Unvented heating appliance having system for reducing undesirable combustion products

Information

  • Patent Grant
  • 6425390
  • Patent Number
    6,425,390
  • Date Filed
    Monday, February 12, 2001
    23 years ago
  • Date Issued
    Tuesday, July 30, 2002
    21 years ago
Abstract
A heating appliance including a firebox having an inlet and an outlet, the firebox inlet and outlet in communication with a space containing ambient air and within which the appliance is located. A gas burner is disposed within the firebox and provides a flame, the flame supported by ambient air entering the firebox through the firebox inlet, the flame producing products of combustion which exit the firebox throught the firebox outlet. A catalyst element is in communication with the firebox outlet, and at least a portion of the products of combustion which exit the firebox through the firebox outlet are directed through the catalyst element. At least some of the products of combustion directed through the catalyst element are catalyzed, the catalyzed products of combustion being directed into the space in which the appliance is located. A plenum is in thermal communication with the firebox. Ambient air received from the space in which the appliance is located is conveyed through the plenum, the plenum having an outlet from which the air conveyed through the plenum is directed into the space in which the applicance is located. The ambient air being conveyed through the plenum is substantially out of fluid communication with the catalyzed products of combustion within the appliance.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention generally relates to heating appliances and, more particularly, relates to gas-fueled heating appliances, both ventless, which vent combustion gases directly into the room in which the appliance is installed and vented, which vent combustion gases to atmosphere.




2. Description of the Related Art




Gas-fueled heating appliances, such as fireplaces, stoves, and fireplace inserts, have the cleanest exhaust of any combustion process and typically include a combustion chamber, or firebox, which is provided with a source of flammable gas. The flammable gas is then combusted to provide heat and aesthetic value to the room in which the appliance is installed. The combustion typically produces carbon monoxide, carbon dioxide, water, oxygen, nitrogen, nitrogen oxide, and carbon soot, which are vented away from the fireplace and to the outside environment through a flue network or chimney. The major constituents are oxygen, nitrogen, carbon dioxide, and water with significantly lower levels of carbon monoxide, nitrogen oxides, and carbon soot. The mercaptan odorant found in gas fuel oxidizes and forms sulfuric oxides. Although such gases are vented to atmosphere, causing no serious problems in the space adjoining the appliance, increasing concerns about the environment may bring this process under heavy scrutiny and eventual regulation.




In certain locations, it is desirable to have an appliance capable of operating without venting to the outside environment. Therefore, gas appliances have been designed which are clean burning but “unvented” in that the gas combusts and the products of the combustion are allowed to enter the room in which the appliance is installed. With such designs, a chimney or flue network is not necessary and consequently such designs can be placed in many locations which would otherwise not be able to accommodate a vented appliance.




Because such designs allow combustion gases to enter the room in which the fireplace is installed, any combustion products, such as carbon monoxide, and airborne particulates, are also exhausted from the appliance directly into the room in which the appliance is located.




In addition, with conventional unvented appliances, the combustion gases rise within the firebox and heat the top wall of the firebox before exiting into the room in which the fireplace is installed. If the heat is not controlled, this can potentially damage the top wall of the firebox or a mantle associated therewith.




U.S. Pat. No. 5,054,468, issued to Moon, discloses an unvented gas-fueled fireplace heater which vents all combustion gases and airborne particulates directly into the room in which the heater is installed, but does not include any means for reducing undesirable emissions.




U.S. Pat. No. 5,139,011, also issued to Moon, discloses an unvented gas-fueled fireplace heater which vents combustion gases and particulates directly to the ambient room air, and further includes a sensor which detects a low oxygen level and a gas supply switch which is activated by the oxygen sensor.




Early attempts at ventless appliances suffer from drawbacks such as: 1) water build-up in the space, 2) acid gases, such as nitrogen oxide and sulfuric oxide, are discharged into the space potentially causing respiratory distress and corrosion in the home, 3) excessive oxygen consumption, and 4) excessive build-up of carbon monoxide levels in the space.




SUMMARY OF THE INVENTION




The present invention is for use in either vented or unvented, gas-fueled, heating appliances and includes a system for reducing the amounts of undesirable combustion products which are released into the atmosphere or space in which the appliance is installed. However, the catalyst of the present invention is particularly useful in unvented applications, where the discharge and treatment of products of combustion is even more critical. The present invention also includes a system for inducing a draft to aspirate the combustion gases from the firebox, and thereby avoid thermal damage to the firebox or mantle.




In particular, the present invention provides a carbon monoxide catalyst element to oxidize the carbon monoxide released by the appliance into carbon dioxide before the combustion gases are vented into the atmosphere or ambient room air. The catalyst element also serves as a filter to screen airborne particulates, such as ceramic fibers dislodged from the synthetic logs disposed within the firebox of a fireplace.




The carbon monoxide catalyst element is disposed within a heating appliance which includes a firebox and a heat exchanger surrounding the firebox. In one embodiment, ambient air enters the heat exchanger through an opening on the bottom front of a fireplace, below the firebox, and is divided such that a portion of the ambient air enters the firebox through openings below gas burners disposed within the firebox, and the remaining portion proceeds through the heat exchanger along a plenum below the firebox, along an adjoining plenum behind the firebox, and then along an adjoining plenum above the firebox. The air within the heat exchanger then merges with combustion air being vented from the firebox, and the recombinant air then exits the fireplace through an opening at the top front of the fireplace.




The front face of the fireplace is enclosed with a glass window to assure complete venting of the combustion gases through the top of the firebox and heat exchanger plenum. The carbon monoxide catalyst element is disposed in the combustion gas exit located at the top of the firebox and the openings at the top and bottom front of the fireplace are covered by a grill, louvers, mesh, or other similar device.




The present invention induces a draft which assists in the aspiration of the combustion gases by drawing the combustion gases from the hot air, high pressure firebox to the cooler air, low-pressure heat exchanger and ambient environment of the room in which the appliance is installed. In addition to the natural draft created by the present design, the appliance can optionally include a blower within the heat exchanger to further assist the aspiration of the combustion gases and increase the thermal output of the appliance.




Moreover, the draft is of a sufficient velocity to aspirate the combustion gases from the firebox at a flowrate sufficiently high to avoid structural damage to the firebox top wall, or an associated mantle.




One advantage of the present invention is that it substantially reduces the amount of carbon monoxide and other gases released by the appliance into the atmosphere or room in which the appliance is installed.




Another advantage of the present invention is that it reduces the number of airborne particulates, such as ceramic fibers, released by the appliance into the room in which the appliance is installed.




Another advantage of the present invention is that the combustion gases are aspirated from the firebox at a rate sufficiently fast to avoid thermal damage to the firebox or an associated mantle.




Another advantage of the present invention is that pollutants from sources present in the space in which the heating appliance is located are destroyed when heated in the combustion chamber and passed through the catalyst.




A still further advantage of the present invention is that it provides an appliance which can be installed into any site regardless of the availability of a chimney or other venting medium.




The present invention, in one form thereof, provides a heating appliance comprising a firebox, a gas burner, a heat exchanger, and a carbon monoxide catalyst element. The firebox includes an outlet and the gas burner which produces products of combustion. The heat exchanger partially surrounds the firebox and a draft results from the firebox being under higher pressure than the heat exchanger. The draft aspirates the products of combustion away from the firebox. The carbon monoxide catalyst element is disposed within the firebox outlet, and oxidizes carbon monoxide contained within the products of combustion into carbon dioxide and prevents airborne particulates from exiting the firebox.




The present invention, in another form thereof, provides a carbon monoxide catalyst element for oxidizing carbon monoxide into carbon dioxide, and comprises a plurality of planar foils, a plurality of corrugated foils, a ceramic oxide coating, and a precious metal coating. The plurality of planar foils and the plurality of corrugated foils are manufactured from stainless steel with the corrugated foils being alternatingly interposed between the planar foils. The ceramic oxide and precious metal coatings are disposed on the plurality of planar foils and the plurality of corrugated foils.




The present invention, in yet another form thereof, provides an unvented, gas-fueled fireplace comprising a firebox, a gas burner, a heat exchanger, and a carbon monoxide catalyst element. The firebox includes an outlet with the gas burners being disposed within the firebox and producing products of combustion. The heat exchanger partially surrounds the firebox and draws ambient air in through an entrance provided below the firebox and exhausts convection heated air through an exit provided above the firebox. A draft results from the firebox being under higher pressure than the heat exchanger, with the draft aspirating the products of combustion away from the firebox and to the ambient environment through the heat exchanger exit. The carbon monoxide catalyst element is disposed within the draft and oxidizes carbon monoxide contained within the products of combustion into carbon dioxide and prevents airborne particulates from exiting the fireplace.




The present invention, in still another form thereof, provides an unvented gas-fueled stove comprising a firebox, a gas burner, a heat exchanger, a combustion gas circuit, and a carbon monoxide catalyst element. The firebox includes an outlet with the gas burner being disposed within the firebox and producing products of combustion. The heat exchanger partially surrounds the firebox and draws ambient air in through an entrance provided below the firebox and exhausts convection heated air through an exit provided above the firebox. The combustion gas circuit includes an inlet communicating ambient air to the firebox and an outlet communicating products of combustion out of the firebox. The carbon monoxide catalyst element is disposed within the combustion gas outlet and oxidizes carbon monoxide contained within the products of combustion into carbon dioxide and prevents airborne particulates from exiting the stove.











BRIEF DESCRIPTION OF THE DRAWINGS




The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:





FIG. 1

is a side sectional view of a fireplace incorporating one embodiment of the present invention including the carbon monoxide catalyst element;





FIG. 2

is top view of the fireplace shown in

FIG. 1

showing the placement of the carbon monoxide catalyst element;





FIG. 3

is right side perspective view of the fireplace shown in

FIG. 1

;





FIG. 4A

is top view of the carbon monoxide catalyst element shown in

FIG. 3

;





FIG. 4B

is a cutaway enlarged top view of the catalyst element of

FIG. 4A

taken along line


4


B;





FIG. 5

is an enlarged fragmentary, sectional view of the carbon monoxide catalyst element shown in

FIG. 4B

which shows alternating individual planar and corrugated, sinusoidal-shaped foils with a catalyst coating disposed thereon;





FIG. 6

is a side sectional view of an alternative embodiment of the present invention;





FIG. 7A

is a perspective view of the carbon monoxide catalyst element being assembled;





FIG. 7B

is a perspective view of the carbon monoxide catalyst element of

FIG. 7A

in a final assembled state;





FIG. 7C

is a top view of the carbon monoxide catalyst element of

FIG. 7B

;





FIG. 7D

is an enlarged, top view of the carbon monoxide catalyst element of

FIG. 7C

taken along lines


7


D;





FIG. 7E

is a perspective view of the corrugated foil member of

FIG. 7A

taken along lines


7


E;





FIG. 8A

is a left front perspective view of the fireplace of

FIG. 1

with an alternative carbon monoxide catalyst element arrangement showing a method of assembly;





FIG. 8B

illustrates the fireplace of

FIG. 8A

with the carbon monoxide catalyst element fully assembled;





FIG. 8C

is a side sectional view of the carbon monoxide catalyst element of

FIG. 8B

taken along lines


8


C;





FIG. 9

is a partial side sectional view of a vertically vented fireplace incorporating the present invention including the carbon monoxide catalyst element; and





FIG. 10

is a partial side sectional view of a horizontally vented fireplace incorporating the present invention including the carbon monoxide catalyst element.











Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrates possible embodiments of the invention and such exemplifications are not to be construed as limiting the scope of the invention in any manner.




DETAILED DESCRIPTION OF THE INVENTION




Referring now to the drawings and particularly to

FIG. 1

, the exemplary embodiment is shown as unvented fireplace


20


having firebox


22


partially surrounded by heat exchanger


24


.




Fireplace


20


includes bottom wall


26


, back wall


28


, opposing side walls


30


and


32


(FIG.


2


), and top wall


34


. Firebox


22


includes bottom wall


36


, back wall


38


, opposing side walls


40


, and top wall


44


. Heat exchanger


24


includes bottom plenum


46


disposed between fireplace bottom wall


26


and firebox bottom wall


36


, back plenum


48


disposed between fireplace backwall


28


and firebox backwall


38


, and top plenum


50


disposed between fireplace top wall


34


and firebox top wall


44


.




Back plenum


48


and top plenum


50


are divided into inner passageway


52


and outer passageway


54


by room air deflector


56


. Similarly, top plenum


50


is further divided by combustion gas deflector


58


, as best shown in

FIG. 1

, to assist in the aspiration of combustion gases


59


from fireplace


20


. Heat shield deflector


60


is disposed above combustion product deflector


58


and room air deflector


56


to prevent the top of fireplace


20


, or an associated mantle (not shown), from becoming overheated and potentially damaged.




Bottom plenum


46


is provided with inlet


62


, and top plenum


50


is provided with outlet


64


to create a heat exchanger circuit, shown by flowpath arrows


66


, which commences with ambient air being drawn in through inlet


62


, continuing through back plenum


46


and top plenum


50


, and exhausting through outlet


64


. In this manner, a cold air draft is induced by introducing relatively cool space temperature air into vent inlet


62


and directing the air flow around the outside of firebox


22


. The cold air draft flow


66


exits through vent outlet


64


just above combustion gas flowpath


104


, thereby inducing draft which helps aspirate the firebox exhaust along path


104


.




Louvered grills


68


and


70


are provided over inlet


62


and outlet


64


, respectively, to prevent the passage of relatively large particles and objects. Any combustible products and particles, such as lint or dust, which do pass through louvers


68


and into firebox


22


are combusted within firebox


22


. To assist in the creation of a draft through heat exchanger


24


, fan assembly


72


is provided within bottom plenum


46


. In other embodiments, fireplace


20


can be provided without fan assembly


72


. Fan


72


does not run continuously, but rather a thermal disk or thermostat is placed in the unit. When the unit reaches a certain temperature, the thermostat makes a switch and fan


72


is energized. When the unit falls below a certain temperature, the thermostat breaks the switch and deenergizes the fan. This operation may be carried out by any one of many known acceptable means to achieve the desired result.




Firebox bottom wall


36


includes a plurality of air inlets


74


which feed air from bottom plenum


46


into firebox


22


. In the exemplary embodiment firebox


22


is provided with main burner


76


and front burner


78


, although other burner configurations are possible. Burners


76


and


78


are supplied combustible gas via a gas inlet (not shown), and with air through air inlets


74


positioned proximate gas burners


76


and


78


as shown in FIG.


1


.




Ceramic logs


80


are also disposed within firebox


22


atop bottom wall


36


to provide an aesthetically pleasing flame and fireplace appearance. Raised grate


82


is provided to give fireplace


20


the appearance of having a larger number of logs than are actually present, and thus reduce manufacturing costs. Glass front


84


substantially seals, in conjunction with sealing elements


86


, the front of firebox


22


such that all combustion gases


59


must exit firebox


22


through firebox outlet


88


provided in firebox top wall


44


. The average temperature of glass front


84


will be approximately 380° F. with a maximum temperature of the glass of approximately 450° F.




The combustion of gas at gas burners


76


and


78


produces combustion gases


59


which include, but are not limited to, carbon monoxide. To reduce the amount of carbon monoxide released to the ambient air, fireplace


20


includes carbon monoxide catalyst element


90


which is disposed in, and substantially bridges, firebox outlet


88


as shown in

FIGS. 1 and 2

. In vented applications, catalyst element


90


may be disposed in the flue or stack or virtually anywhere in the flow path of the products of combustion. Carbon monoxide catalyst element


90


oxidizes the carbon monoxide within combustion gases


59


into carbon dioxide before the gases are released into the ambient environment.




During operation, the firebox operates at a temperature approximately between 300-600° F. Because there is little or no heat generation within catalyst element


90


, the catalyst element also operates at approximately the same temperature as the firebox or more accurately the temperature of the firebox at outlet


88


. This is in sharp contrast to prior art ceramic converters used in wood burning applications in which large amounts of heat is generated by the combuster or converter. This primarily results from burning off creosote formed during the wood burning process. In the present gas burning application, no creosote is created and therefore no creosote is burned off by the catalyst element.




In prior art wood burning appliances, ceramic honeycomb-type combusters were used because metal was not an acceptable material. Prior art known metals were not acceptable because the metal could not operate under the high temperature conditions associated with burning off creosote. Unlike previously known metals, which had poor oxidation resistance characteristics, the new alloy high temperature stainless steel utilized in the foils of the present invention provides effective oxidation at higher temperatures. The ceramic oxide coating on the stainless steel interacts with the platinum catalyst to convert the carbon monoxide to carbon dioxide. This is in contrast to porcelinized ceramic honeycomb structures used in the wood burning applications. The porcelinized ceramic combusters virtually always crack and are typically held together by an outer skin or by framing with perforations to permit the communication of gas from the firebox through the combuster. A face plate is typically used to prevent the collapse of the porcelinized combuster and to help maintain it in its desired form. It is virtually impossible to remove and clean such a combuster because the ceramic structure is so likely to fall apart. Such problems are absent from the catalyst coated, stainless steel foils of the present invention.




As best shown in

FIGS. 4 and 5

, carbon monoxide catalyst element


90


, in the exemplary embodiment, is manufactured from a plurality of alternating corrugated stainless steel foils


92


and planar stainless steel foils


94


. The stainless steel is a ferritic stainless steel such as Alpha IV, FeCr Alloy, SR-18, or other stainless steels such as 409, 304, or 316. The new stainless steel alloys are acceptable in applications with operating temperatures as high as 1600° F. In the exemplary embodiment, foils


92


and


94


have a thickness of between 0.001 inch and 0.01 inch, preferably 0.002 inch. Foils


92


are corrugated and interposed between planar foils


94


to increase the overall surface area of catalyst element


90


exposed to the combustion gases to thereby increase the oxidizing capabilities of catalyst element


90


. The cell density associated with the configuration of the foils is preferably about 20-30 cells per square inch resulting in a porosity of approximately 90% or greater. Combustion in gas burning appliances is especially sensitive to flow obstruction. Very slight pressure drop increases, such as caused by placement of the catalyst element in the exhaust, greatly affects the amount of oxygen present and therefore the amount of carbon monoxide produced.




The primary design criteria in gas burning appliance designs are: 1) maintain aesthetic appearance of flickering flame, 2) provide highest temperature in firebox without compromising the tempered glass front, and 3) providing effective destruction of products of combustion. Optimal flow rate has been found to be approximately 40-60 ft


3


/minute. The pressure drop across the catalyst element affects all three of the design criteria. The greater the pressure drop the lower the flow rate, resulting in: 1) choking of flame and loss of flickering effect, 2) temperature in firebox perhaps being too great, thereby compromising the tempered glass front, and 3) more effective destruction of products of combustion. The lower the pressure drop and greater the flow rate results in: 1) enhanced flame quality, 2) good operating temperature for glass front, and 3) less effective removal of products of combustion. This would require more catalyst to achieve effective operation resulting in increased unit cost. The advantages and disadvantages must be balanced to arrive at a pressure drop/flow rate relationship that yields the most effective catalyst element configuration.




Ceramic oxide and precious metal coating


96


is disposed on stainless steel foils


92


and


94


as shown in FIG.


5


. In the exemplary embodiment, coating


96


is comprised of either aluminum oxide, zirconium oxide, titanium oxide, or a mixture thereof, with the precious metal being platinum or palladium or the like or a mixture thereof. The ceramic oxide coating is applied to the foils in basically two steps. First, an alumina-cerium oxide substance is colloidally dispersed and applied on the foil. Second, platinum, palladium, or a combination of the two metals at submicron levels are highly dispersed and impregnated on the foils at the surface of the ceramic oxide.




Carbon monoxide catalyst element


90


is disposed within catalyst element frame


98


. Frame


98


is spot welded, or otherwise attached to firebox top wall


44


in firebox outlet


88


. Frame


98


is provided with rim


100


which retains catalyst element


90


within frame


98


. The top of frame


98


is open to allow removal of catalyst element


90


for cleaning or replacement. In other embodiments, frame


98


could be provided with a screen (not shown) in lieu of rim


100


to retain catalyst element


90


within frame


98


and enable gases to pass through for oxidation. Carbon monoxide catalyst element


90


also filters out any ceramic fibers released by logs


80


as a result of gas burners


76


and


78


impinging flames


102


upon, and heating, logs


80


.




In operation, burners


76


and


78


combust gas drawn in through the gas inlet and create flames


102


within firebox


22


. Flames


102


within firebox


22


are fed air through air inlets


74


which allow communication between heat exchanger


24


and firebox


22


. Combustion gases


59


rise through firebox


22


and ultimately pass through firebox outlet


88


and carbon monoxide catalyst element


90


along flowpath


104


. The carbon monoxide within combustion gases


59


is converted from carbon monoxide to carbon dioxide and is exhausted from fireplace


20


through top plenum


50


and ultimately plenum outlet


64


.




Combustion gases


59


are drawn from firebox


22


as a result of the draft created within heat exchanger


24


. Combustion gases


59


, being heated and under pressure, are naturally drawn toward the relatively cool, low pressure heat exchanger


24


and outside ambient air. The glass cover is fixed in place as by hooks in the top of the frame and screws in the bottom, or by other suitable means. A gasket is used to help seal the firebox. This is necessary to maintain proper flow of the heated gas through the catalyst element


90


. If front cover


84


is not fixed, then the path of least resistance would be through the openings between the cover and the frame. The fixed cover also reduces the possibility of lint or other debris from entering the firebox. Because the front of firebox


22


is substantially sealed by glass front


84


and sealing elements


86


, combustion gases


59


are forced to exit firebox


22


through firebox outlet


88


. Therefore, all combustion gases


59


emanating from burners


76


and


78


pass through carbon monoxide catalyst element


90


and substantially all carbon monoxide is oxidized into carbon dioxide. In addition, any ceramic fibers released by logs


80


are prevented from exiting fireplace


20


by catalyst element


90


. In contrast to the ceramic honeycomb-type combusters associated with wood burning applications, which are characterized by a wall thickness of approximately 0.03 inch and a porosity of 50-60 percent, the catalyst element of the present invention is characterized by a porosity of approximately 90 percent or greater. This is primarily due to the significantly reduced wall thickness in the catalyst element of the present invention.




An alternative embodiment of the present invention is shown in

FIG. 6

wherein the heating appliance is free standing stove


106


. Free standing stove


106


includes base


112


, back panel


114


, top plate


116


, glass front


118


, and firebox


108


surrounded by heat exchanger


110


. Firebox


108


includes bottom wall


120


, back wall


122


, opposing side walls


124


, and top wall


126


. Heat exchanger


110


includes bottom plenum


128


disposed between base


112


and firebox bottom wall


120


, back plenum


130


disposed between back panel


114


and firebox back wall


122


, and top plenum


132


disposed between firebox top wall


126


and stove top plate


116


.




As shown in

FIG. 6

, back plenum


130


and top plenum


132


are divided into inner passageway


134


and outer passageway


136


by deflection baffle


138


. Bottom plenum


128


is optionally provided with blower fan


140


to draw ambient air in through inlet


142


, through heat exchanger


110


, and out through outlet


144


as indicated by flowpath arrows


145


. In the embodiment shown in

FIG. 6

, inlet


142


is provided on the bottom back side of stove


106


, while outlet


144


is provided on the top front side of stove


106


.




Firebox


108


is provided with combustion air inlet


146


and firebox outlet


148


. In the embodiment shown in

FIG. 6

, combustion air inlet


146


is provided on the bottom back side of stove


106


, while firebox outlet


148


is provided in top wall


126


. Outlet


148


leads to stove outlet


161


such that combustion air follows flowpath


147


. Firebox


108


also includes front burner


150


and main burner


152


which are supplied gas via a gas conduit (not shown) and with air through combustion air inlet


146


. Synthetic logs


154


are provided on raised grate


156


similar to the exemplary embodiment shown in FIG.


1


. Glass front


118


substantially seals, in conjunction with sealing elements


158


, the front of firebox


108


such that all combustion gases


160


must exit firebox


108


through firebox outlet


148


.




Carbon monoxide catalyst element


162


, having the same design as the embodiment shown in

FIG. 1

is disposed over firebox outlet


148


, and is held within frame


164


as described in reference to FIG.


1


. Although stove


106


is shown in

FIG. 6

having air inlets placed at the bottom back side of stove


106


with air outlets placed on the front and top of stove


106


, it is to be understood that the inlets and outlets may be placed in other positions. It is also to be understood that top plate


116


of stove


106


can be utilized as a heating or cooking surface.




Catalyst


90


was tested in two fireplaces of differing designs. The first fireplace included a flue having two concentric ducts with ambient air entering through the outer duct, and hot combustion gases exiting through the inner duct. The catalyst was constructed of two 4″×41″×2″ pieces each having 32 cubic inches of volume. The temperature in the firebox was not measured directly, but the catalyst was glowing faintly red indicating a temperature of 500° to 600° C.




The other test fireplace drew ambient air through two holes located on the rear wall of the firebox above the burners. A single catalyst with 42.4 cubic inches of volume was installed in the exhaust flow path approximately 12 inches above the firebox in the exhaust duct. The temperature was measured at approximately 400° F.




Exhaust gases were pulled from the exhaust pipe at a rate of approximately three liters per minute using a diaphragm pump and the exhaust gases were then forced, under pressure, through a refrigerator device designed to separate water from combustion gases with minimum removal of carbon dioxide, nitrogen oxide, and sulphur oxide. The dry gases were then analyzed for water, oxygen, carbon dioxide, carbon monoxide, nitrogen oxide, and sulphur oxide. The gas concentrations were calculated on a wet basis. Flow rates were also monitored to assure placement of the catalyst in the exhaust flowpath did not prevent creation of an adequate draft.




Tests were conducted with the fireplaces in three separate modes of operation. The first test was conducted without the catalyst placed in the fireplace. The second test was conducted with the catalyst support frame inserted, and a final test was conducted with the catalyst located within the catalyst support frame. The results of the test of the first fireplace are shown in the following Table #1, and the results of the tests of the second fireplace, are shown in the following Table #2.














TABLE 1













Fireplace















Empty




Bare Support




Catalyst




















CH


4






0.57




0.57




0.57







Combustion Air




5.35




5.35




5.35







Supplement Air




7.18




4.78




5.15







Total Air




12.52




10.12




10.50







Total Flow Rate




13.09




10.69




11.07







CO


2






4.31%




5.27%




5.09%







H


2


O




9.57%




11.48%




11.13%







O


2






11.35%




9.24%




9.63%







N


2






74.79%




74.01%




74.15%







CO, ppm




36




57




3







NO


2


, ppm




37




35




34







NO, ppm




22




12




25

























TABLE 2













Fireplace















Blank




Support




Catalyst




















CH


4






0.43




0.43




0.43







Combustion Air




4.09




4.09




4.09







Supplement Air




10.40




9.45




10.32







Total Air




14.49




13.54




14.41







Total Flow Rate




14.92




13.97




14.84







CO


2






2.89%




3.09%




2.91%







H


2


O




6.76%




7.15%




6.79%







O


2






14.44%




14.02%




14.41%







N


2






75.90%




75.75%




75.89%







CO, ppm




15




18




1







NO


2


, ppm




21




21




22







NO, ppm




13




13




19















As shown in Table #1, when the bare catalyst support frame was inserted in the fireplace exhaust, the air draft was effectively choked off with a corresponding increase in carbon dioxide concentration from 4.31 percent to 5.27 percent. The carbon monoxide concentration increased from 37 parts per million to 57 parts per million.




However, when the catalyst was placed into the support frame, the air draft flow rate was relatively unchanged, but the carbon monoxide levels were dramatically reduced from 57 parts per million to 3 parts per million. This represents a 91.8 percent reduction in carbon monoxide emission.




As shown in Table #2, without a catalyst the carbon monoxide concentration was 15 to 18 parts per million. However, when the catalyst was inserted, the flow rate was approximately the same as for the empty fireplace, but the carbon monoxide levels were dramatically reduced to approximately one part per million.




Referring now to

FIGS. 7A-7E

, corrugated foil members


200


and planar foil elements


202


are alternatingly placed in catalyst element frame


204


. The foil members are sized so as to friction fit along sidewalls


206


and


208


of frame


204


during assembly. Inwardly projecting flanges


210


and


212


are provided at the base of frame of


204


to engage the outermost bottom portions of foil members


200


and


202


so as to prevent excessive downward axial movement by the foil members and to thereby hold them in place within frame


204


. An upper lip may be provided along the upper edge of frame


204


to prevent upward axial movement of foil members


200


and


202


once placed in frame


204


. At the bottom of frame


204


and along the lengths of front and back walls


214


and


216


, respectively, flanges


218


and


220


extend outwardly and engage the inside surface of ceiling


222


along the perimeter of catalyst element receiving apertures


224


and


226


(see FIG.


8


A). Catalyst


234


is attached to firebox


236


at mounting apertures


228


by mounting screws


230


as shown in

FIGS. 8A-8C

, discussed in detail below.




As opposed to sinusoidal-shaped corrugated member


92


, of

FIG. 5

, corrugated foil member


200


, as best shown in

FIG. 7E

, is semi-hexagonal along oppositely faced turns


230


and


232


. The corrugated foil members may be shaped in a variety of configurations, such as sinusoidal, hexagonal, triangular, square, etc. When selecting a shape for the corrugated foil member, the important consideration is that when coating the foil member with ceramic oxide, coating tends to build up along sharp angles in the foil. The triangular shape may be most efficient and economical because less overlapping of metal occurs and less catalyst coating is required. Planar foils


202


may be removed altogether when using corrugating foil members that are shaped so as to engage one another in a spaced apart relationship when disposed in frame


204


. An acceptable range of wall thickness for the foils, both corrugated and planar, is preferably between 0.001 and 0.01 inch with a preferred thickness of 0.002 inch. The final completed assembly of carbon monoxide catalyst element


234


is shown in

FIGS. 7B and 7C

.





FIGS. 8A-8C

illustrate an alternative embodiment of the present invention in which a pair of catalyst elements


234


are mounted to the firebox, as opposed to the single catalyst element of FIG.


1


.

FIGS. 8A-8C

illustrate the method of assembling completed catalyst element


234


onto firebox


236


by inserting the catalysts into receiving apertures


224


and


226


provided in ceiling


222


of firebox


236


. From within the firebox, the catalyst elements are disposed axially upward into and through the apertures until support flanges


218


and


220


engage the inside surface of ceiling


222


. Mounting apertures


228


are aligned with mounting holes


238


formed in ceiling


22


adjacent apertures


224


and


226


. Mounting bolts


230


, or any other suitable fastening device or means, are received into and through apertures


228


and holes


238


and rotatably engage nuts


240


to secure catalyst elements


234


to ceiling


222


of firebox


236


.




The base of frame


204


is essentially hollow so that gases may flow from within firebox


236


through apertures


224


and


226


through frame


204


and over foils


200


and


202


of catalyst element


234


as shown in FIG.


8


C. Catalyst elements


234


may be cleaned by detaching bolts


230


from nuts


240


and removing the catalyst element from the firebox. Once removed, the catalyst element may be cleaned by immersing the entire catalyst element, frame, and foils, in a cleaning solution such as sodium bicarbonate or vinegar. It is preferred not to remove the individual foils once catalization has occurred. The cell density is approximately 20-30 cells per square inch in completed catalyst element


234


. Catalyst element


234


generally operates at a temperature approximately equal to the temperature in firebox


236


, typically between 300 and 600° F., because there is little or no heat generation within the converter. This is in sharp contrast to ceramic converters used in wood burning applications in which substantial heat is generated by the converter, thereby resulting in a much elevated converter operating temperature. In wood burning applications, creosote is produced and is burned off in the ceramic converters resulting in a significant increase in the operating temperature of the ceramic converter. By contrast, the gas burning applications associated with the present invention does not result in the creation of creosote. Catalyst element


234


does burn carbon monoxide in converting it to carbon dioxide. The catalyst also oxides some methane, formaldehyde, given off from insulation or carpets or out gases, from sources such as paint, polish remover, or other household objects. The catalyst burns CO to CO


2


and also some of the methane uncombusted by the burner. The catalyst also burns formaldehyde and other volatile organic compounds that may be present in the combustion air. Such volatile organic compounds come from paint, polish remover, or other household objects.





FIG. 9

illustrates the catalytic converter of the present invention in a vented type appliance, an example of a prior art vented appliance in which the present invention may be incorporated is illustrated in U.S. Pat. No. 5,320,086 (Beal), which is hereby incorporated into this document by reference and which is assigned to the assignee of the present invention. As shown in

FIGS. 9 and 10

, a concentric flue pipe assembly


242


includes a fresh air pipe


244


and exhaust pipe


246


.




During operation, air flow through direct vent gas fireplace


20


′ is as follows: combustion air flows through the annular space defined between fresh air pipe


244


and exhaust pipe


246


from the ambient environment outside the building in which direct vent gas fireplace


20


′ is installed. The combustion air flows through an air intake duct and combustion air duct


54


into the combustion chamber formed within firebox


22


′. The flow of combustion air into the combustion chamber is represented by air flow directional arrows


104


′. Combustion products produced in firebox


22


′ flow through the opening defined between baffle plate


89


and firebox top wall


44


, pass over catalyst


90


, through the lower portion of exhaust pipe


246


, and are exhausted to the outside environment through the outermost portion of exhaust pipe


246


. The operation of the catalyst unit is as described hereinabove. In this manner, the expulsion of products of combustion into the atmosphere is essentially eliminated. As illustrated in

FIGS. 9 and 10

, respectively, the vent flue arrangement may be vertical or horizontal. The vented application does not have to be a concentric intake/exhaust configuration and may take any conventional form.




While the present invention has been described as having an exemplary design, the present invention can be further modified within the spirit and scope of this disclosure. Although the present invention has been described as being particularly useful in unvented applications, the present invention is nonetheless useful in vented applications as well. This application is therefore intended to encompass any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to encompass such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains, and which fall within the limits of the appended claims.



Claims
  • 1. A heating appliance comprising:a firebox having an inlet and an outlet, said firebox inlet and outlet in communication with a space containing ambient air within which said appliance is located; a gas burner disposed within said firebox and providing a flame, said flame being supported by ambient air entering said firebox through said firebox inlet, said flame producing products of combustion which exit said firebox through said firebox outlet; a catalyst element in communication with said firebox outlet, at least a portion of the products of combustion which exit said firebox through said firebox outlet being directed through said catalyst element, and wherein at least some of the products of combustion being directed through said catalyst element are catalyzed, the catalyzed products of combustion being directed into the space in which said appliance is located; a plenum in thermal communication with said firebox and through which ambient air received from the space in which said appliance is located is conveyed, said plenum having an outlet from which the air conveyed through said plenum is directed into the space in which said appliance is located; and wherein the ambient air conveyed through said plenum is substantially out of fluid communication with the catalyzed products of combustion within said appliance.
  • 2. The heating appliance of claim 1, wherein at least a portion of the ambient air being conveyed through said plenum is heated by the products of combustion.
  • 3. The heating appliance of claim 1, wherein said appliance is a fireplace insert.
  • 4. The heating appliance of claim 1, wherein said appliance is a stove.
  • 5. The heating appliance of claim 1, wherein said catalyst element includes a plurality of planar foils, a plurality of corrugated foils alternatingly interposed between said planar foils, and a ceramic oxide and precious metal coating disposed on said planar foils and said corrugated foils.
  • 6. The heating appliance of claim 5, wherein said planar foils and said corrugated foils are manufactured from stainless steel chosen from the group of ferritic stainless steels consisting of Alpha IV, FeCr Alloy, 409, 304, and 316, said ceramic oxide is chosen from the group consisting of aluminum oxide, zirconium oxide, and titanium oxide, and said precious metal is chosen from the group consisting of platinum and palladium.
  • 7. The heating appliance of claim 1, wherein said carbon monoxide catalyst is disposed within a frame secured to said firebox outlet, said frame adapted to allow removal of said carbon monoxide catalyst for cleaning and replacement.
  • 8. A method for heating a space containing ambient air with an appliance located in the space, comprising:receiving a first portion of the ambient air from the space into a firebox of the appliance; creating products of combustion within the firebox; flowing the products of combustion from the firebox and through a catalytic convertor; catalyzing at least a portion of the products of combustion within the catalytic convertor; exhausting the catalyzed products of combustion from the appliance and into the space; receiving a second portion of the ambient air from the space into a plenum of the appliance and conveying the ambient air received into the plenum through the plenum; heating the ambient air being conveyed through the plenum; exhausting the ambient air heated in the plenum from the appliance and into the space; and keeping the catalyzed products of combustion and the heated ambient air substantially out of fluid communication within the appliance.
  • 9. The method of claim 8, wherein the appliance is a fireplace insert.
  • 10. The method of claim 8, wherein the appliance is a stove.
  • 11. The method of claim 8, wherein the plenum at least partially surrounds the firebox.
  • 12. The method of claim 8, further comprising keeping noncatalyzed products of combustion and the heated ambient air substantially out of fluid communication within the appliance.
  • 13. The method of claim 8, wherein said creation of products of combustion comprises burning gas with a burner disposed within the firebox.
  • 14. The method of claim 8, wherein said heating of the ambient air comprises transferring thermal energy from the products of combustion to the ambient air being conveyed through the plenum.
  • 15. The method of claim 14, wherein said transference of thermal energy is from the noncatalyzed products of combustion to the ambient air being conveyed through the plenum.
  • 16. The method of claim 14, wherein said transference of thermal energy is from the catalyzed products of combustion to the ambient air being conveyed through the plenum.
  • 17. The method of claim 8, wherein the plenum is a first plenum, and further comprising receiving a third portion of the ambient air from the space into a second plenum of the appliance and conveying the ambient air received into the second plenum through the second plenum;heating the ambient air being conveyed through the second plenum; exhausting the ambient air heated in the second plenum from the appliance and into the space; and keeping the ambient air heated in the second plenum and the catalyzed products of combustion substantially out of fluid communication within the appliance.
  • 18. The method of claim 17, further comprising keeping the ambient air heated in the second plenum and the noncatalyzed products of combustion substantially out of fluid communication within the appliance.
  • 19. The method of claim 18, wherein said heating of the ambient air being conveyed through the second plenum comprises transferring thermal energy from the ambient air being conveyed through the first plenum to the ambient air being conveyed through the second plenum.
  • 20. The method of claim 19, wherein the second plenum at least partially surrounds the first plenum.
  • 21. The method of claim 8, wherein said catalyzation comprises converting carbon monoxide into carbon dioxide.
  • 22. The method of claim 21, wherein said catalyzation comprises exposing the uncatalyzed products of combustion to a ceramic oxide and precious metal coating provided on a plurality of foils.
  • 23. The method of claim 22, wherein the catalyzation comprises exposing the uncatalyzed products of combustion to a coating of a ceramic oxide chosen from the group consisting of aluminum oxide, zirconium oxide, and titanium oxide, and a precious metal chosen from the group consisting of platinum and palladium, provided on a plurality of foils manufactured from stainless steel chosen from the group of ferritic stainless steels consisting of Alpha IV, FeCr Alloy, 409, 304, and 316.
  • 24. The method of claim 8, further comprising aspirating, from the appliance, by one of the catalyzed products of combustion and the ambient air heated in the plenum, at least a portion of the other of the catalyzed products of combustion and the ambient air heated in the plenum.
  • 25. The method of claim 24, wherein said aspiration is by one of the catalyzed products of combustion and the ambient air heated in the plenum which has already been exhausted from the appliance and into the space.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application claims the benefit under Title 35, U.S.C. § 119(e) of U.S. Provisional Patent Application Serial No. 60/013,967, entitled UNVENTED GAS FIREPLACE HAVING SYSTEM FOR REDUCING UNDESIRABLE COMBUSTION PRODUCTS, filed on Mar. 22, 1996, and is a division of U.S. patent application Ser. No. 08/821,851, filed on Mar. 21, 1997, now U.S. Pat. No. 6,216,687, issued Apr. 17, 2001.

US Referenced Citations (32)
Number Name Date Kind
1621135 Sala Mar 1927 A
1703459 Sala Feb 1929 A
1726000 Sala Aug 1929 A
1884746 Kline et al. Oct 1932 A
3336914 Ruhl Aug 1967 A
4194490 Crnkovic Mar 1980 A
4479921 Allaire et al. Oct 1984 A
4553527 Albertsen Nov 1985 A
4580546 Barnett Apr 1986 A
4688548 Stoughton Aug 1987 A
4690126 Jencks et al. Sep 1987 A
4691686 Alvarez Sep 1987 A
4793322 Shimek et al. Dec 1988 A
4827852 Piontkowski May 1989 A
4844051 Horkey Jul 1989 A
RE33077 Van Dewoestine Oct 1989 E
4919120 Horikoshi et al. Apr 1990 A
5054468 Moon et al. Oct 1991 A
5070694 Whittenberger Dec 1991 A
5081981 Beal Jan 1992 A
5094074 Nishizawa et al. Mar 1992 A
5127392 Mizuno et al. Jul 1992 A
5139011 Moon Aug 1992 A
5144941 Saito et al. Sep 1992 A
5307801 Schroeter et al. May 1994 A
5320086 Beal et al. Jun 1994 A
5678534 Fleming Oct 1997 A
5839428 Schroeter et al. Nov 1998 A
5906197 French et al. May 1999 A
5934268 Onocki Aug 1999 A
5960789 Fleming Oct 1999 A
6216687 Campbell et al. Apr 2001 B1
Foreign Referenced Citations (10)
Number Date Country
610285 Feb 1935 DE
428393 May 1935 GB
571924 Feb 1946 GB
661919 Nov 1951 GB
2 087 542 May 1982 GB
2 203 532 Oct 1988 GB
2 216 525 Oct 1989 GB
2 261 942 Jun 1993 GB
57-134616 Aug 1982 JP
57-134617 Aug 1982 JP
Non-Patent Literature Citations (2)
Entry
“Catalytic Woodstoves A Great Heating Value” by Corning Environmental Products Division, 7 pages, Mar. 1996.
“Pure Heat Catalytic Gas Fireplace, Purely the World's Most Perfect Fireplace” by Superior, 4 pages, no date.
Provisional Applications (1)
Number Date Country
60/013967 Mar 1996 US