The provided methods and systems describe the breakdown of plastic materials into valuable products, thereby both eliminating waste and providing reusable materials. The described systems and methods utilize catalytic depolymerization and biological funneling via bacteria, which may reduce the costs of recycling plastics in terms of expensive catalysts, energy, and time. Advantageously, some embodiments may target mixed plastic streams, which due to having multiple chemical compositions, may not be easily recycled via conventional recycling techniques. Such mixed plastic streams are currently often discarded (e.g., landfilled) rather than recycled due to the cost and effort required for separating the various compositions present.
Also described herein are novel microorganisms designed to facilitate the chemical decomposition of plastic materials or intermediate materials which have already been partially processed via another recycling method such as catalytic depolymerization. The use of the microorganisms described herein may be advantageous in the processing of plastics by facilitating mixed plastic stream recycling, reducing energy requirements of processing, and reducing costs associated with catalysts.
In an aspect, provided is a method comprising: a) reacting a plastic in the presence of an initiator, a catalyst and a solvent thereby generating an intermediate; catabolizing said intermediate with a non-naturally occurring bacterium thereby generating a product. In some cases, the intermediate may generated without the use of an initiator, which would be beneficial in the reduction of both cost and complexity.
The initiator may comprise a radical initiator, for example, N-hydroxypthalimide (NHPI). The catalyst may comprise a transition metal, for example, Co, Mn, or a combination thereof. For example, a mixture of Co and Mn at a ratio of 5%, 10%, 15%, 20%, or 25% Co to Mn.
The described methods and system may be useful recycling a variety of plastic materials, including polymers and resins. For example, the plastics may comprise polystyrene, polyethylene polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), poly(vinylidene chloride) (PVDC), a polyolefin or any combination thereof.
The intermediate may comprise carboxylic acids or dicarboxylic acids having a number of carbon atoms selected from the range of 7 to 15. Where the plastic comprises PVDC, the intermediate products may comprise a chlorocarboxylic acid.
The solvent may be a polar or a non-polar solvent. The solvent may comprise acetic acid, ethyl acetate, benzene, water, acetonitrile, or a combination thereof. The step of reacting may be performed in the presence of oxygen, including wherein oxygen is considered a reactant. The step of reacting may be performed at a temperature less than or equal to 400° C., 300° C., 250° C., 200° C., 150° C., or optionally, 100° C. The step of reacting may be performed at a pressure less than 200 bar, 150 bar, 100 bar, 80 bar, or optionally, 50 bar.
The bacterium may be of the strain Pseudomonas, for example, a genetically engineered or non-naturally occurring strain of Pseudomonas putida. The product may comprise polymer precursors, for example, polyhydroxyalkanoates (PHAs) or β-ketoadipate. The step of reacting may comprise at least two plastics.
In an aspect, provided is a method for generating polyhydroxyalkanoates (PHAs) or β-ketoadipate comprising: a) reacting a plastic selected from the group of: polystyrene, polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), poly(vinylidene chloride) (PVDC) and a polyolefin; in the presence of a N-hydroxypthalimide (NHPI) initiator, oxygen, a transition metal catalyst, and a solvent thereby generating one or more carboxylic acids, dicarboxylic acids or chloroacetic acids; and b) catabolizing said one or more intermediate products with Pseudomonas putida bacteria thereby generating polyhydroxyalkanoates (PHAs) or.
The step of reacting may comprise at least two plastics selected from the group of: polystyrene, polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), poly(vinylidene chloride) (PVDC) and a polyolefin. The transition metal catalyst may be Co, Mn, or a combination thereof.
In an aspect, provided is a system for performing any of the methods described herein.
In an aspect, provided is a non-naturally occurring Pseudomonas capable of producing polyhydroxyalkanoates, wherein said Pseudomonas is capable of catabolizing terephthalate, glycolate, benzoate, adipate or C4-C17 dicarboxylates. The Pseudomonas may be capable of catabolizing terephthalate, glycolate and adipate.
The Pseudomonas may further comprise an exogenous gene from a Comamonas, for example, a gene that encodes for tphA1, tphA2, tphA3 and/or tphB. The Pseudomonas may further comprise an exogenous gene from a Rhodococcus jostii, for example, a gene that encodes for RHA1 and/or tpak. The Pseudomonas may further comprise an exogenous gene from a Acenitobacter baylyi, for example, a gene that encodes for ADP1, dcaA, dcaI, dcaK, dcaJ and/or dcaP. The Pseudomonas may be P. putida KT2440. The Pseudomonas may have the gene psrA deleted.
Without wishing to be bound by any particular theory, there may be discussion herein of beliefs or understandings of underlying principles relating to the devices and methods disclosed herein. It is recognized that regardless of the ultimate correctness of any mechanistic explanation or hypothesis, an embodiment of the invention can nonetheless be operative and useful.
Some embodiments are illustrated in referenced figures of the drawings. It is intended that the embodiments and figures disclosed herein are to be considered illustrative rather than limiting.
The embodiments described herein should not necessarily be construed as limited to addressing any of the particular problems or deficiencies discussed herein. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
As used herein the term “substantially” is used to indicate that exact values are not necessarily attainable. By way of example, one of ordinary skill in the art will understand that in some chemical reactions 100% conversion of a reactant is possible, yet unlikely. Most of a reactant may be converted to a product and conversion of the reactant may asymptotically approach 100% conversion. So, although from a practical perspective 100% of the reactant is converted, from a technical perspective, a small and sometimes difficult to define amount remains. For this example of a chemical reactant, that amount may be relatively easily defined by the detection limits of the instrument used to test for it. However, in many cases, this amount may not be easily defined, hence the use of the term “substantially”. In some embodiments of the present invention, the term “substantially” is defined as approaching a specific numeric value or target to within 20%, 15%, 10%, 5%, or within 1% of the value or target. In further embodiments of the present invention, the term “substantially” is defined as approaching a specific numeric value or target to within 1%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, 0.2%, or 0.1% of the value or target.
As used herein, the term “about” is used to indicate that exact values are not necessarily attainable. Therefore, the term “about” is used to indicate this uncertainty limit. In some embodiments of the present invention, the term “about” is used to indicate an uncertainty limit of less than or equal to ±20%, ±15%, ±10%, ±5%, or ±1% of a specific numeric value or target. In some embodiments of the present invention, the term “about” is used to indicate an uncertainty limit of less than or equal to ±1%, ±0.9%, ±0.8%, ±0.7%, ±0.6%, ±0.5%, ±0.4%, ±0.3%, ±0.2%, or ±0.1% of a specific numeric value or target.
As used herein, the term “Chlorocarboxylic acid” refers to a molecule that contains at least one C1 atom and at least one carboxylic acid functional group, for example, chloroacetic acid.
The provided discussion and examples have been presented for purposes of illustration and description. The foregoing is not intended to limit the aspects, embodiments, or configurations to the form or forms disclosed herein. In the foregoing Detailed Description for example, various features of the aspects, embodiments, or configurations are grouped together in one or more embodiments, configurations, or aspects for the purpose of streamlining the disclosure. The features of the aspects, embodiments, or configurations, may be combined in alternate aspects, embodiments, or configurations other than those discussed above. This method of disclosure is not to be interpreted as reflecting an intention that the aspects, embodiments, or configurations require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment, configuration, or aspect. While certain aspects of conventional technology have been discussed to facilitate disclosure of some embodiments of the present invention, the Applicants in no way disclaim these technical aspects, and it is contemplated that the claimed invention may encompass one or more of the conventional technical aspects discussed herein. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate aspect, embodiment, or configuration.
Described herein is a hybrid process wherein mixed, rejected, post-consumer plastics are thermocatalytically depolymerized into a heterogeneous mixture of compounds, which are then biologically converted into a single valuable product (
Catalytic depolymerization is used to convert plastic feedstocks into small-molecule products that can be catabolized by microbial organisms. Described is a method that uses a radical-based pathway with dioxygen (e.g., air), radical initiators, and catalysts, that ultimately results in cleavage of C—C bonds in the backbones of a variety of polymers (
Described are examples using this catalytic system on PE substrates, resulting in a mixture of dicarboxylic acids products of various carbon length, as shown in
Also described is a strain of Pseudomonas putida KT2440 (hereafter P. putida) to catabolize all of the major products in the catalysis effluent (
Poly(vinylidene chloride) (PVDC) is often combined with polyethylene (PE) in industrial packaging materials. Because PVDC is prone to thermal de-chlorination and crosslinking at elevated temperatures (T˜250° C.), PVDC-containing plastics are commonly unable to be recycled. To overcome this problem, we describe an autoxidation processes to enable simultaneous chemical recycling of PVDC and PE.
To address the challenge of reprocessing PVDC-containing plastics while avoiding de-chlorination and crosslinking, mild oxidative catalysis is employed to deconstruct both the polyolefin and PVDC components simultaneously, generating a mixture of processable carboxylic acid intermediates (
The invention may be further understood by the following non-limiting examples:
1. A method comprising:
The terms and expressions which have been employed herein are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the present invention has been specifically disclosed by preferred embodiments, exemplary embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the appended claims. The specific embodiments provided herein are examples of useful embodiments of the present invention and it will be apparent to one skilled in the art that the present invention may be carried out using a large number of variations of the devices, device components, methods steps set forth in the present description. As will be obvious to one of skill in the art, methods, and devices useful for the present methods can include a large number of optional composition and processing elements and steps.
As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural reference unless the context clearly dictates otherwise. Thus, for example, reference to “a cell” includes a plurality of such cells and equivalents thereof known to those skilled in the art. As well, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. It is also to be noted that the terms “comprising”, “including”, and “having” can be used interchangeably. The expression “of any of claims XX-YY” (wherein XX and YY refer to claim numbers) is intended to provide a multiple dependent claim in the alternative form, and in some embodiments is interchangeable with the expression “as in any one of claims XX-YY.”
When a group of substituents is disclosed herein, it is understood that all individual members of that group and all subgroups, are disclosed separately. When a Markush group or other grouping is used herein, all individual members of the group and all combinations and subcombinations possible of the group are intended to be individually included in the disclosure. For example, when a device is set forth disclosing a range of materials, device components, and/or device configurations, the description is intended to include specific reference of each combination and/or variation corresponding to the disclosed range.
Every formulation or combination of components described or exemplified herein can be used to practice the invention, unless otherwise stated.
Whenever a range is given in the specification, for example, a density range, a number range, a temperature range, a time range, or a composition or concentration range, all intermediate ranges, and subranges, as well as all individual values included in the ranges given are intended to be included in the disclosure. It will be understood that any subranges or individual values in a range or subrange that are included in the description herein can be excluded from the claims herein.
All patents and publications mentioned in the specification are indicative of the levels of skill of those skilled in the art to which the invention pertains. References cited herein are incorporated by reference herein in their entirety to indicate the state of the art as of their publication or filing date and it is intended that this information can be employed herein, if needed, to exclude specific embodiments that are in the prior art. For example, when composition of matter are claimed, it should be understood that compounds known and available in the art prior to Applicant's invention, including compounds for which an enabling disclosure is provided in the references cited herein, are not intended to be included in the composition of matter claims herein.
As used herein, “comprising” is synonymous with “including,” “containing,” or “characterized by,” and is inclusive or open-ended and does not exclude additional, unrecited elements or method steps. As used herein, “consisting of” excludes any element, step, or ingredient not specified in the claim element. As used herein, “consisting essentially of” does not exclude materials or steps that do not materially affect the basic and novel characteristics of the claim. In each instance herein any of the terms “comprising”, “consisting essentially of” and “consisting of” may be replaced with either of the other two terms. The invention illustratively described herein suitably may be practiced in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein.
All art-known functional equivalents, of any such materials and methods are intended to be included in this invention. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the present invention has been specifically disclosed by preferred embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the appended claims.
This application claims priority from U.S. Provisional Patent Application No. 63/126,153, filed on Dec. 16, 2021, the contents of which are incorporated herein by reference in their entirety.
This invention was made with government support under Contract No. DE-AC36-08GO28308 awarded by the Department of Energy. The government has certain rights in the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US21/63725 | 12/16/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63126153 | Dec 2020 | US |