A number of techniques have been proposed to enable extraction of the foreground from a scene, for example, the extraction of a person from a digital image showing the person standing in front of a scenic view. This process of splitting an image into the foreground and background is known as image segmentation. Image segmentation comprises labeling Image elements (such as pixels, groups of pixels, voxels or groups of voxels) as either a foreground or a background image element. This is useful in digital photography, medical image analysis, and other application domains where it is helpful to find a boundary between an object in the image and a background. The object and the background may then be processed separately, differently, etc. In the case of a medical image it may be appropriate to segment out a region of an image depicting a tumor or organ such as the lungs in order to enable a surgeon to interpret the image data.
As digital camera and other image acquisition technology develops, however, the resolution of the digital images being captured is increasing rapidly and as a result the size of image files is also increasing rapidly. Images of 10-20 MPixels are now not uncommon and many mobile phones contain cameras capable of capturing images of five MPixels or more. Medical imaging systems can acquire 3D volumes with billions of voxels. In addition to requiring larger storage units (both in the digital camera and for off-camera storage), these larger image file sizes require significantly more processing to achieve image segmentation. If known image segmentation techniques are applied to such high-resolution images, the process can be very slow and a user may experience unacceptable delays.
The embodiments described below are not limited to implementations which solve any or all of the disadvantages of known image segmentation techniques.
The following presents a simplified summary of the disclosure in order to provide a basic understanding to the reader. This summary is not an extensive overview of the disclosure and it does not identify key/critical elements of the invention or delineate the scope of the invention. Its sole purpose is to present some concepts disclosed herein in a simplified form as a prelude to the more detailed description that is presented later.
A method of up-sampling binary images for segmentation is described. In an embodiment, digital images are down-sampled before segmentation. The resulting initial binary segmentation, which has a lower resolution than the original image, is then up-sampled and smoothed to generate an interim non-binary solution which has a higher resolution than the initial binary segmentation. The final binary segmentation solution for the image is then computed from the interim non-binary solution based on a threshold. This method does not use the original image data in inferring the final binary segmentation solution from the initial binary segmentation. In an embodiment, the method may be applied to all images and in another embodiment, the method may be used for images which comprise a large number of pixels in total or in single dimension and smaller images may not be down-sampled before segmentation.
Many of the attendant features will be more readily appreciated as the same becomes better understood by reference to the following detailed description considered in connection with the accompanying drawings.
The present description will be better understood from the following detailed description read in light of the accompanying drawings, wherein:
Like reference numerals are used to designate like parts in the accompanying drawings.
The detailed description provided below in connection with the appended drawings is intended as a description of the present examples and is not intended to represent the only forms in which the present example may be constructed or utilized. The description sets forth the functions of the example and the sequence of steps for constructing and operating the example. However, the same or equivalent functions and sequences may be accomplished by different examples.
Although the present examples are described and illustrated herein as being implemented in an image labeling system for foreground/background image segmentation, the system described is provided as an example and not a limitation. As those skilled in the art will appreciate, the present examples are suitable for application in a variety of different types of image labeling systems and a non-exhaustive list of examples is: 3D reconstruction, stereo matching, object segmentation, object recognition and optical flow.
The image labeling system 100 may comprise a down-scaling engine 105 arranged to reduce the resolution of the input image 101 as described in more detail below. The image labeling system 100 may also comprise an image segmentation engine 106, an up-scaling and smoothing engine 107 and a thresholding engine 108 and the operation of these engines is described in more detail below. In some embodiments, the image labeling system 100 may further comprise a selection engine 109 and operation of this engine is described below with reference to
The image is received (block 202) and is scaled down (block 204) to create a modified image 20 that is a version of the input image but has a lower resolution than the input image. Image segmentation is performed (in block 206) on the modified image 20 which creates an initial binary solution 22 (which may also be referred to as a binary mask). This initial binary solution 22 (or initial binary segmentation) labels image elements (e.g. pixels) in the modified image as being either foreground or background (as described above the labels may be applied to all the image elements in the image or to image elements in a portion of the image). In an embodiment of an initial binary solution, a parameter α, which is associated with an image element and may be referred to as an opacity value or binary segmentation parameter, has a value of zero or one. The initial binary solution 22 is then up-scaled and smoothed (block 208) to create an interim solution 24 which has a higher resolution than the initial binary solution 22 and the modified image 20. This interim solution 24 is a smooth, non-binary interpolated mask and may for example be a monochromatic interim solution, such as a gray-scale or red-scale solution, or a full color solution. In an embodiment of the interim solution, the parameter α, which may be referred to as a non-binary segmentation parameter, has a value between zero and one. In many embodiments, the interim solution 24 has the same resolution as the input image 20 but other resolutions may be appropriate in some applications.
In order to obtain a final binary segmentation solution 26 (which may also be referred to as a binary high resolution mask), a threshold is applied to the interim solution 24 (in block 210). The final binary segmentation solution 26 has substantially the same resolution as the interim solution and has a higher resolution than the initial binary solution 22 and the modified image 20. The final binary segmentation solution provides a label for image elements (e.g. pixels) in the image (e.g. in all or a part of the image) as being either foreground or background (e.g. α=0 or 1) and this solution can then be used by image editing tools to extract a portion of the image or for another purpose (e.g. modification or correction of a portion of image). The solution may also be used for image re-composition, e.g. extraction of a foreground from one image (such as a person) and composition of the extracted foreground onto a new background (such as a street). In some embodiments, further processing may be applied to the final binary segmentation solution 26. The results of the segmentation may be displayed to a user via a display (not shown in
Although other methods may perform a part of the image segmentation process on a scaled down version of the input image, these other methods still use the original resolution input image data in order to infer the segmentation solution at the original resolution (i.e. the resolution of the image received in block 202). The method shown in
Where further processing is applied to the final binary segmentation solution 26 (i.e. after block 210), this may, in some examples, use the original resolution input image data (e.g. as received in block 202).
The input image, received in block 202, may be directly acquired (e.g. by a digital camera) or may be a digitized image (e.g. as created using a scanner) and although the method is described as being applied to images comprising a large number of image elements (e.g. pixels), the method may also be applied to images which comprise smaller numbers of image elements (e.g. 2 MPixel images). In an embodiment, the method may be applied to all images (i.e. to any input image received irrespective of the number of image elements in the image) or in another embodiment it may be applied to images where it is more efficient to use the method of
The down-scaling of the input image (in box 204, e.g. as performed by the down-scaling engine 105 in
The image segmentation of the modified image 20 (in block 206, e.g. as performed by the image segmentation engine 106 in
αn=0 for nεTB
αn=1 for nεTU
Gaussian mixture models (GMMs) may be used in defining the foreground and background properties (in block 304) and the foreground and background GMMs are initialized from sets αn=0 and αn=1 respectively. Each GMM (one for the background and one for the foreground) is taken to be a full-covariance Gaussian mixture with K components (e.g. K=5). A vector k=(k1, . . . , kn) is used, with knε{1, . . . , K} to assign a unique GMM component (one component either from the background or the foreground model) to each pixel according to the opacity value αn. For each pixel in the unknown region (i.e. for each n in TU) GMM components are assigned using:
And then the GMM parameters are learnt from the data z using:
The Gibbs energy for segmentation may be defined (in block 306) as:
E(α,k,θ,z)=U(α,k,θ,z)+V(α,z) (3)
Where the parameter θ describes the image foreground and background distributions (as learned in block 304 using equation (2)), V is a smoothness term computed by Euclidean distance in color space, U evaluates the fit of opacity distribution α to the data z, given the parameter θ and taking account of the color GMM models, where:
U(α,k,θ,z):=ΣDn(αn,kn,θ,zn) (4)
Where:
Dn(αn,kn,θ,zn)=−log p(zn|αn,kn,θ)−log π(αn,kn)
ρ ( ) is a Gaussian probability distribution and π ( ) are mixture weighting coefficients, so that (up to a constant):
Therefore the parameters of the model are:
θ={π(α,k),λ(α,k)Σ(α,k),α=0,1k=1 . . . K} (6)
The smoothness term V is computed as follows, (where the contrast term is computed using Euclidean distance in the color space):
Where C is the set of pairs of neighboring pixels. When the constant β=0, the smoothness term is simply the well-known Ising prior, encouraging smoothness everywhere, to a degree determined by the constant γ. In an implementation, β may be greater than zero to relax the tendency to smoothness in regions of high contrast. The constant β may be chosen as:
Where < > denotes expectation over an image sample. In an implementation, such a choice of β ensures that the exponential term in V (equation (7)) switches appropriately between high and low contrast.
Given the energy model described above, the foreground and background portions can be computed (in block 308) by using a standard minimum cut algorithm to solve:
All pixels in the trimap region TB are assigned to background and all pixels in TF to foreground. Pixels in TU are assigned to either foreground or background, depending on the result of the energy minimization (equation (8)).
The process may be repeated, as indicated by the dotted arrow 30, in an iterative minimization process (or other iterative optimization process) until convergence. Further processing may then be used, such as border matting.
In another example of further processing, an additional image segmentation process may be performed. In such an embodiment, a band or ribbon of image elements is identified from the final segmentation solution 26 (e.g. following block 210 in
Having segmented the image (in block 206) and generated an initial binary solution 22, this initial binary solution is up-scaled (or up-sampled) and smoothed to generate an interim solution 24 (in block 208, e.g. as performed by the up-scaling and smoothing engine 107 in
In another embodiment, however, the convolution and up-scaling may be performed in a single step (block 502), as shown in
In order to further reduce the computational requirements for interpolation, the interpolation may be performed in two passes (e.g. by processing rows and columns of the image in two separate passes) and a 1D Gaussian kernel may be used (e.g. a 1×N kernel followed by a N×1 kernel rather than using a N×N kernel, which reduces the amount of computation for each pixel from N2 multiply-add operations to 2N, where N is an integer).
In an example, the standard deviation of the Gaussian kernel used in the methods described above is, in terms of image elements (e.g. pixels), approximately 0.74 times the up-scaling factor (in the interim solution image space, or 0.74 pixels in the initial binary solution image space). Although the above description refers to the use of a Gaussian function as an interpolating or smoothing kernel, it will be appreciated that other functions may alternatively be used for the interpolation, such as a Lanczos filter, tent filter or cubic polynomial. Additionally it will be appreciated that the two pass process shown in
Having generated an interim solution 24 (in block 208), a threshold is applied (in block 210, e.g. as performed by the thresholding engine 108 in
Once the final binary segmentation solution 26 has been generated (in block 210), the solution may be displayed to a user via a display device. In some embodiments, the solution 26 may be processed further before being presented to the user (as described above). Once the solution has been displayed to the user, the user may refine the segmentation through user editing. This user editing may result in a further image segmentation process being performed and this may use one of the methods described herein.
Where the original image (received in block 202) is segmented without down-scaling (in block 704), any suitable image segmentation method may be used. In an example, the GrabCut method, as described above with reference to
The values of the thresholds given above are provided by way of example only and other values may alternatively be used. In an embodiment, the threshold and the predefined size may be the same, such that all images which are larger than (or not smaller than) the predefined size (however this is specified) are downscaled to the predefined size. In another embodiment, a predefined size may not be used and instead a down-scaling factor may be defined. In this embodiment, if the size parameter of the image exceeds the threshold (‘Yes’ in block 702), the image is down-scaled (in block 204) by the predefined down-scaling factor before being segmented (in block 206). The values of the threshold, smaller predefined size and/or down-scaling factor may be set to maximize the efficiency of the method, dependent upon the processing power available, the speed required and the required quality of the segmentation.
The methods described above may be implemented in an image editing tool within a software application. In an embodiment, the software application is an image editing application. In another embodiment, the software application is not a dedicated image editing application, but may instead be a word processing application, a spreadsheet application, a slide presentation application, a database application, an email application etc. Where a number of software applications are combined within a multiple functionality application, the image editing tool may be available within each application and may be presented to the user in the same or a similar manner in each application within the multiple functionality application. In an example, a dedicated control 802 for image segmentation may be provided within a ribbon-shaped user interface 804 above the software application workspace 806, as shown in the schematic diagram of
When a user clicks (e.g. with a mouse or other pointing device, which may include a finger if the display device is touch sensitive) on the dedicated control 802, having selected an image 808 which is displayed in the software application workspace 806, one of the methods (e.g. the method shown in
Computing-based device 900 comprises one or more processors 902 which may be microprocessors, controllers or any other suitable type of processors for processing computing executable instructions to control the operation of the device in order to perform image segmentation, as described herein. Platform software comprising an operating system 904 or any other suitable platform software may be provided at the computing-based device to enable application software 906 to be executed on the device. The application software 906 may include software (i.e. executable instructions) for performing image segmentation or separate software 908 may be provided. Where separate software is provided, this may be called by the application software 906 or may be called directly by the user (e.g. as an image segmentation application).
The computer executable instructions may be provided using any computer-readable media, such as memory 910. The memory is of any suitable type such as random access memory (RAM), a disk storage device of any type such as a magnetic or optical storage device, a hard disk drive, or a CD, DVD or other disc drive. Flash memory, EPROM or EEPROM may also be used. Although the memory is shown within the computing-based device 900 it will be appreciated that the storage may be distributed or located remotely and accessed via a network or other communication link (e.g. using communication interface 914).
The memory 910 may comprise an image store 912 for storing the images which are segmented using the methods described herein. In an embodiment, the image file may be received (in block 202) having been accessed from the image store 912. In another embodiment, the image file may be received from another location, e.g. via a communication interface 914, and stored in the image store 912. The communication interface 914 is arranged to send/receive information over a network 916. Any suitable network technology (including wired and wireless technologies) and network protocol(s) may be used.
The computing-based device 900 also comprises an input/output controller 918 arranged to output display information to a display device 920 which may be separate from or integral to the computing-based device 900. The display information may provide a graphical user interface and may be arranged to display the results of the image segmentation method described herein to the user. The input/output controller 918 is also arranged to receive and process input from one or more devices, such as a user input device 922 (e.g. a mouse or a keyboard). This user input may be used to initiate image segmentation (e.g. by clicking control 802), to select the image to be segmented, to define a bimap/trimap (as used in block 302 of
Although the present examples are described and illustrated herein as being implemented in the system shown in
The term ‘computer’ is used herein to refer to any device with processing capability such that it can execute instructions. Those skilled in the art will realize that such processing capabilities are incorporated into many different devices and therefore the term ‘computer’ includes PCs, servers, mobile telephones, personal digital assistants and many other devices.
The methods described herein may be performed by software in machine readable form on a tangible storage medium. Examples of tangible (or non-transitory) storage media include disks, thumb drives, memory etc and do not include propagated signals. The software can be suitable for execution on a parallel processor or a serial processor such that the method steps may be carried out in any suitable order, or simultaneously.
This acknowledges that software can be a valuable, separately tradable commodity. It is intended to encompass software, which runs on or controls “dumb” or standard hardware, to carry out the desired functions. It is also intended to encompass software which “describes” or defines the configuration of hardware, such as HDL (hardware description language) software, as is used for designing silicon chips, or for configuring universal programmable chips, to carry out desired functions.
Those skilled in the art will realize that storage devices utilized to store program instructions can be distributed across a network. For example, a remote computer may store an example of the process described as software. A local or terminal computer may access the remote computer and download a part or all of the software to run the program. Alternatively, the local computer may download pieces of the software as needed, or execute some software instructions at the local terminal and some at the remote computer (or computer network). Those skilled in the art will also realize that by utilizing conventional techniques known to those skilled in the art that all, or a portion of the software instructions may be carried out by a dedicated circuit, such as a DSP, programmable logic array, or the like.
Any range or device value given herein may be extended or altered without losing the effect sought, as will be apparent to the skilled person.
It will be understood that the benefits and advantages described above may relate to one embodiment or may relate to several embodiments. The embodiments are not limited to those that solve any or all of the stated problems or those that have any or all of the stated benefits and advantages. It will further be understood that reference to ‘an’ item refers to one or more of those items.
The steps of the methods described herein may be carried out in any suitable order, or simultaneously where appropriate. Additionally, individual blocks may be deleted from any of the methods without departing from the spirit and scope of the subject matter described herein. Aspects of any of the examples described above may be combined with aspects of any of the other examples described to form further examples without losing the effect sought.
The term ‘comprising’ is used herein to mean including the method blocks or elements identified, but that such blocks or elements do not comprise an exclusive list and a method or apparatus may contain additional blocks or elements.
It will be understood that the above description of a preferred embodiment is given by way of example only and that various modifications may be made by those skilled in the art. The above specification, examples and data provide a complete description of the structure and use of exemplary embodiments of the invention. Although various embodiments of the invention have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the spirit or scope of this invention.
This application is a continuation of, and claims priority to, U.S. Pat. No. 8,411,948, filed on Mar. 5, 2010, issued on Apr. 2, 2013, and entitled “UP-SAMPLING BINARY IMAGES FOR SEGMENTATION.” The disclosure of the above-identified application is hereby incorporated by reference in its entirety as if set forth herein in full.
Number | Name | Date | Kind |
---|---|---|---|
4627620 | Yang | Dec 1986 | A |
4630910 | Ross et al. | Dec 1986 | A |
4645458 | Williams | Feb 1987 | A |
4695953 | Blair et al. | Sep 1987 | A |
4702475 | Elstein et al. | Oct 1987 | A |
4711543 | Blair et al. | Dec 1987 | A |
4751642 | Silva et al. | Jun 1988 | A |
4796997 | Svetkoff et al. | Jan 1989 | A |
4809065 | Harris et al. | Feb 1989 | A |
4817950 | Goo | Apr 1989 | A |
4843568 | Krueger et al. | Jun 1989 | A |
4893183 | Nayar | Jan 1990 | A |
4901362 | Terzian | Feb 1990 | A |
4925189 | Braeunig | May 1990 | A |
5101444 | Wilson et al. | Mar 1992 | A |
5148154 | MacKay et al. | Sep 1992 | A |
5184295 | Mann | Feb 1993 | A |
5229754 | Aoki et al. | Jul 1993 | A |
5229756 | Kosugi et al. | Jul 1993 | A |
5239463 | Blair et al. | Aug 1993 | A |
5239464 | Blair et al. | Aug 1993 | A |
5288078 | Capper et al. | Feb 1994 | A |
5295491 | Gevins | Mar 1994 | A |
5320538 | Baum | Jun 1994 | A |
5347306 | Nitta | Sep 1994 | A |
5385519 | Hsu et al. | Jan 1995 | A |
5405152 | Katanics et al. | Apr 1995 | A |
5417210 | Funda et al. | May 1995 | A |
5423554 | Davis | Jun 1995 | A |
5454043 | Freeman | Sep 1995 | A |
5469740 | French et al. | Nov 1995 | A |
5495576 | Ritchey | Feb 1996 | A |
5516105 | Eisenbrey et al. | May 1996 | A |
5524637 | Erickson | Jun 1996 | A |
5534917 | MacDougall | Jul 1996 | A |
5563988 | Maes et al. | Oct 1996 | A |
5577981 | Jarvik | Nov 1996 | A |
5580249 | Jacobsen et al. | Dec 1996 | A |
5594469 | Freeman et al. | Jan 1997 | A |
5597309 | Riess | Jan 1997 | A |
5616078 | Oh | Apr 1997 | A |
5617312 | Iura et al. | Apr 1997 | A |
5638300 | Johnson | Jun 1997 | A |
5641288 | Zaenglein, Jr. | Jun 1997 | A |
5682196 | Freeman | Oct 1997 | A |
5682229 | Wangler | Oct 1997 | A |
5690582 | Ulrich et al. | Nov 1997 | A |
5703367 | Hashimoto et al. | Dec 1997 | A |
5704837 | Iwasaki et al. | Jan 1998 | A |
5715834 | Bergamasco et al. | Feb 1998 | A |
5875108 | Hoffberg et al. | Feb 1999 | A |
5877803 | Wee et al. | Mar 1999 | A |
5900953 | Bottou et al. | May 1999 | A |
5913727 | Ahdoot | Jun 1999 | A |
5933125 | Fernie et al. | Aug 1999 | A |
5980256 | Carmein | Nov 1999 | A |
5989157 | Walton | Nov 1999 | A |
5995649 | Marugame | Nov 1999 | A |
6005548 | Latypov et al. | Dec 1999 | A |
6009210 | Kang | Dec 1999 | A |
6054991 | Crane et al. | Apr 2000 | A |
6066075 | Poulton | May 2000 | A |
6072494 | Nguyen | Jun 2000 | A |
6073489 | French et al. | Jun 2000 | A |
6077201 | Cheng | Jun 2000 | A |
6098458 | French et al. | Aug 2000 | A |
6100896 | Strohecker et al. | Aug 2000 | A |
6101289 | Kellner | Aug 2000 | A |
6128003 | Smith et al. | Oct 2000 | A |
6130677 | Kunz | Oct 2000 | A |
6141463 | Covell et al. | Oct 2000 | A |
6147678 | Kumar et al. | Nov 2000 | A |
6151025 | Yen et al. | Nov 2000 | A |
6152856 | Studor et al. | Nov 2000 | A |
6159100 | Smith | Dec 2000 | A |
6173066 | Peurach et al. | Jan 2001 | B1 |
6181343 | Lyons | Jan 2001 | B1 |
6188777 | Darrell et al. | Feb 2001 | B1 |
6215890 | Matsuo et al. | Apr 2001 | B1 |
6215898 | Woodfill et al. | Apr 2001 | B1 |
6226396 | Marugame | May 2001 | B1 |
6229913 | Nayar et al. | May 2001 | B1 |
6256033 | Nguyen | Jul 2001 | B1 |
6256400 | Takata et al. | Jul 2001 | B1 |
6283860 | Lyons et al. | Sep 2001 | B1 |
6289112 | Jain et al. | Sep 2001 | B1 |
6299308 | Voronka et al. | Oct 2001 | B1 |
6308565 | French et al. | Oct 2001 | B1 |
6316934 | Amorai-Moriya et al. | Nov 2001 | B1 |
6337925 | Cohen et al. | Jan 2002 | B1 |
6363160 | Bradski et al. | Mar 2002 | B1 |
6384819 | Hunter | May 2002 | B1 |
6411744 | Edwards | Jun 2002 | B1 |
6430997 | French et al. | Aug 2002 | B1 |
6476834 | Doval et al. | Nov 2002 | B1 |
6496598 | Harman | Dec 2002 | B1 |
6503195 | Keller et al. | Jan 2003 | B1 |
6539931 | Trajkovic et al. | Apr 2003 | B2 |
6570555 | Prevost et al. | May 2003 | B1 |
6633294 | Rosenthal et al. | Oct 2003 | B1 |
6640202 | Dietz et al. | Oct 2003 | B1 |
6661918 | Gordon et al. | Dec 2003 | B1 |
6681031 | Cohen et al. | Jan 2004 | B2 |
6714665 | Hanna et al. | Mar 2004 | B1 |
6731799 | Sun et al. | May 2004 | B1 |
6738066 | Nguyen | May 2004 | B1 |
6765726 | French et al. | Jul 2004 | B2 |
6788809 | Grzeszczuk et al. | Sep 2004 | B1 |
6801637 | Voronka et al. | Oct 2004 | B2 |
6873723 | Aucsmith et al. | Mar 2005 | B1 |
6876496 | French et al. | Apr 2005 | B2 |
6937742 | Roberts et al. | Aug 2005 | B2 |
6950534 | Cohen et al. | Sep 2005 | B2 |
6987535 | Matsugu et al. | Jan 2006 | B1 |
7003134 | Covell et al. | Feb 2006 | B1 |
7036094 | Cohen et al. | Apr 2006 | B1 |
7038855 | French et al. | May 2006 | B2 |
7039676 | Day et al. | May 2006 | B1 |
7042440 | Pryor et al. | May 2006 | B2 |
7050606 | Paul et al. | May 2006 | B2 |
7058204 | Hildreth et al. | Jun 2006 | B2 |
7060957 | Lange et al. | Jun 2006 | B2 |
7079992 | Greiffenhagen et al. | Jul 2006 | B2 |
7113918 | Ahmad et al. | Sep 2006 | B1 |
7121946 | Paul et al. | Oct 2006 | B2 |
7170492 | Bell | Jan 2007 | B2 |
7184048 | Hunter | Feb 2007 | B2 |
7202898 | Braun et al. | Apr 2007 | B1 |
7222078 | Abelow | May 2007 | B2 |
7227526 | Hildreth et al. | Jun 2007 | B2 |
7259747 | Bell | Aug 2007 | B2 |
7308112 | Fujimura et al. | Dec 2007 | B2 |
7317836 | Fujimura et al. | Jan 2008 | B2 |
7348963 | Bell | Mar 2008 | B2 |
7359121 | French et al. | Apr 2008 | B2 |
7367887 | Watabe et al. | May 2008 | B2 |
7379563 | Shamaie | May 2008 | B2 |
7379566 | Hildreth | May 2008 | B2 |
7389591 | Jaiswal et al. | Jun 2008 | B2 |
7412077 | Li et al. | Aug 2008 | B2 |
7421093 | Hildreth et al. | Sep 2008 | B2 |
7430312 | Gu | Sep 2008 | B2 |
7430339 | Rother et al. | Sep 2008 | B2 |
7436496 | Kawahito | Oct 2008 | B2 |
7450736 | Yang et al. | Nov 2008 | B2 |
7452275 | Kuraishi | Nov 2008 | B2 |
7460690 | Cohen et al. | Dec 2008 | B2 |
7489812 | Fox et al. | Feb 2009 | B2 |
7536032 | Bell | May 2009 | B2 |
7555142 | Hildreth et al. | Jun 2009 | B2 |
7560701 | Oggier et al. | Jul 2009 | B2 |
7570805 | Gu | Aug 2009 | B2 |
7574020 | Shamaie | Aug 2009 | B2 |
7576727 | Bell | Aug 2009 | B2 |
7589721 | Lorenz | Sep 2009 | B2 |
7590262 | Fujimura et al. | Sep 2009 | B2 |
7593552 | Higaki et al. | Sep 2009 | B2 |
7598942 | Underkoffler et al. | Oct 2009 | B2 |
7606417 | Steinberg et al. | Oct 2009 | B2 |
7607509 | Schmiz et al. | Oct 2009 | B2 |
7620202 | Fujimura et al. | Nov 2009 | B2 |
7668340 | Cohen et al. | Feb 2010 | B2 |
7680298 | Roberts et al. | Mar 2010 | B2 |
7683954 | Ichikawa et al. | Mar 2010 | B2 |
7684592 | Paul et al. | Mar 2010 | B2 |
7701439 | Hillis et al. | Apr 2010 | B2 |
7702130 | Im et al. | Apr 2010 | B2 |
7704135 | Harrison, Jr. | Apr 2010 | B2 |
7710391 | Bell et al. | May 2010 | B2 |
7729530 | Antonov et al. | Jun 2010 | B2 |
7746345 | Hunter | Jun 2010 | B2 |
7760182 | Ahmad et al. | Jul 2010 | B2 |
7778439 | Kondo et al. | Aug 2010 | B2 |
7809167 | Bell | Oct 2010 | B2 |
7834846 | Bell | Nov 2010 | B1 |
7852262 | Namineni et al. | Dec 2010 | B2 |
7860311 | Chen et al. | Dec 2010 | B2 |
RE42256 | Edwards | Mar 2011 | E |
7898522 | Hildreth et al. | Mar 2011 | B2 |
8035612 | Bell et al. | Oct 2011 | B2 |
8035614 | Bell et al. | Oct 2011 | B2 |
8035624 | Bell et al. | Oct 2011 | B2 |
8072470 | Marks | Dec 2011 | B2 |
8155405 | Unal et al. | Apr 2012 | B2 |
8165369 | Kubota et al. | Apr 2012 | B2 |
8170350 | Steinberg et al. | May 2012 | B2 |
20030184815 | Shiki et al. | Oct 2003 | A1 |
20040202369 | Paragios | Oct 2004 | A1 |
20050271273 | Blake et al. | Dec 2005 | A1 |
20070081710 | Hong et al. | Apr 2007 | A1 |
20070122039 | Zhang et al. | May 2007 | A1 |
20070211940 | Fluck et al. | Sep 2007 | A1 |
20070237393 | Zhang et al. | Oct 2007 | A1 |
20080026838 | Dunstan et al. | Jan 2008 | A1 |
20080152231 | Gokturk et al. | Jun 2008 | A1 |
20080260247 | Grady et al. | Oct 2008 | A1 |
20080304698 | Rasmussen et al. | Dec 2008 | A1 |
20090033683 | Schiff et al. | Feb 2009 | A1 |
20090060333 | Singaraju et al. | Mar 2009 | A1 |
20090060334 | Rayner | Mar 2009 | A1 |
20090315978 | Wurmlin et al. | Dec 2009 | A1 |
20100104163 | Li et al. | Apr 2010 | A1 |
20110075926 | Piramuthu et al. | Mar 2011 | A1 |
20110254950 | Bibby et al. | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
201254344 | Jun 2010 | CN |
0583061 | Feb 1994 | EP |
08044490 | Feb 1996 | JP |
WO9310708 | Jun 1993 | WO |
WO9717598 | May 1997 | WO |
WO9944698 | Sep 1999 | WO |
WO2009093146 | Jul 2009 | WO |
WO2009101577 | Aug 2009 | WO |
Entry |
---|
Aggarwal et al., “Human Motion Analysis: A Review”, IEEE Nonrigid and Articulated Motion Workshop, 1997, University of Texas at Austin, Austin, TX. |
Azarbayejani et al., “Visually Controlled Graphics”, Jun. 1993, vol. 15, No. 6, IEEE Transactions on Pattern Analysis and Machine Intelligence. |
Breen et al., “Interactive Occlusion and Collusion of Real and Virtual Objects in Augmented Reality”, Technical Report ECRC-95-02, 1995, European Computer-Industry Research Center GmbH, Munich, Germany. |
Brogan et al., “Dynamically Simulated Characters in Virtual Environments”, Sep./Oct. 1998, pp. 2-13, vol. 18, Issue 5, IEEE Computer Graphics and Applications. |
Fisher et al., “Virtual Environment Display System”, ACM Workshop on Interactive 3D Graphics, Oct. 1986, Chapel Hill, NC. |
Freeman et al., “Television Control by Hand Gestures”, Dec. 1994, Mitsubishi Electric Research Laboratories, TR94-24, Caimbridge, MA. |
Granieri et al., “Simulating Humans in VR”, The British Computer Society, Oct. 1994, Academic Press. |
Hasegawa et al., “Human-Scale Haptic Interaction with a Reactive Virtual Human in a Real-Time Physics Simulator”, Jul. 2006, vol. 4, No. 3, Article 6C, ACM Computers in Entertainment, New York, NY. |
He, “Generation of Human Body Models”, Apr. 2005, University of Auckland, New Zealand. |
Hongo et al., “Focus of Attention for Face and Hand Gesture Recognition Using Multiple Cameras”, Mar. 2000, pp. 156-161, 4th IEEE International Conference on Automatic Face and Gesture Recognition, Grenoble, France. |
“Interactive Simulation and Training”, 1994, Division Incorporated, 6 pages. |
Isard et al., “Condensation—Conditional Density Propagation for Visual Tracking”, 1998, pp. 5-28, International Journal of Computer Vision 29(1), Netherlands. |
Kanade et al., “A Stereo Machine for Video-rate Dense Depth Mapping and Its New Applications”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1996, pp. 196-202,The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. |
Kohler, “Special Topics of Gesture Recognition Applied in Intelligent Home Environments”, In Proceedings of the Gesture Workshop, 1998, pp. 285-296, Germany. |
Kohler, “Technical Details and Ergonomical Aspects of Gesture Recognition applied in Intelligent Home Environments”, 1997, Germany. |
Kohler, “Vision Based Remote Control in Intelligent Home Environments”, University of Erlangen-Nuremberg/Germany, 1996, pp. 147-154, Germany. |
Livingston, “Vision-based Tracking with Dynamic Structured Light for Video See-through Augmented Reality”, 1998, University of North Carolina at Chapel Hill, North Carolina, USA. |
Miyagawa et al., “CCD-Based Range Finding Sensor”, Oct. 1997, pp. 1648-1652, vol. 44 No. 10, IEEE Transactions on Electron Devices. |
Office action for U.S. Appl. No. 12/718,321, mailed on Aug. 31, 2012, Rother et al., “Image Segmentation Using Reduced Foreground Training Data”, 8 pages. |
Pavlovic et al., “Visual Interpretation of Hand Gestures for Human-Computer Interaction: A Review”, Jul. 1997, pp. 677-695, vol. 19, No. 7, IEEE Transactions on Pattern Analysis and Machine Intelligence. |
Qian et al., “A Gesture-Driven Multimodal Interactive Dance System”, Jun. 2004, pp. 1579-1582, IEEE International Conference on Multimedia and Expo (ICME), Taipei, Taiwan. |
Rosenhahn et al., “Automatic Human Model Generation”, 2005, pp. 41-48, University of Auckland (CITR), New Zealand. |
Shao et al., “An Open System Architecture for a Multimedia and Multimodal User Interface”, Aug. 24, 1998, Japanese Society for Rehabilitation of Persons with Disabilities (JSRPD), Japan. |
Sheridan et al., “Virtual Reality Check”, Technology Review, Oct. 1993, pp. 22-28, vol. 96, No. 7. |
Stevens, “Flights into Virtual Reality Treating Real World Disorders”, The Washington Post, Mar. 27, 1995, Science Psychology, 2 pages. |
“Virtual High Anxiety”, Tech Update, Aug. 1995, pp. 22. |
Wren et al., “Pfinder: Real-Time Tracking of the Human Body”, MIT Media Laboratory Perceptual Computing Section Technical Report No. 353, Jul. 1997, vol. 19, No. 7, pp. 780-785, IEEE Transactions on Pattern Analysis and Machine Intelligence, Caimbridge, MA. |
Zhao, “Dressed Human Modeling, Detection, and Parts Localization”, 2001, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. |
“3.18. Stroke Path”. retrieved on Dec. 4, 2009 at <<http://docs.gimp.org/en/gimp-path-stroke.html>>, 2009, pp. 1-3. |
Garain, et al., “On Foreground-Background Separation in Low Quality Color Document Images”, retrieved on Dec. 3, 2009 at <<http://l3iexp.univ-lr.fr/madonne/publications/garain2005a.pdf>>, IEEE Computer Society, Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2005, pp. 585-589. |
Hertzmann, “Stroke-Based Rendering”, retrieved on Dec. 3, 2009 at <<http://www.dgp.toronto.edu/˜hertzman/sbr02/hertzmann-sbr02.pdf>>, Recent Advances in NPR for Art and Visualization, SIGGRAPH, vol. 3, 2002, pp. 1-31. |
Kang, et al., “A Unified Scheme for Adaptive Stroke-Based Rendering”, retrieved on Dec. 3, 2009 at <<http://www.cs.umsl.edu/˜kang/Papers/kang—tvc06.pdf>>, Springer Berlin, The Visual Computer, vol. 22, No. 9-11, Sep. 2006, pp. 814-824. |
Kolmogorov, et al., “Applications of parametric maxflow in computer vision”, IEEE International Conference on Computer Vision (ICCV), Rio de Janeiro, BR, Oct. 2007, pp. 1-8. |
Lempitsky, et al., “Image Segmentation with A Bounding Box Prior”, IEEE International Conference on Computer Vision (ICCV), Kyoto, JP, 2009, pp. 1-8. |
Liu, et al., “Paint Selection”, retrieved on Dec. 3, 2009 at <<http://yuwing.kaist.ac.kr/courses/CS770/reading/PaintSelection.pdf>>, ACM, Transactions on Graphics (TOG), vol. 28, No. 3, Article 69, Aug. 2009, pp. 1-7. |
Lu, et al., “Dynamic Foreground/Background Extraction from Images and Videos using Random Patches”, retrieved on Dec. 3, 2009 at http://books.nips.cc/papers/files/nips19/NIPS2006—0103.pdf>>, Conference on Neural Information Processing Systems (NIPS), 2006, pp. 351-358. |
Mannan, “Interactive Image Segmentation”, retrieved on Dec. 2, 2009 at <<http://www.cs.mcgill.ca/˜fmanna/ecse626/InteractiveImageSegmentation—Report.pdf>>, McGill University, Montreal, CA, Course ECSE-626: Statistical Computer Vision, 2009, pp. 1-5. |
Mortensen, et al., “Intelligent Selection Tools”, retrieved on Dec. 4, 2009 at <<http://web.engr.oregonstate.edu/˜enm/publications/CVPR—00/demo.html>>, IEEE Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), Hilton Head Island, SC, vol. 2, 2000, pp. 776-777. |
Protiere, et al., “Interactive Image Segmentation via Adaptive Weighted Distances”, retrieved on Dec. 2, 2009 at <<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.776&rep=rep1&type=pdf>>, IEEE Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), New York, NY, Aug. 2006, pp. 160-167. |
Tan, et al., “Selecting Objects With Freehand Sketches”, retrieved on Dec. 3, 2009 at <<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.4105&rep=rep1&type=pdf>>, IEEE Proceedings of International Conference on Computer Vision (ICCV), Vancouver, CA, vol. 1, Jul. 2001, pp. 337-345. |
Vicente, et al., “Joint optimization of segmentation and appearance models”, IEEE International Conference on Computer Vision (ICCV), Kyoto, JP, Oct. 2009, pp. 1-8. |
Number | Date | Country | |
---|---|---|---|
20130208983 A1 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12718232 | Mar 2010 | US |
Child | 13847436 | US |