specific digital sequence(s), which differs from a digital sequence that might be used to arm and/or detonate another detonator or initiator assembly in a different, adjacent perforating gun or tool. So, detonation of the various perforating guns and/or tools does not necessarily have to occur sequentially upon a single detonation signal. Any specific perforating gun or tool can be selectively detonated/initiated, although the sequence must progress from the bottom up—i.e., the gun/tool that is furthest downstream (within the wellbore) must be detonated before others—otherwise the conductive line that relays the electrical signal through successive guns/tools will be severed and downstream guns/tools may not be initiated. For purposes of this disclosure, “downstream” means in a direction deeper or further into the wellbore and “upstream” means in a direction towards the wellbore entrance or surface. Thus, in operation, the gun string is lowered or pumped down into the wellbore to a desired location, one or more of the perforating guns and/or tools is detonated/initiated, and the wireline is retracted to the next desired location at which additional perforating gun(s) and/or tool(s) are detonated/initiated. The process repeats until all of the operations have been completed. The wireline cable is then retracted to the surface of the wellbore along with any components that have remained attached to the gun string. Additional debris that remains in the wellbore may need to be recovered or is left in situ.
In the oil and gas industry, the wireline cable 2012, electric line or e-line are cabling technology used to lower and retrieve equipment or measurement devices into and out of the wellbore 2016 of an oil or gas well for the purpose of delivering an explosive charge, evaluation of the wellbore 2016 or other well-related tasks. Other methods include tubing conveyed (i.e., TCP for perforating) or coil tubing conveyance. A speed of unwinding the wireline cable 2012 and winding the wireline cable 2012 back up is limited based on a speed of the wireline equipment 2062 and forces on the wireline cable 2012 itself (e.g., friction within the well). Because of these limitations, it typically can take several hours for a wireline cable 2012 and a toolstring 2031 to be lowered into a well and another several hours for the wireline cable 2012 to be wound back up and the expended toolstring retrieved. The wireline equipment 2062 feeds wireline 2012 through wellhead 2060. When detonating explosives, the wireline cable 2012 will be used to position the toolstring 2031 of perforating guns 2018 containing the explosives into the wellbore 2016. After the explosives are detonated, the wireline cable 2012 will have to be extracted or retrieved from the well.
Wireline cables and TCP systems have other limitations such as becoming damaged after multiple uses in the wellbore due to, among other issues, friction associated with the wireline cable rubbing against the sides of the wellbore. Location within the wellbore is a simple function of the length of wireline cable that has been sent into the well. Thus, the use of wireline may be a critical and very useful component in the oil and gas industry yet also presents significant engineering challenges and is typically quite time consuming. It would therefore be desirable to provide a system that can minimize or even eliminate the use of wireline cables for activity within a wellbore while still enabling the position of the downhole equipment, e.g., the toolstring 2031, to be monitored.
During many critical operations utilizing equipment disposed in a wellbore, it is important to know the location and depth of the equipment in the wellbore at a particular time. When utilizing a wireline cable for placement and potential retrieval of equipment, the location of the equipment within the well is known or, at least, may be estimated depending upon how much of the wireline cable has been fed into the wellbore. Similarly, the speed of the equipment within the wellbore is determined by the speed at which the wireline cable is fed into the wellbore. As is the case for a toolstring 2031 attached to a wireline, determining depth, location and orientation of a toolstring 2031 within a wellbore 2016 is typically a prerequisite for proper functioning.
One known means of locating a toolstring 2031, whether tethered or untethered, within a wellbore involves a casing collar locator (“CCL”) or similar arrangement, which utilizes a passive system of magnets and coils to detect increased thickness/mass in a wellbore casing 1580 (
Another known means of locating a toolstring 2031 within a wellbore 2016 involves tags attached at known locations along the wellbore casing 1580. The tags, e.g., radio frequency identification (“RFD”) tags, may be attached on or adjacent to casing collars but placement unrelated to casing collars is also an option. Electronics for detecting the tags are integrated with the toolstring 2031 and the onboard computer may ‘count’ the tags that have been passed. Alternatively, each tag attached to a portion of the wellbore may be uniquely identified. The detecting electronics may be configured to detect the unique tag identifier and pass this information along to the computer, which can then determine current location of the toolstring 2031 along the wellbore 2016.
Accordingly, current wellbore operations and system(s) require substantial amounts of onsite personnel and equipment and sometimes result in large residual debris post perforation in the wellbore. Even with selective gun strings, a substantial amount of time, equipment, and labor may be required to deploy the perforating gun or wellbore tool string, position the perforating gun or wellbore tool string at the desired location(s), and remove residual debris post perforating. Further, current perforating devices and systems may be made from materials that remain in the wellbore after detonation of the shaped charges and leave a large amount of debris that must either be removed from the wellbore or left within. Accordingly, devices, systems, and methods that may reduce the time, equipment, labor, and debris associated with downhole operations would be beneficial, including systems and methods of determining location along a wellbore that do not necessarily rely on the presence of casing collars or any other standardized structural element, e.g., tags, associated with the wellbore casing.
Devices, systems, and methods for autonomous or semi-autonomous downhole delivery and performance of one or more wellbore tools and operations in an oil or gas wellbore. For purposes of this disclosure and without limitation, “autonomous” means without a physical connection or manual control and “semi-autonomous” means without a physical connection.
In an aspect, the exemplary embodiments include a selective untethered drone string for downhole delivery of a wellbore tool, comprising: a first untethered drone, wherein the first untethered drone includes a selective detonator and a control circuit programmed for controlling selective detonation of a plurality of selective detonators, and the selective detonator of the first untethered drone is in electrical communication with the control circuit; and, a second untethered drone connected to the first untethered drone, wherein the second untethered drone includes a selective detonator in electrical communication with the control circuit, wherein the control circuit is configured for transmitting a selective sequence signal to at least one of the selective detonator of the second untethered drone and the selective detonator of the first untethered drone.
In another aspect, the exemplary embodiments include a selective untethered drone string, comprising: a first untethered drone connected to a second untethered drone, the first untethered drone and the second untethered drone respectively including a body portion; a selective detonator and optionally, a detonating cord coupled to the selective detonator; and a plurality of shaped charges received in shaped charge apertures in the body portion, wherein the shaped charge apertures are respectively positioned adjacent to at least one of the detonator and the detonating cord within an interior of the body portion, wherein the first untethered drone includes a control circuit programmed for controlling selective detonation of a plurality of selective detonators, and the selective detonator of the first untethered drone is in electrical communication with the control circuit, the selective detonator of the second untethered drone is in electrical communication with the control circuit, and the control circuit is configured for transmitting a selective sequence signal to the selective detonator of each of the second untethered drone and the first untethered drone, and the selective sequence signal for the selective detonator of the second untethered drone is different than the selective sequence signal for the selective detonator of the first untethered drone.
In a further aspect, the exemplary embodiments include a method for downhole delivery of a wellbore tool using a selective untethered drone string, comprising: programming a control circuit of the selective untethered drone string at a surface of the wellbore before the selective untethered drone string is deployed into the wellbore, wherein programming the control circuit includes teaching the control circuit a selective sequence signal for each of a plurality of selective detonators, wherein the selective untethered drone string includes a first untethered drone including a selective detonator and the control circuit, wherein the selective detonator of the first untethered drone is in electrical communication with the control circuit, and the first untethered drone further includes a shaped charge, a second untethered drone connected to the first untethered drone, wherein the second untethered drone includes a selective detonator in electrical communication with the control circuit, and a shaped charge; deploying the selective untethered drone string into the wellbore; transmitting a first selective sequence signal from the control circuit to the selective detonator of the second untethered drone and detonating the selective detonator and the shaped charge of the second untethered drone when the selective untethered drone string reaches a first pre-determined condition; and transmitting a second selective sequence signal from the control circuit to the selective detonator of the first untethered drone and detonating the selective detonator and the shaped charge of the first untethered drone when the selective untethered drone string reaches the first pre-determined condition or a second pre-determined condition.
For purposes of this disclosure, a “drone” is a self-contained, autonomous or semi-autonomous vehicle for downhole delivery of a wellbore tool.
A more particular description will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments thereof and are not therefore to be considered to be limiting of its scope, exemplary embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Various features, aspects, and advantages of the embodiments will become more apparent from the following detailed description, along with the accompanying figures in which like numerals represent like components throughout the figures and text. The various described features are not necessarily drawn to scale but are drawn to emphasize specific features relevant to some embodiments.
The headings used herein are for organizational purposes only and are not meant to limit the scope of the description or the claims. To facilitate understanding, reference numerals have been used, where possible, to designate like elements common to the figures.
This application incorporates by reference each of the following pending patent applications in their entireties: U.S. Provisional Patent Application No. 62/816,649, filed Mar. 11, 2019; U.S. Provisional Patent Application No. 62/720,638, filed Aug. 21, 2018; U.S. Provisional Patent Application No. 62/719,816, filed Aug. 20, 2018; U.S. Provisional Patent Application No. 62/678,654, filed May 31, 2018.
Reference will now be made in detail to various exemplary embodiments. Each example is provided by way of explanation and is not meant as a limitation and does not constitute a definition of all possible embodiments.
With reference to
In the exemplary embodiment shown in
In the exemplary disclosed embodiments, the body portion 310 is a unitary structure that may be formed from an injection-molded material. In the same or other embodiments, at least two of the body portion 310, the head portion 320, and the tail portion 330 are integrally formed from an injection-molded material. In other embodiments, the body portion 310, the head portion 320, and the tail portion 330 may constitute modular components or connections.
As shown in
With continuing reference to
The interior 314 of the body portion 310 may have hollow regions and non-hollow regions. As discussed above, the shaped charge apertures 313 receive and retain a portion of the shaped charge 340 in a hollow portion of the interior 314 of the body portion 310. Other regions of the interior 314 may be formed as non-hollow or may include additional internal components of the untethered drone 300 as applications dictate. The hollow portion of the interior 314 may include one or more structures for supporting each of the shaped charge 340 in the shaped charge apertures 313. The supporting structure may support, secure, and/or position the shaped charge 340 and may be formed from a variety of materials in a variety of configurations consistent with this disclosure. For example and without limitation, the supporting structure may be formed from the same material as the body portion 310 and may include a retaining device such as a retaining ring, clip, tongue in groove assembly, frictional engagement, etc., and the shaped charge 340 may include a complimentary structure to interact with the supporting structure.
While the shaped charge apertures 313 (and correspondingly, the shaped charges 340) are shown in a typical helical arrangement about the body portion 310 in the exemplary embodiment shown in
An exemplary supporting structure will secure each shaped charge 340 such that a point of velocity created by detonation of the shaped charge 340 will be centered with respect to the shaped charge aperture 313. Keeping the shaped charges 340 respectively centered will help balance the untethered drone 300 towards the center of the wellbore 1070 when the shaped charges 340 are detonated, because opposing perforating shock forces propagating into the body portion 310 as a result of the detonations will reduce movement of the untethered drone 300 within the wellbore 1070 due to unbalanced detonation forces. The exemplary supporting structure and/or other structures within the body portion 310 may also absorb and/or contain the perforating shock forces to assist with disintegrating the untethered drone 300 when the shaped charges 340 are detonated. Disintegration of the untethered drone material must be slower than detonation of the shaped charges 340 to ensure that the perforating shock forces, heat, pressure, shockwaves, etc. generated by detonating the shaped charges 340 are available to thoroughly disintegrate the untethered drone 300. However, disintegration of the untethered drone material must not be so slow that the various energy sources generated by the detonations are lost to the surrounding environment before the untethered drone 300 is thoroughly disintegrated.
A detonating cord 350 for detonating the shaped charges 340 and relaying ballistic energy along the length of the untethered drone 300 may be housed within at least a portion of each of the body portion 310, the head portion 320, and the tail portion 330. In the exemplary embodiment shown in
In some embodiments, and depending on the arrangement of the shaped charge apertures 313 and shaped charges 340, the detonating cord 350 may be arranged in a complementary manner to ensure that the detonating cord 350 is in sufficient contact or proximity to the shaped charges 340, for detonating the shaped charges 340.
In an aspect, the detonating cord 350 extends through the body portion 310 between the head portion 320 and the tail portion 330. In a further aspect, an amount of detonating cord 350 within one or both of the head portion 320 and the tail portion 330 is increased by, e.g., weaving, wrapping, folding, rolling, and the like, the detonating cord 350 within the head portion 320 and/or the tail portion 330. Increasing the amount of detonating cord 350 within the head portion 320 and/or the tail portion 330 may help ensure that enough ballistic and incendiary energy to thoroughly disintegrate those portions (320, 330) is provided directly to those portions (320, 330) upon initiation of the detonating cord 350. The additional, direct energy to the head portion 320 and the tail portion 330 may also help to disintegrate those portions (320, 330) before the shaped charge explosions potentially collapse the body portion 310 and eject the undisintegrated head portion 320 and tail portion 330 away from the explosive forces.
In an aspect and with continuing reference to
The conductive detonating cord 350 in the exemplary embodiment shown in
The detonator 307, the external contact point 309, and the onboard computer 390 are non-limiting examples of components that this disclosure refers to collectively as a vehicle driver 360. In the exemplary embodiment shown in
The exemplary embodiment shown in
With reference now specifically to the detonator 307, the exemplary untethered drone 300 shown in
With continuing reference to
In the exemplary wire-free detonator assembly 1110, a capacitor 1117 is positioned or otherwise assembled as part of the electronic circuit board 1116. The capacitor 1117 is configured to be discharged to initiate the detonator assembly 1110 upon receipt of a digital firing sequence via the ignition signal I, the ignition signal I being electrically relayed directly through the line-in portion 1120 and the line-out portion 1122 of the detonator head 1118. The fuse head 1115 initiates the explosive load 1130. In a typical arrangement, a first digital code is received by the electronic circuit board 1116. Once it is confirmed that the first digital code is the correct code for that specific detonator assembly, an electronic gate is closed and the capacitor 1117 is charged. Then, as a safety feature, a second digital code is received by the electronic circuit board 1116. The second digital code, which is also confirmed as the proper code for the particular detonator, closes a second gate, which in turn discharges the capacitor 1117 via the fuse head 1115 to initiate the detonation.
With reference now back to the exemplary embodiment shown in
With reference now to
The first untethered drone 401 does not include a head portion and the second untethered drone 402 does not include a tail portion. Instead, each of the first untethered drone 401 and the second untethered drone 402 is respectively connected to a drone connector 470 at a front end 412 of the first untethered drone 401 and a rear end 413 of the second untethered drone 402. Each of the first untethered drone 401 and the second untethered drone 402 may be connected to the drone connector 470 by any known techniques that are capable of withstanding the wellbore conditions, including high temperatures, pressures, corrosivity, etc. In an exemplary embodiment, the connection between the drone connector 470 and each of the first untethered drone 401 and the second untethered drone 402 is a threaded connection. In another exemplary embodiment, the body portions 410, 411 of the first untethered drone 401 and the second untethered drone 402 are integrally formed with the drone connector 470. The drone connector 470 is formed from either the same material as the untethered drones 401, 402 or a different material that will substantially disintegrate after detonation of the shaped charges 440, 441.
The drone connector 470 includes an interior portion (not visible) that may be at least partially hollow to form cavities in which the body portions 410, 411 of the first untethered drone 401 and the second untethered drone 402 are received. In an exemplary embodiment, the interior portion of the drone connector 470 includes at least one electrical connector (not visible). The electrical connector is configured for providing an electrical contact between the first untethered drone 401 and the second untethered drone 402 when the first and second untethered drones 401, 402 are connected to the drone connector 470. For example, the electrical connector may be a conductive relay configured for being in electrical contact on a first side with a conductive detonating cord 450 of the first untethered drone 401 and on a second side with a conductive detonating cord 451 of the second untethered drone 402. Accordingly, the respective conductive detonating cords 450, 451 may relay an electrical signal along a length of each of the first and second untethered drones 401, 402. The conductive detonating cord 450 of the first untethered drone 401 may relay the electrical signal from the external contact 409 to the electrical connector within the drone connector 470. The conductive detonating cord 451 of the second untethered drone 402 may then relay the electrical signal from the electrical connector within the drone connector 470 to the terminus of the conductive detonating cord 451 in the head portion 421 of the second untethered drone 402. In the event that an untethered drone string 400 having three or more untethered drones is desired, the additional untethered drones may be connected in the same way as described above, excepting that intermediate untethered drones between the two endmost untethered drones will have neither a head portion 421 nor a tail portion 430, and the body portion of each intermediate untethered drone will have a front end and a rear end respectively configured for connecting to a drone connector 470.
The drone connector 470 may further include a blast barrier 485. The blast barrier 485 may be configured for shielding the first untethered drone 401 from detonation of the second untethered drone 402, including, for example and without limitation, a shock wave, incendiary effect, or debris from the second untethered drone 402 that may disable, destroy, or disintegrate the first untethered drone 401. The blast barrier 485 may be generally any shape consistent with this disclosure and may be formed from a variety of materials consistent with this disclosure, such as metals and plastics and combinations of those materials.
The untethered drone string 400 may also include/constitute one or more wellbore tools connected to one or more untethered drones for downhole delivery. In such untethered drone strings, the connection(s) between wellbore tools and untethered drones may be configured in the same manner as connections between untethered drones. The one or more wellbore tools may include, for example and without limitation, frac plugs, bridge plugs, tubing cutters, data collection devices, other wellbore tools disclosed herein, and other known wellbore tools consistent with this disclosure.
In use, the first untethered drone 401 may be the “upstream” or topmost untethered drone in the untethered drone string 400; i.e., the untethered drone that includes the tail portion 430 and the vehicle driver 460. When the untethered drone string 400 is at the surface 1001 of the wellbore 1070, an external power supply 524 may be connected to the external contact 409 to provide power for the onboard computer 490. The onboard computer 490 may be connected to the control unit 1030 such that the control unit can teach the onboard computer 490 one or more of, for example and without limitation, a profile of the wellbore 1070, an order of launching a series of untethered drones into the wellbore 1070, a selective sequence signal including one or more of an arming instruction, a detonation instruction, a detonation code, and an encrypted trigger signal. As previously discussed, for safety reasons the external power supply 524 and the onboard computer 490 are configured such that the external power supply 524 can only power the control circuitry of the onboard computer 490 when the untethered drone string 400 is at the surface 1001.
When the untethered drone string 400 is ready for launching into the wellbore 1070, the external power supply 524 and the control unit 1030 are disconnected respectively from the external contact 409 and the onboard computer 490. The untethered drone string 400 is then placed inside a wellhead or other launching mechanism. When the untethered drone string 400 is launched into the wellbore 1070 an exemplary deactivating safety device 480 in the form of a removable tab is removed by, for example and without limitation, a mechanical implement that snags the tab 480 after it passes through the wellhead or launching mechanism, or a force such as a shear force that the wellbore fluid creates against the untethered drone string 400. Removing the tab 480 provides a potential for the battery 520 and other onboard components to begin communicating, although additional safety and operational measures may be in place to prevent arming the device prematurely. Exemplary safety and operational measures are discussed below with respect to
According to a further aspect, an electrical selective sequence signal may be sent from the vehicle driver 360 (e.g., via the onboard computer 409 and/or trigger circuit 530) to the detonator 407 when the untethered drone string 400 reaches at least one of a threshold pressure, temperature, horizontal orientation, inclination angle, depth, distance traveled, rotational speed, and position within the wellbore. The threshold conditions may be measured by any known devices consistent with this disclosure including a temperature sensor, a pressure sensor, a positioning device 408a such as a gyroscope and/or accelerometer (for horizontal orientation, inclination angle, and rotational speed), and a correlation device 408b such as a casing collar locator (CCL) or position determining system (for depth, distance traveled, and position within the wellbore) as discussed below with respect to
With additional reference to
The exemplary untethered drone shown in
With continuing reference to
The potential exists for locating ultrasonic transceiver T11530 and ultrasonic transceiver T21532 in different portions of untethered drone 1510 and connecting them electrically to onboard computer/control circuit 390. As such, it is possible to increase the axial distance L between T11530 and T21532 almost to the limit of the total length of the untethered drone 1510. Placing T11530 and T21532 further away from one another achieves a more precise measure of velocity and retains precision more effectively as higher drone velocities are encountered, especially where sample rate for T11530 and T21532 reach an upper limit.
In an exemplary embodiment of a navigation system 1600 such as used in the ultrasonic transducer system 1500 shown in
The processing unit 1640 may include an oscillator circuit 1644 and a capacitor 1642. An oscillating signal is generated by the oscillator circuit 1644, and sent to the wire coils 1632, 1634. With the wire coils 1632, 1634 acting as inductors, a magnetic field is established around the wire coils 1632, 1634 when charge flows through the wire coils 1632, 1634. Insertion of the capacitor 1642 in the processing unit 1640 results in constant transfer of electrons between the wire coils/inductors 1632, 1634 and the capacitor 1642, i.e., in a sinusoidal flow of electricity between the wire coils 1632, 1634 and the capacitor 1642. The frequency of this sinusoidal flow will depend upon the capacitance value of the capacitor 1642 and the magnetic field generated around the wire coils 1632, 1634, i.e., the inductance value of the wire coils 1632, 1634. The peak strength of the sinusoidal magnetic field around the wire coils 1632, 1634 will depend on the materials immediately external to the wire coils 1632, 1634. With the capacitance of the capacitor 1642 being constant and the peak strength of the magnetic field around the wire coils 1632, 1634 being constant, the circuit will resonate at a particular frequency. That is, current in the circuit will flow in a sinusoidal manner having a frequency, referred to as a resonant frequency, and a constant peak current.
With reference now back to
The untethered drone string 400 use discussed above is a non-limiting representative use for individual untethered drones 300 and wellbore tools as well. Exemplary wellbore tools as discussed above include a bridge plug, a frac plug, a tubing cutter, and the like. The mechanisms, measurements, safety measures, and order of steps in the process may be varied and adapted to various applications without departing from the scope of this disclosure.
In an additional aspect of the exemplary untethered drone string 400 use, the selective sequence signal as discussed above is received at the line-in portion 1120 of the detonator assembly 1110 for the first untethered drone 401 and provided to the electronic circuit board 1116 of that detonator assembly. The selective sequence signal may include the unique addressing signal for the selected selective detonator. If the unique addressing signal does not match the stored address code of that detonator assembly, the detonator will not activate. The conductive detonating cord 450 of the first untethered drone 401 will relay the selective sequence signal from the line-out portion 1122 of the detonator assembly 1110 to the line-in portion of a detonator assembly for the second untethered drone 402, via the electrical connector in the drone connector 470. If the selective sequence signal corresponds, according to the unique addressing signal, to the detonator assembly of the second untethered drone 402, the detonator will activate and ballistically initiate the conductive detonating cord 451 to detonate the shaped charges 441 that the second untethered drone 402 carries. The process will repeat for each untethered drone and/or wellbore tool in the untethered drone string 400. According to the exemplary embodiment of the untethered drone 300, each untethered drone 401, 402 in the untethered drone string 400 may be formed from an injection-molded plastic material that will substantially disintegrate and/or dissolve into a proppant upon detonation of the shaped charges 440, 441, thereby reducing the amount of debris generated by successive detonations of the untethered drones 401, 402.
Notably, the configuration of the untethered drone string 400 and, in particular, the conductive line (for example, in the conductive detonating cord 450, 451 of the exemplary embodiments) allows a single power source, such as a single battery 520 in the vehicle driver 460 at the top of the untethered drone string 400, to provide power to each untethered drone 401, 402 and/or wellbore tool in the untethered drone string 400. The power may be relayed between each untethered drone 401, 402 and/or wellbore tool via the conductive detonating cords 450, 451 in the same manner as, e.g., the selective sequence signal. Similarly, a single vehicle driver 460 can be used to control each untethered drone 401, 402 and wellbore tool in the untethered drone string 400 because, for example, arming and detonation instructions for each untethered drone 401, 402 and wellbore tool may be relayed from the vehicle driver 460 to downstream drones/tools via the conductive detonating cords 450, 451. In some embodiments, the vehicle driver 460 may wirelessly relay electrical signals including a selective sequence signal to each untethered drone in an untethered drone string, for example via a Bluetooth connection.
With reference now to
The leads 525 and the driver contact points 508, 509 may be connected further to various vehicle driver 360 components including without limitation a central processing unit (CPU) (the CPU may also be integral with the onboard computer) and at least one sensor including a temperature sensor, a pressure sensor, a positioning device 308a, and a correlating sensor 308b. Moreover, the onboard assembly 500 may connect to an engine 645 (
The external connection 309 and onboard assembly 500 are configured for receiving an external power supply 524 when the untethered drone 300 is at the surface 1001 of the wellbore 1070, before the untethered drone 300 is launched into the wellbore 1070. In an aspect, the onboard assembly 500 is configured such that the external power supply 524 is only provided to control circuits (i.e., circuits that are responsible for, e.g., data and instructions for non-explosive systems). Accordingly, the control unit 1030 may teach the untethered drone 300 information such as described herein above and the like when the external power supply 524 and the control unit 1030 are connected to the untethered drone 300 at the wellbore surface 1001. As previously discussed, the information may include a selective sequence signal including one or more of a unique arming instruction, detonation instruction, and/or detonation code for each individual untethered drone. The ability to provide such unique information after the untethered drone 300 is on site and shortly before it is launched into the wellbore 1070 provides additional safety against inadvertent or malicious triggers of the arming and/or detonation circuits.
With reference to
As would be understood by one of ordinary skill in the art, electrical power typically supplied via the wireline cable 2012 to wellbore tools, such as a tethered drone or typical perforating gun, would not be available to an untethered drone as described herein and shown in
The on-board power supply 1792 for the untethered drone 1700 may take the form of an electrical battery (e.g., battery 520); the battery may be a primary battery or a rechargeable battery. Whether the power supply 1792 is a primary or rechargeable battery, it may be inserted into the untethered drone 1700 at any point during construction of the untethered drone 1700 or immediately prior to insertion of the untethered drone 1700 into the wellbore 1070. If a rechargeable battery is used, it may be beneficial to charge the battery immediately prior to insertion of the untethered drone 1700 into the wellbore 1070. Charge times for rechargeable batteries are typically on the order of minutes to hours.
In an embodiment, another option for the power supply 1792 is the use of a capacitor or a supercapacitor. A capacitor is an electrical component that consists of a pair of conductors separated by a dielectric. When an electric potential is placed across the plates of a capacitor, electrical current enters the capacitor, the dielectric stops the flow from passing from one plate to the other plate and a charge builds up. The charge of a capacitor is stored as an electric field between the plates. Each capacitor is designed to have a particular capacitance (energy storage). In the event that the capacitance of a chosen capacitor is insufficient, a plurality of capacitors may be used. When a capacitor is connected to a circuit, a current will flow through the circuit in the same way as a battery. That is, when electrically connected to elements that draw a current the electrical charge stored in the capacitor will flow through the elements. Utilizing a DC/DC converter or similar converter, the voltage output by the capacitor will be converted to an applicable operating voltage for the circuit. Charge times for capacitors are on the order of minutes, seconds or even less.
A supercapacitor operates in a similar manner to a capacitor except there is no dielectric between the plates. Instead, there is an electrolyte and a thin insulator such as cardboard or paper between the plates. When a current is introduced to the supercapacitor, ions build up on either side of the insulator to generate a double layer of charge. Although the structure of supercapacitors allows only low voltages to be stored, this limitation is often more than outweighed by the very high capacitance of supercapacitors compared to standard capacitors. That is, supercapacitors are a very attractive option for low voltage/high capacitance applications as will be discussed in greater detail hereinbelow. Charge times for supercapacitors are only slightly greater than for capacitors, i.e., minutes or less.
A battery typically charges and discharges more slowly than a capacitor due to latency associated with the chemical reaction to transfer the chemical energy into electrical energy in a battery. A capacitor is storing electrical energy on the plates so the charging and discharging rate for capacitors are dictated primarily by the conduction capabilities of the capacitors plates. Since conduction rates are typically orders of magnitude faster than chemical reaction rates, charging and discharging a capacitor is significantly faster than charging and discharging a battery. Thus, batteries provide higher energy density for storage while capacitors have more rapid charge and discharge capabilities, i.e., higher power density, and capacitors and supercapacitors may be an alternative to batteries especially in applications where rapid charge/discharge capabilities are desired.
Thus, the on-board power supply 1792 for the untethered drone 1700 may take the form of a capacitor or a supercapacitor, particularly for rapid charge and discharge capabilities. A capacitor may also be used to provide additional flexibility regarding when the power supply is inserted into the untethered drone 1700, particularly because the capacitor will not provide power until it is charged. Thus, shipping and handling of the untethered drone 1700 containing shaped charges or other explosive materials presents low risks where an uncharged capacitor is installed as the power supply 1792. This is contrasted with shipping and handling of an untethered drone 1700 with a battery, which can be an inherently high risk activity and frequently requires a separate safety mechanism to prevent accidental detonation. Further, and as discussed previously, the act of charging a capacitor is very fast. Thus, the capacitor or supercapacitor being used as a power supply 1792 for the untethered drone 1700 can be charged immediately prior to deployment of the untethered drone 1700 into the wellbore 1070.
While the option exists to ship the untethered drone 1700 preloaded with a rechargeable battery which has not been charged, i.e., the electrochemical potential of the rechargeable battery is zero, this option comes with some significant drawbacks. The goal must be kept in mind of assuring that no electrical charge is capable of inadvertently accessing any and all explosive materials in the untethered drone 1700. Electrochemical potential is often not a simple, convenient or failsafe thing to measure in a battery. It may be the case that the potential that a ‘charged’ battery may be mistaken for an ‘uncharged’ battery simply cannot be reduced sufficiently to allow for shipping the untethered drone 1700 with an uncharged battery. In addition, as mentioned previously, the time for charging a rechargeable battery having adequate power for the untethered drone 1700 could be on the order of an hour or more. Currently, fast recharging batteries of sufficient charge capacity are uneconomical for the ‘one-time-use’ or ‘several-time-use’ that would be typical for batteries used in the untethered drone 1700.
In an embodiment, electrical components of an exemplary untethered drone as described throughout this disclosure including the onboard computer/control circuit 390, an oscillator circuit 1644, one or more wire coils 1632, 1634, and one or more ultrasonic transceivers 1530, 1532 may be battery powered while explosive elements like the detonator for initiating detonation of the shaped charges are capacitor powered. Such an arrangement would take advantage of the possibility that some or all of the onboard computer/control circuit 390, the oscillator circuit 1644, the wire coils 1632, 1634, and the ultrasonic transceivers 1530, 1532 may benefit from a high density power supply having higher energy density, i.e., a battery, while initiating elements such as detonators typically benefit from a higher power density, i.e., capacitor/supercapacitor. A very important benefit for such an arrangement is that the battery is completely separate from the explosive materials, affording the potential to ship the untethered drone 1700 preloaded with a charged or uncharged battery. The power supply that is connected to the explosive materials, i.e., the capacitor/supercapacitor, may be very quickly charged immediately prior to dropping the untethered drone 1700 into wellbore 1070.
In another aspect of the exemplary disclosed embodiments, the untethered drone 300 is configured for performing a self-test of, e.g., operability and connections of the untethered drone components. The untethered drone 300 may receive instructions to perform the self-test from the control unit 1030 when the untethered drone 300 is at the surface 1001 of the wellbore 1070. More specifically and without limitation, the self-test may include at least one of testing an electrical connection, a ballistic connection, a selective detonation code, an onboard computer 390, 490, a power source such as a battery 520, control circuitry, a trigger circuit 530, a positioning device 308a, a correlation device 308b, and a sensor. The self-test may be performed when the untethered drone 300 is connected to the control unit 1030 and external power supply 524 at the wellbore surface 1001. Conducting a self-test using power from an onboard battery 520 is not advisable because merely activating the battery 520 may arm the explosive devices, deplete the battery 520, and require installation of additional batteries in the untethered drone 300 at additional cost. Further, a self-test of the explosive circuits is not advisable for safety reasons, although a self-test of the explosive circuits may be performed according to known techniques and the exemplary systems disclosed herein—for example, if the onboard computer 390 and/or pre-programming of the control logic for the untethered drone 300 allows the explosive circuits to receive power from the external power supply 524. A deficient untethered drone 300 according to the self-test may be immediately removed from the launch sequence, thereby eliminating another source of potential debris from an incomplete or failed detonation of the shaped charges 340.
An untethered drone string 400 may also conduct a self-test. The untethered drone string 400 self-test may include the same tests as discussed above with respect to the individual drones, and may add tests for, e.g., the electrical connection(s) and mechanical connection(s) between the first untethered drone 401 and the second untethered drone 402. According to the exemplary disclosed embodiments of an untethered drone string 400, this includes testing the threaded connection between each of the first untethered drone 401 and the drone connector 470 and the second untethered drone 402 and the drone connector 470. The connections between the first untethered drone 401 and the electrical connector within the interior of the drone connector 470 and the second untethered drone 402 and the electrical connector within the interior of the drone connector 470 may also be tested. Further, the feed-through wiring of the untethered drone string 400 may be tested to determine whether power and control signals from a vehicle driver 460 at the topmost untethered drone 401 are propagating through the entire untethered drone string 400.
In an exemplary embodiment of the untethered drone 300 including one or more sensors such as the sensors described above, the untethered drone 300 may be taught to initiate one or more operations including detonating the shaped charges 340 when one or more metrics meets a particular threshold or expected value. For example, before the battery 520 connects to and powers the onboard computer 510 and trigger circuit 530, thereby arming the untethered drone 300, the battery 520 powers the one or more sensors for operation as the untethered drone 300 proceeds through the wellbore 1070. The sensors may then communicate an electrical signal to the battery 520 when one or more of a threshold or expected pressure, temperature, depth, distance traveled, rotational speed, and position within the wellbore 1070 has been met. In response to receiving the electrical signal, the battery 520 may begin delivering power to one or both of the onboard computer 510 and trigger circuit 530, and thereby initiate execution of any control instructions that the untethered drone 300 has been taught.
In another exemplary embodiment of the untethered drone 300 including one or more sensors such as the sensors described above, the untethered drone 300 may be taught to initiate one or more operations including detonating the shaped charges 340 when one or more metrics meets a particular threshold or expected value and the onboard battery 520 receives a valid, encrypted trigger signal from the sensor. For example, before the battery 520 connects to and powers the onboard computer 510 and trigger circuit 530, thereby arming the untethered drone 300, the battery 520 powers the one or more sensors for operation as the untethered drone 300 proceeds through the wellbore 1070. The sensors may then communicate an electrical signal to the battery 520, either as an encrypted electrical signal or accompanying an encrypted electrical signal, when one or more of a threshold or expected pressure, temperature, depth, distance traveled, rotational speed, and position within the wellbore 1070 has been met. In response to receiving, decrypting, and verifying the electrical signal, the battery 520 may begin delivering power to one or both of the onboard computer 510 and trigger circuit 530, and thereby initiate execution of any control instructions that the untethered drone 300 has been taught. In a further aspect of such an embodiment, the control unit 1030 may teach each individual untethered drone 300 a unique encryption or encrypted trigger signal when the untethered drone 300 is connected to the external power supply 524 and control unit 1030 at the surface 1001 of the wellbore 1070, in much the same way as the control unit 1030 provides a unique arming instruction, detonating instruction, and/or detonation code to each untethered drone 300. The encryption/encrypted trigger signal provides a further level of safety against accidental or malicious detonations.
With reference now to
In the exemplary untethered drones 600a, 600b shown in
Moreover, any embodiment of an untethered drone disclosed herein may generally include an integral, curved or other topology on a surface that is exposed to the wellbore fluid, for causing the untethered drone to rotate within the wellbore fluid.
In an aspect of an alternative embodiment, any disclosed embodiment of an untethered drone may include at least one of curved fins 673 and an integral, curved or other topology on a surface that is exposed to the wellbore fluid, for causing the untethered drone to rotate around an axis 660 while traveling through the wellbore fluid, and may further include an engine 645 for exerting a force along the axis 660 in a direction away from the tail end 630 of the untethered drone, wherein the engine may include a centralizing device 650, and the engine propels the untethered drone forward while the at least one of curved fins 673 and the integral, curved or other topology stabilizes the untethered drone on the axis 660.
With specific reference to
With specific reference now to
With continuing reference to
In various other embodiments, engines 645 with or without centering devices 650 may be attached to the untethered drone 600b according to any known techniques consistent with this disclosure and may be oriented in any manner consistent with the goals of supporting and/or centering the untethered drone 600b within the wellbore casing 1060/wellbore fluid. For example, the one or more engines 645/centrering devices 650 may be located on any accommodating portion of the head portion 620, body portion 610, or tail portion 630. In other examples, the one or more engines 645 including one or more centering devices 650 may generate lateral forces extending in an upstream direction away from the untethered drone 600b along the axis 660 of the untethered drone 600b. In that configuration radial propulsion may be created if the untethered drone 600b achieves a positive forward movement relative to the wellbore fluid flow.
In any configuration, rotating the untethered drone 600a, 600b through the wellbore fluid provides several benefits. The radial forces and curved topology respectively help to keep the untethered drone 600a, 600b centered within the wellbore casing 1060/wellbore fluid and reduce friction against the untethered drone 600a, 600b. As a result, the untethered drone 600a, 600b will experience fewer and less severe collisions with the wellbore casing 1060 as it travels downhole. Accordingly, the untethered drone 600a, 600b may be formed from less material and/or lighter material without sacrificing the integrity of the untethered drone 600a, 600b under downhole conditions. Similarly, a rotating untethered drone 600a, 600b reduces the need to increase the weight or density of the untethered drone 600a, 600b to center and stabilize the untethered drone 600a, 600b and decreases the frequency and degree to which the untethered drone 600a, 600b will bounce and rebound as it travels. Thus, the location of the untethered drone 600a, 600b in the wellbore may be determined with greater precision because positioning and correlation factors such as the horizontal orientation and inclination angle of the untethered drone 600a, 600b will experience less interference from bouncing and thereby reflect more accurately the profile of the wellbore. Further, forming the untethered drone 600a, 600b from less material and/or lighter material, in particular for the head portion 620 and the tail portion 630, makes thoroughly disintegrating the untethered drone 600a, 600b easier upon detonation of the shaped charges, dissolution in the wellbore fluid, etc.
The exemplary untethered drones 600a, 600b shown in
With reference now to
A detonating cord 750 for detonating the shaped charges 740 and relaying ballistic energy along the length of the untethered drone 700 may be housed within at least a portion of each of the body portion 710, the head portion 720, and the tail portion 730. In the exemplary embodiment shown in
In an aspect, the detonating cord 750 extends through the body portion 710 between the head portion 720 and the tail portion 730. In a further aspect, an amount of detonating cord 750 within one or both of the head portion 720 and the tail portion 730 is increased by, e.g., weaving, wrapping, folding, rolling, and the like, the detonating cord 750 within the head portion 720 and/or the tail portion 730.
In an aspect and with continuing reference to
The exemplary untethered drone 700 further includes a vehicle driver 790 as described above with respect to the exemplary untethered drone 300 shown in
The exemplary untethered drone 700 further includes a tab-shaped deactivating safety device 795 according to the structure and use as described with respect to the untethered drone 300 shown in
With continuing reference to
The conductive detonating cord 750 in the exemplary embodiment shown in
The head connecting portion 760 is configured for connecting to and being in electrical contact with a downstream untethered drone or wellbore tool in an untethered drone string 800. In the exemplary embodiment shown in
According to the exemplary embodiment shown in
The exemplary untethered drone 700 may also include a blast barrier 780 positioned between at least a portion of the head portion 720 of the untethered drone 700 and the tail portion 730 of a downstream untethered drone that is attached to the head connecting portion 760 of the untethered drone 700. The blast barrier 780 may be configured for shielding the head portion 720 of the untethered drone 700 from detonation, disintegration, and debris from the downstream untethered drone and preventing destruction and/or disintegration of the head portion 720 of the untethered drone 700 as a result of the downstream detonation. The blast barrier 780 may generally be any shape consistent with this disclosure and may be formed from a variety of materials consistent with this disclosure such as, for example and without limitation, metals and plastics and combinations of those materials. In the same or other embodiments, the head portion 720 of the untethered drone 700 may be formed from a material such as metals, plastics, or combinations of those materials, and/or have a material structure or size configured for resisting disintegration under the force and heat of a downstream detonation.
With reference now to
The head connecting portion 820, 821 of each of the first untethered drone 801 and the second untethered drone 802 in the exemplary embodiment shown in
Use of the exemplary untethered drone string 800 is substantially similar to the use of the exemplary untethered drone string 400 described with respect to
As with the exemplary drone string 400 described with respect to
With reference now to
The conductive detonating cord 10 further includes an electrically conductive layer 12. The electrically conductive layer 12 is configured to transfer a communication signal along a length L of the conductive detonating cord 10. The communication signal may be a telemetry signal. According to an aspect, the communication signal includes at least one of a signal to check and count for detonators in a perforating gun string assembly, address and switch to certain detonators, charge capacitors, send a signal to initiate a detonator communicably connected to the conductive detonating cord 10, and various other functions as described in this disclosure. The integration of the electrically conductive layer 12 in the conductive detonating cord 10 helps to omit conductive lines as a separate component.
According to an aspect, the electrically conductive layer 12 extends around the explosive layer 14 in a spaced apart configuration. An insulating layer 18 (
The conductive detonating cord 10 may include a layer of material along its external surface to impart additional strength and protection to the structure of the conductive detonating cord 10.
As illustrated in
According to an aspect, electric pulses, varying or alternating current or constant/direct current may be induced into or retrieved from the electrically conductive layer 12 /electrically conductive sheath 13 of the conductive detonating cord 10. The conductive detonating cord 10 includes contacts (not shown) that are configured to input a communication signal at a first end of the conductive detonating cord 10, and output the communication signal at a second end of the conductive detonating cord 10. According to an aspect, the contacts may include a metal, such as aluminum, brass, copper, stainless steel or galvanized steel (including zinc). In order to facilitate the communication of the communication signal, the contacts may at least partially be embedded into the conductive detonating cord 10. The contacts may be coupled to or otherwise secured to the conductive detonating cord 10. According to an aspect, the contacts are crimped onto the detonating cord 10, in such a way that the contacts pierce through the protective outer jacket 16 of the conductive detonating cord 10 to engage the electrically conductive layer 12 or the conductive sheath 13. In use with an exemplary untethered drone 300, the contacts are configured without limitation for being in electrical communication with the electrical transfer contact 371a and the pin contact 365.
With reference now to
With reference now to
With reference now to
In the exemplary configuration shown in
The arrangement of shaped charges within a single radial plane as shown in
The present disclosure, in various embodiments, configurations and aspects, includes components, methods, processes, systems and/or apparatus substantially developed as depicted and described herein, including various embodiments, sub-combinations, and subsets thereof. Those of skill in the art will understand how to make and use the present disclosure after understanding the present disclosure. The present disclosure, in various embodiments, configurations and aspects, includes providing devices and processes in the absence of items not depicted and/or described herein or in various embodiments, configurations, or aspects hereof, including in the absence of such items as may have been used in previous devices or processes, e.g., for improving performance, achieving ease and/or reducing cost of implementation.
The phrases “at least one”, “one or more”, and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C”, “at least one of A, B, or C”, “one or more of A, B, and C”, “one or more of A, B, or C” and “A, B, and/or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together.
In this specification and the claims that follow, reference will be made to a number of terms that have the following meanings. The terms “a” (or “an”) and “the” refer to one or more of that entity, thereby including plural referents unless the context clearly dictates otherwise. As such, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. Furthermore, references to “one embodiment”, “some embodiments”, “an embodiment” and the like are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term such as “about” is not to be limited to the precise value specified. In some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Terms such as “first,” “second,” “upper,” “lower” etc. are used to identify one element from another, and unless otherwise specified are not meant to refer to a particular order or number of elements.
As used herein, the terms “may” and “may be” indicate a possibility of an occurrence within a set of circumstances; a possession of a specified property, characteristic or function; and/or qualify another verb by expressing one or more of an ability, capability, or possibility associated with the qualified verb. Accordingly, usage of “may” and “may be” indicates that a modified term is apparently appropriate, capable, or suitable for an indicated capacity, function, or usage, while taking into account that in some circumstances the modified term may sometimes not be appropriate, capable, or suitable. For example, in some circumstances an event or capacity can be expected, while in other circumstances the event or capacity cannot occur—this distinction is captured by the terms “may” and “may be.”
As used in the claims, the word “comprises” and its grammatical variants logically also subtend and include phrases of varying and differing extent such as for example, but not limited thereto, “consisting essentially of” and “consisting of.” Where necessary, ranges have been supplied, and those ranges are inclusive of all sub-ranges therebetween. It is to be expected that variations in these ranges will suggest themselves to a practitioner having ordinary skill in the art and, where not already dedicated to the public, the appended claims should cover those variations.
The terms “determine”, “calculate” and “compute,” and variations thereof, as used herein, are used interchangeably and include any type of methodology, process, mathematical operation or technique.
The foregoing discussion of the present disclosure has been presented for purposes of illustration and description. The foregoing is not intended to limit the present disclosure to the form or forms disclosed herein. In the foregoing Detailed Description for example, various features of the present disclosure are grouped together in one or more embodiments, configurations, or aspects for the purpose of streamlining the disclosure. The features of the embodiments, configurations, or aspects of the present disclosure may be combined in alternate embodiments, configurations, or aspects other than those discussed above. This method of disclosure is not to be interpreted as reflecting an intention that the present disclosure requires more features than are expressly recited in each claim. Rather, as the following claims reflect, the claimed features lie in less than all features of a single foregoing disclosed embodiment, configuration, or aspect. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment of the present disclosure.
Advances in science and technology may make substitutions possible that are not now contemplated by reason of the imprecision of language; these variations should be covered by the appended claims. This written description uses examples to disclose the method, machine and computer-readable medium, including the best mode, and also to enable any person of ordinary skill in the art to practice these, including making and using any devices or systems and performing any incorporated methods. The patentable scope thereof is defined by the claims, and may include other examples that occur to those of ordinary skill in the art. Such other examples are intended to be within the scope of the claims if, for example, they have structural elements that do not differ from the literal language of the claims, or if they include structural elements with insubstantial differences from the literal language of the claims.
This application is a Continuation Application of U.S. patent application Ser. No. 17/059,205 filed Nov. 25, 2020, which is a national phase of and claims priority to Patent Cooperation Treaty (PCT) Application No. PCT/IB2019/000526 filed Apr. 12, 2019, which claims priority to International Patent Application No. PCT/IB2019/000537, filed Mar. 18, 2019, which claims the benefit of U.S. Provisional Patent Application No. 62/678,636 filed May 31, 2018. PCT/IB2019/000526 claims priority to International Patent Application No. PCT/IB2019/000530 filed Mar. 29, 2019, which claims the benefit of U.S. Provisional Patent Application No. 62/690,314 filed Jun. 26, 2018. PCT/IB2019/000526 claims the benefit of U.S. Provisional Patent Application No. 62/765,185 filed Aug. 20, 2018. PCT/IB2019/000526 claims priority to U.S. patent application Ser. No. 16/272,326 filed Feb. 11, 2019, which claims the benefit of U.S. Provisional Patent Application No. 62/780,427 filed Dec. 17, 2018 and U.S. Provisional Patent Application No. 62/699,484 filed Jul. 17, 2018. PCT/IB2019/000526 claims the benefit of U.S. Provisional Patent Application No. 62/823,737 filed Mar. 26, 2019. PCT/IB2019/000526 claims the benefit of U.S. Provisional Patent Application No. 62/827,468 filed Apr. 1, 2019. PCT/IB2019/000526 claims the benefit of U.S. Provisional Patent Application No. 62/831,215 filed Apr. 9, 2019. The entire contents of each application listed above are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62831215 | Apr 2019 | US | |
62827468 | Apr 2019 | US | |
62823737 | Mar 2019 | US | |
62678636 | May 2018 | US | |
62690314 | Jun 2018 | US | |
62765185 | Aug 2018 | US | |
62780427 | Dec 2018 | US | |
62699484 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17059205 | Nov 2020 | US |
Child | 18060683 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/IB2019/000537 | Mar 2019 | US |
Child | 17059205 | US | |
Parent | PCT/IB2019/000530 | Mar 2019 | US |
Child | PCT/IB2019/000526 | US | |
Parent | 16272326 | Feb 2019 | US |
Child | PCT/IB2019/000530 | US |