Updating a transport stack in a content centric network

Information

  • Patent Grant
  • 10404537
  • Patent Number
    10,404,537
  • Date Filed
    Monday, June 11, 2018
    6 years ago
  • Date Issued
    Tuesday, September 3, 2019
    5 years ago
Abstract
One embodiment provides a transport stack updating system that facilitates updating a component of a transport stack of a computer system. During operation, the system sets, by a component of the transport stack, a state of the component as quiesced in response to receiving a pause message. A component in the quiesced state is precluded from processing an interest or a content object. The system determines whether the pause message triggers a rejection passes an acknowledgment message of the pause message up the transport stack. The acknowledgment message indicates that the pause message has been successfully processed by a respective component of the transport stack.
Description
BACKGROUND
Field

This disclosure is generally related to a transport framework. More specifically, this disclosure is related to a method and system for facilitating command messages to be communicated in a layer-agnostic manner between components of the same or different stacks.


Related Art

The proliferation of the Internet and e-commerce continues to create a vast amount of digital content. Content centric network (CCN) architectures have been designed to facilitate accessing and processing such digital content. A CCN includes entities, or nodes, such as network clients, forwarders (e.g., routers), and content producers, which communicate with each other by sending “interest” packets for various content items and receiving “content object” packets in return. CCN interests and content objects are identified by their unique names, which are typically hierarchically structured variable-length identifiers (HSVLI). An HSVLI can include contiguous name components ordered from a most general level to a most specific level.


A CCN node implements a transport stack, which includes layers of independent components that forward messages to one another. A component in the stack can also be referred to as a module. The stack is assembled and initialized at when a CCN node is initiated. The stack implements CCN protocols and integrates external services, such as caches, identity, key, and certificate services. The stack also facilitates control messages to coordinate operations. The node uses the stack to forward messages with interests and content objects.


Each component of the stack can process the messages in either direction. This can change the system state of the node or modify message contents. Furthermore, the component may queue the messages or generate new messages. In addition, the node can modify the transport stack (e.g., can insert a new component or remove an existing component). Such modifications may require coordination among the components. In order to avoid duplicate or interfering operations by the components, configuration, control, and management of the components may require the ability to guarantee a known state for a period of time necessary to implement and activate new state or change its configuration.


SUMMARY

One embodiment provides a transport stack updating system that facilitates updating a component of a transport stack of a computer system. During operation, the system sets, by a component of the transport stack, a state of the component as quiesced in response to receiving a pause message. A component in the quiesced state is precluded from processing an interest or a content object. The system determines whether the pause message triggers a rejection passes an acknowledgment message of the pause message up the transport stack. The acknowledgment message indicates that the pause message has been successfully processed by a respective component of the transport stack.


In a variation on this embodiment, the component is a final component of the transport stack. The system then generates the acknowledgment message in response to receiving the pause message.


In a variation on this embodiment, the system receives an update message and, in response, updates the component based on the content of the update message.


In a variation on this embodiment, the system sends an update failure message up the transport stack in response to determining that the pause message triggers a rejection.


In a further variation, reasons for rejection include one or more of: a stack component detecting a timeout event, processing a back flow, or identifying inter-dependent messages.


In a variation on this embodiment, the system sets the state of the component as active in response to receiving a resume message. A component in the active state resumes processing an interest or a content object.


In a variation on this embodiment, the pause message is an interest message. The system then transfers control to an administrator agent for updating the component.


In a variation on this embodiment, a name for a component of the transport stack is based on one or more of: a hierarchically structured variable length identifier (HSVLI), which comprises contiguous name components ordered from a most general level to a most specific level, wherein the HSVLI is applicable in a portal instance corresponding to the stack; a flat name that does not indicate any hierarchy; a role of the component of the stack; and a unique identifier which is specific to the component of the stack.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1A illustrates an exemplary content centric network (CCN) that facilitates updating a transport stack based on quiescing, in accordance with an embodiment of the present invention.



FIG. 1B illustrates an exemplary transport stack of a CCN node, in accordance with an embodiment of the present invention.



FIG. 2A illustrates an exemplary communication that initiates quiescing of a transport stack, in accordance with an embodiment of the present invention.



FIG. 2B illustrates an exemplary communication that updates a transport stack, in accordance with an embodiment of the present invention.



FIG. 2C illustrates an exemplary communication that updates a transport stack based on control sharing, in accordance with an embodiment of the present invention.



FIG. 2D illustrates an exemplary communication of an unsuccessful quiescing of a transport stack, in accordance with an embodiment of the present invention.



FIG. 3 presents a flow chart illustrating a method for quiescing and updating a transport stack, in accordance with an embodiment of the present invention.



FIG. 4A presents a flow chart illustrating a method for quiescing and updating a module of a transport stack, in accordance with an embodiment of the present invention.



FIG. 4B presents a flow chart illustrating a method for quiescing and updating a final stack component of a transport stack, in accordance with an embodiment of the present invention.



FIG. 5 illustrates an exemplary apparatus that facilitates updating a transport stack based on quiescing, in accordance with an embodiment of the present invention.



FIG. 6 illustrates an exemplary computer system that facilitates updating a transport stack based on quiescing, in accordance with an embodiment of the present invention.





In the figures, like reference numerals refer to the same figure elements.


DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.


Overview


Embodiments of the present invention solve the problem of efficiently updating a stack module of a CCN node by quiescing the stack components during the updating process. In this way, the operations required for the update can be executed without interruption before the stack is allowed to continue regular operations. The node provides a set of network components that can be combined into a transport “stack” that achieves communication functionality.


Each of the components within a transport stack performs a specific function, and some components can implement a functionality that is more specific or more generic than other versions of the same component. Some components may take parameters at load time that define their behavior, and some components may be configured at runtime based on parameters that they receive from a local application or from a device over the network. For example, some components may adapt to changing operating environment conditions or network conditions over time. The transport stack provides a way for configuration messages and information to be sent between the components, thereby allowing components within the stack to communicate with each other.


In some embodiments, an administrator agent of the CCN node can update a component of the stack (e.g., add a new component or update an existing component). To ensure consistency, the agent sends a pause message down the stack. A component receives the pause message and flushes the local buffer (e.g., empties the message buffer associated with the component). The component stops further processing of messages (e.g., interests and content objects), sets the local state as “quiesced,” and passes the pause message down the stack to the next component.


When the pause message reaches the final component of the stack, which is typically a forwarder adapter, the final component flushes the local buffer and sets the local state as quiesced. The final component then generates an acknowledgment message and sends the acknowledgment message up the stack. A respective component passes the acknowledgment message up the stack. The agent receives the acknowledgment message and determines that the stack has been successfully quiesced. The agent then passes an update message down the stack and updates the component. When the component is updated, the agent passes a resume message down the stack, thereby instructing a respective component to resume operation.


In some embodiments, a transport stack operates under the CCN architecture. In CCN, each piece of content is individually named, and each piece of data is bound to a unique name that distinguishes the data from any other piece of data, such as other versions of the same data or data from other sources. This unique name allows a network device to request the data by disseminating a request or an interest that indicates the unique name, and can obtain the data independently of the data's storage location, network location, application, and means of transportation. The following terms are used to describe the CCN architecture:


Content Object (or “content object”): A single piece of named data, which is bound to a unique name. Content Objects are “persistent,” which means that a Content Object can move around within a computing device, or across different computing devices, but does not change. If any component of the Content Object changes, the entity that made the change creates a new Content Object that includes the updated content, and binds the new Content Object to a new unique name.


Unique Names: A name in a CCN is typically location-independent and uniquely identifies a Content Object. A data-forwarding device can use the name or name prefix to forward a packet toward a network node that generates or stores the Content Object, regardless of a network address or physical location for the Content Object. In some embodiments, the name may be a hierarchically structured variable-length identifier (HSVLI). The HSVLI can be divided into several hierarchical components, which can be structured in various ways. For example, the individual name components pare, home, ccn, and test.txt can be structured in a left-oriented, prefix-major fashion to form the name “/parc/home/ccn/test.txt.” Thus, the name “/parc/home/ccn” can be a “parent” or “prefix” of “/parc/home/ccn/test.txt.” Additional components can be used to distinguish among different versions of the content item, such as a collaborative document.


In some embodiments, the name can include an identifier, such as a hash value that is derived from the Content Object's data (e.g., a checksum value) and/or from elements of the Content Object's name. A description of a hash-based name is described in U.S. patent application Ser. No. 13/847,814, which is herein incorporated by reference. A name can also be a flat label. Hereinafter, “name” is used to refer to any name for a piece of data in a name-data network, such as a hierarchical name or name prefix, a flat name, a fixed-length name, an arbitrary-length name, or a label (e.g., a Multiprotocol Label Switching (MPLS) label).


Interest (or “interest”): A packet that indicates a request for a piece of data, and includes a name (or a name prefix) for the piece of data. A data consumer can disseminate a request or Interest across an information-centric network, which CCN/NDN routers can propagate toward a storage device (e.g., a cache server) or a data producer that can provide the requested data to satisfy the request or Interest.


In addition, “lei” and “ccnx” refer to labeled content information and indicate a Universal Resource Indicator (URI) compliant identifier in which name segments carry a label. Network protocols such as CCN can use labeled content information by applying specific labels to each name segment of a URI. In a hierarchically structured name, a labeled content name assigns a semantic type or label to each segment. For example, a type of name segment can include a name segment, which is a generic name segment that includes arbitrary octets, which allows a CCN to use a binary on-the-wire representation for messages.


The methods disclosed herein are not limited to CCN networks and are applicable to other architectures as well. A description of a CCN architecture is described in U.S. patent application Ser. No. 12/338,175, which is herein incorporated by reference.


Exemplary Network and Communication



FIG. 1A illustrates an exemplary content centric network (CCN) that facilitates updating a transport stack based on quiescing, in accordance with an embodiment of the present invention. A network 100, which can be a CCN, can include a client device 116, a content-producing device 118, and a router or other forwarding device at nodes 102, 104, 106, 108, 110, 112, and 114. A node can be a computer system, an endpoint representing users, and/or a device that can generate an interest or originate a content object. Suppose that nodes 102 and 104 have transport stacks 130 and 170, respectively. In a CCN node, the transport stack is often configured based on instructions from an administrator agent. Transport stacks 130 and 170 are usually modified by explicit administrative commands at runtime.


To update stack 130, node 102 typically quiesces stack 130 so that the operations associated with the update can be executed without interruption before stack 130 is allowed to continue regular operations. Similarly, node 104 typically quiesces stack 170 to update stack 170. Node 102 can quiesce the entire stack (e.g., each component of stack 130) and all message transmissions, or only specific messages or messages matching a specific set of rules.


In some embodiments, node 102 passes a pause message down stack 130. This pause message can be an interest for a name that each stack component recognizes and processes. Upon receiving the pause message, a respective component of stack 130 flushes its buffer and pauses its operations. When node 102 completes updating one or more components of stack 130, node 102 sends a resume message via stack 130. This resume message can be a content object associated with the name. Upon receiving the resume message, a respective component of stack 130 resumes its operations. In this way, the operations required for updating stack 130 can be executed without interruption before stack 130 is allowed to continue regular operations.



FIG. 1B illustrates an exemplary transport stack of a CCN node, in accordance with an embodiment of the present invention. In this example, node 102 can include an administrator agent 152, which communicates with transport stack 130 via a portal 120. Transport stack 130 can include stack components 134.1-134.n. Node 102 can also include forwarder 140 (e.g., a network interface card, or a router in a local area network), which can transfer packets between stack 130 (and individual stack components) and network 100. Similarly, node 104 can include administrator agent 154, which communicates with transport stack 170 via portal 160. Transport stack 170 can include stack components 174.1-174.p. Node 104 can also include a forwarder 180, which can transfer packets between stack 170 (and individual stack components) and network 100. Forwarders 140 and 180 can also facilitate the transfer of packets directly between individual stack components 134.1-134.n and 174.1-174.p, respectively.


Administrator agent 152 can issue a pause message for stack 130. In some embodiments, the head of stack 130 (e.g., stack component 134.1, which is typically an application program interface (API) adapter), can also issue the pause message. Upon receiving the message, each component flushes its current buffer, quiesces local operations, and forwards the message via stack 130. In some embodiments, the final component of stack 130, which is stack component 134.n, can send an acknowledgment up stack 130. Agent 152 can specify a lifetime (e.g., a timeout period) for the pause message for a respective stack component. If a timer representing the lifetime expires before receiving the acknowledgment, the stack component detects a timeout event, determines that the pause operation has failed, and resumes regular operations. Since the acknowledgment is not passed up stack 130, the timeout event is propagated via stack 130 to agent 152, thereby resuming operations of a respective stack component.


On the other hand, if the stack component receives the acknowledgment within the lifetime, the stack component passes the acknowledgment up stack 130. Agent 152 receives the acknowledgment and determines that stack 130 has been quiesced. Agent 152 then updates one or more components of stack 130. When the update operation is completed, agent 152 (or the head of stack 130) sends a resume message down stack 130. Upon receiving the message, a respective component restarts regular operations. In some embodiments, stack component 134.n can send a pause content object associated with the name up stack 130. When a stack component receives the content object, the component resumes its regular operation and passes the content object up stack 130.


In some embodiments, the pause message is applied only to a specific namespace. Any interest or content object with a name in that namespace is flushed at stack 130 and is precluded from being processed at stack 130. However, any interest or content object with a name outside of that namespace is processed based on regular operations of stack 130. In some embodiments, a stack component can reject the pause message and respond with a pause failure message with an optional reason for the rejection. Reasons for rejection include, but are not limited to, a stack component detecting a timeout event, processing a back flow, or identifying inter-dependent messages.


Exemplary Quiescing of a Transport Stack



FIG. 2A illustrates an exemplary communication that initiates quiescing of a transport stack, in accordance with an embodiment of the present invention. In this example, an administrator agent 210 uses API 212 to communicate with a portal 220, which interacts with a transport stack 230. In FIG. 2A, transport stack 230 includes stack components 232-238. An API adapter 232 can communicate with one or more transport components of transport stack 230. A flow controller 234 can shape and manage traffic, pipeline and transmit interests, and order content objects. A verifier/signer 236 can encode and sign content objects destined for a network element, decode and verify content objects destined for an associated application, encode interests destined for a network element, and decode interests destined for an associated application.


A forwarder adapter 238, which is typically the final component of stack 230, can communicate with a forwarder 240. Forwarder 240 can communicate with other forwarders over a CCN. Other stack components (not shown) can include functionality related to security (e.g., encryption, decryption, authentication, data signing, signature verification, trust assessment, and filtering), data-processing (e.g., encoding, decoding, encapsulating, decapsulating, transcoding, compression, extraction, and decompression), and storage (e.g., data storage, data retrieval from storage, deduplication, segmentation, and versioning).


In some embodiments, administrator agent 210 can update a component of stack 230 (e.g., add a new component or update an existing component). To ensure consistency, agent 210 sends a pause message 252 down stack 230. A respective component of stack 230 receives pause message 252 and flushes its local buffer, if any. Some components may just receive and process a message (e.g., an interest or a content object), while other components can buffer messages. Suppose that flow controller 234 stores messages in a buffer 235. Upon receiving pause message 252, flow controller 234 flushes buffer 235 (e.g., discards the messages stored in buffer 235). Upon receiving pause message 252, a respective component stops further processing of messages, sets the local state as “quiesced,” and passes pause message 252 down stack 230 to the next component.


When the pause message reaches the final component of stack 230, which is forwarder adapter 238, forwarder adapter 238 also flushes the local buffer, if any, and sets the local state as quiesced. Forwarder adapter 238 then generates a pause acknowledgment message 254 and sends acknowledgment message 254 up stack 230. A respective component receives acknowledgment message 254 without a timer expiring for pause message 252, and the component passes acknowledgment message 254 up stack 230. Agent 210 receives acknowledgment message 254 and determines that stack 230 has been successfully quiesced.



FIG. 2B illustrates an exemplary communication that updates a transport stack, in accordance with an embodiment of the present invention. In this example, upon receiving an acknowledgment message, agent 210 determines that stack 230 has been successfully quiesced. Agent 210 then passes an update message comprising the updates for a stack component. Suppose that agent 210 is updating the verification protocol of verifier/signer 236. Agent 210 then generates an update message 262 comprising the updated verification protocol and passes update message 262 down stack 230. Verifier/signer 236 receives update message 262 from upper components of stack 230, obtains the updated verification protocol from update message 262, and updates verifier/signer 236.


In some embodiments, verifier/signer 236 generates an update acknowledgment message 264 and sends acknowledgment message 264 up stack 230. A respective component passes acknowledgment message 264 up stack 230. Agent 210 receives acknowledgment message 264 and determines that verifier/signer 236 has been successfully updated. Agent 210 then generates a resume message 266 and passes resume message 266 down stack 230, thereby instructing a respective component to resume operation. Upon receiving resume message 266, a respective component resumes processing of messages, sets the local state as “active,” and passes resume message 266 down stack 230 to the next component. When resume message 266 reaches forwarder adapter 238, forwarder adapter 238 resumes processing of messages and sets the local state as “active.”



FIG. 2C illustrates an exemplary communication that updates a transport stack based on control sharing, in accordance with an embodiment of the present invention. In this example, a pause interest message 272 is sent down transport stack 230 with a pre-agreed-upon name that each component is capable of recognizing and processing. Agent 210 (or head of stack 230, which is API adapter 232) can generate and send pause interest message 272. Upon receiving pause interest message 272, a respective component of stack 230 flushes its current buffer, forwards pause interest message 272 via stack 230, quiesces the local component, and waits for a content object return matching pause interest message 272 before processing or forwarding any other messages.


Typically, forwarder adapter 238 is the final component to receive pause interest message 272. When pause interest message 272 reaches forwarder adapter 238, forwarder adapter 238 quiesces the local component and determines that a respective component between forwarder adapter 238 and API adapter 232 has been quiesced. Forwarder adapter 238 then passes control to agent 210. In some embodiments, forwarder adapter 238 sends a control message 274 (e.g., an inter-process message) to agent 210 via stack 230 to pass the control.


Suppose that agent 210 is updating the verification protocol of verifier/signer 236. Agent 210 then generates an update message 276 comprising the updated verification protocol and passes update message 276 down stack 230. Verifier/signer 236 receives update message 276 from the upper components of stack 230, obtains the updated verification protocol from update message 276, and updates verifier/signer 236.


When the updating process is completed, agent 210 passes the control back to forwarder adapter 238 (e.g., using a control message, which is not shown in FIG. 2C). Forwarder adapter 238 constructs a matching pause content object 278 and sends pause content object 278 back up transport stack 230. Upon receiving pause content object 278, a respective component restarts regular operation and sends pause content object 278 onward via stack 230. Once pause content object 278 reaches agent 210 (or API adapter 232), transport stack 230 resumes its regular operations.



FIG. 2D illustrates an exemplary communication of an unsuccessful quiescing of a transport stack, in accordance with an embodiment of the present invention. In some embodiments, a stack component can reject a pause message and respond with a pause failure message with an optional reason for the rejection. Reasons for rejection include, but are not limited to, a stack component detecting a timeout event, processing a back flow, or identifying inter-dependent messages. Suppose that flow controller 234 fails to process pause message 252 (e.g., being unable to flush buffer 235 due to inter-dependencies). As a result, flow controller 234 rejects pause message 252, generates a pause failure message 280 comprising the reason for the rejection, and passes pause failure message 280 upward via stack 230.


When pause failure message 280 reaches an upstream stack component, such as API adapter 232, the stack component determines that pause message 252 has been rejected, restarts regular operation, and sends pause failure message 280 onward via stack 230. Upon receiving pause failure message 280, agent 210 determines that pause message 252 has been rejected. Agent 210 can wait for a period of time (e.g., a random back-off or a pre-determined time) and re-issue pause message 252.


Operations



FIG. 3 presents a flow chart 300 illustrating a method for quiescing and updating a transport stack, in accordance with an embodiment of the present invention. During operation, an administrator agent (or the head of the stack) sends a pause message down the transport stack (operation 302) and initiates a timer for a pause acknowledgment message (operation 304). The agent checks whether the agent has detected a timeout or a pause failure message (operation 306). If the agent detects a timeout or a pause failure message, the agent waits for a period of time (e.g., based on random back-off or a pre-determined configuration) (operation 308) and sends another pause message down the transport stack (operation 302). If the agent doesn't detect a timeout or a pause failure message, the agent receives a pause acknowledgment message (operation 310).


The agent then determines that the stack has been quiesced. The agent sends an update message to a respective updating component (i.e., the component that the agent is updating) (operation 312). The update message comprises the update for the updating component. The agent then checks whether the update has been successful (operation 314). In some embodiments, the agent determines that the update has been successful upon receiving an acknowledgment for the update message. If the agent determines that the update has not been successful, the agent waits for a period of time (operation 308) and sends another pause message down the transport stack (operation 302). If the agent determines that the update has been successful, the agent sends a resume message down the transport stack (operation 316).



FIG. 4A presents a flow chart 400 illustrating a method for quiescing and updating a module of a transport stack, in accordance with an embodiment of the present invention. During operation, a stack component, which is not the final component of the stack, receives a pause message (operation 402) and checks whether the pause message triggers a rejection (operation 404). Reasons for rejection include, but are not limited to, processing a back flow or identifying inter-dependent messages. If the pause message does not trigger a rejection, the component passes the pause message to the next component down the transport stack (operation 406) and flushes residual local data, if any (operation 408).


The component then checks whether the component has received a pause acknowledgment message (operation 410). If the component has not received a pause acknowledgment message, the component checks for a timeout event (operation 412). If the component detects a timeout event or the pause message triggers a rejection (operation 404), the component generates a pause failure message and passes the pause failure message to the next component up the transport stack (operation 414). On the other hand, if the component has not received a pause acknowledgment message (operation 410) and doesn't detect a timeout event (operation 412), the component continues to flush residual local data, if any (operation 408).


If the component receives a pause acknowledgment message (operation 410), the component sets the local state as “quiesced” (operation 416) and passes the pause acknowledgment message to the next component up the transport stack (operation 418). If the component is the updating component (denoted with dashed line), the component receives an update message and implements updates to the local component (operation 420). In some embodiments, the component can send an acknowledgment up the stack upon successfully updating the local component. The component then receives a resume message (operation 422) and sets the local state as “active” (operation 426).



FIG. 4B presents a flow chart 450 illustrating a method for quiescing and updating a final stack component of a transport stack, in accordance with an embodiment of the present invention. During operation, the component receives a pause message (operation 452) and checks whether the pause message triggers a rejection (operation 454). Reasons for rejection include, but are not limited to, processing a back flow or identifying inter-dependent messages. If the pause message triggers a rejection, the component generates a pause failure message and passes the pause failure message to the next component up the transport stack (operation 468).


If the pause message does not trigger a rejection, the component flushes residual local data, if any (operation 456) and sets the local state as “quiesced” (operation 458). The component then passes the pause acknowledgment message to the next component up the transport stack (operation 460). If the component is the updating component (denoted with dashed line), the component receives an update message and implements updates to the local component (operation 462). In some embodiments, the component can send an acknowledgment up the stack upon successfully updating the local component. The component then receives a resume message (operation 464) and sets the local state as “active” (operation 466).


Exemplary Apparatus and Computer System



FIG. 5 illustrates an exemplary apparatus that facilitates updating a transport stack based on quiescing, in accordance with an embodiment of the present invention. Apparatus 500 can comprise a plurality of modules, which may communicate with one another via a wired or wireless communication channel. Apparatus 500 may be realized using one or more integrated circuits, and may include fewer or more modules than those shown in FIG. 5. Further, apparatus 500 may be integrated in a computer system, or realized as a separate device that is capable of communicating with other computer systems and/or devices. Specifically, apparatus 500 can comprise a communication module 502, a quiescing module 504, an updating module 506, and a message delivering module 508.


In some embodiments, communication module 502 can send and/or receive data packets to/from other network nodes across a computer network, such as a content centric network. Quiescing module 504 can set a state of a stack component as “quiesced” or “active” based on a pause message and a resume message, respectively. Quiescing module 504 can also generate an acknowledgment for the pause message. In some embodiments, quiescing module 504 can flush a local buffer of the component. Updating module 506 can update a component based on an update message. Message delivering module 508 can deliver a message to a component via a transport stack (e.g., can send a message up or down the stack).



FIG. 6 illustrates an exemplary computer system 602 that facilitates command messages to be communicated in a layer-agnostic manner, in accordance with an embodiment of the present invention. Computer system 602 includes a processor 604, a memory 606, and a storage device 608. Memory 606 can include a volatile memory (e.g., RAM) that serves as a managed memory, and can be used to store one or more memory pools. Furthermore, computer system 602 can be coupled to a display device 610, a keyboard 612, and a pointing device 614. Storage device 608 can store an operating system 616, a stack updating system 618, and data 632.


Stack updating system 618 can include instructions, which when executed by computer system 602 or processor 604, can cause computer system 602 or processor 604 to perform methods and/or processes described in this disclosure. Specifically, stack updating system 618 may include instructions for sending and/or receiving data packets to/from other network nodes across a computer network, such as a content centric network (communication module 620). Stack updating system 618 can also include instructions for setting a state of a stack component as “quiesced” or “active” based on a pause message and a resume message, respectively (quiescing module 622). Stack updating system 618 can also include instructions for generating an acknowledgment for the pause message and flushing a local buffer of the component (quiescing module 622).


Furthermore, stack updating system 618 can include instructions for updating a component based on an update message (updating module 624). Stack updating system 618 can include instructions for delivering a message to a component via a transport stack (e.g., can send a message up or down the stack) (message delivering module 626). Storage device 608 can store an administrator agent 630, which can generate and send a pause message, a resume message, and an update message for a transport stack.


Data 632 can include any data that is required as input or that is generated as output by the methods and/or processes described in this disclosure. Specifically, data 632 can include buffered messages by a respective component. Data 632 can also include a forwarding table of computer system 602.


The data structures and code described in this detailed description are typically stored on a computer-readable storage medium, which may be any device or medium that can store code and/or data for use by a computer system. The computer-readable storage medium includes, but is not limited to, volatile memory, non-volatile memory, magnetic and optical storage devices such as disk drives, magnetic tape, CDs (compact discs), DVDs (digital versatile discs or digital video discs), or other media capable of storing computer-readable media now known or later developed.


The methods and processes described in the detailed description section can be embodied as code and/or data, which can be stored in a computer-readable storage medium as described above. When a computer system reads and executes the code and/or data stored on the computer-readable storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the computer-readable storage medium.


Furthermore, the methods and processes described above can be included in hardware modules. For example, the hardware modules can include, but are not limited to, application-specific integrated circuit (ASIC) chips, field-programmable gate arrays (FPGAs), and other programmable-logic devices now known or later developed. When the hardware modules are activated, the hardware modules perform the methods and processes included within the hardware modules.


The foregoing descriptions of embodiments of the present invention have been presented for purposes of illustration and description only. They are not intended to be exhaustive or to limit the present invention to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the present invention. The scope of the present invention is defined by the appended claims.

Claims
  • 1. A method comprising: at a content centric network node including a transport stack having a plurality of components: sending a pause message down the transport stack while the plurality of components are processing interests and/or content objects, wherein the pause message precludes one or more components of the plurality of components from processing the interests and/or the content objects;after sending the pause message, sending an update message down the transport stack, wherein the update message provides an update for the transport stack while the one or more components are precluded from processing the interests and/or the content objects; andafter sending the update message, sending a resume message down the transport stack, wherein the resume message causes the one or more components to resume processing the interests and/or the content objects in accordance with the update.
  • 2. The method of claim 1, wherein the update message adds a new component to the transport stack.
  • 3. The method of claim 1, wherein the pause message precludes the one or more components from processing the interests and/or the content objects in a specified namespace.
  • 4. The method of claim 1, further comprising: at the content centric network node: sending an acknowledgment message up the transport stack, wherein the acknowledgment message indicates that the pause message has been successfully processed by the one or more components.
  • 5. The method of claim 1, further comprising: at the content centric network node: sending a pause failure message up the transport stack, wherein the pause failure message indicates that the pause message has not been successfully processed by the one or more components.
  • 6. The method of claim 5, further comprising: at the content centric network node: after a period of time, resending the pause message down the transport stack.
  • 7. The method of claim 1, wherein sending the pause message, update message, and resume message includes sending the pause message, update message, and resume message using an administrator agent.
  • 8. The method of claim 1, wherein sending the pause message includes sending the pause message in response to determining that the transport stack is to be updated.
  • 9. The method of claim 1, wherein the pause message causes the one or more components to enter a quiesced state.
  • 10. The method of claim 1, wherein the pause message includes a lifetime upon expiry of which the one or more components resume processing the interests and/or the content objects.
  • 11. An apparatus comprising: a memory configured to store instructions for updating a transport stack having a plurality of components; anda processor in communication with the memory, wherein the processor is configured to: send a pause message down the transport stack while the plurality of components are processing interests and/or content objects, wherein the pause message precludes one or more components of the plurality of components from processing the interests and/or the content objects;after sending the pause message, send an update message down the transport stack, wherein the update message provides an update for the transport stack while the one or more components are precluded from processing the interests and/or the content objects; andafter sending the update message, send a resume message down the transport stack, wherein the resume message causes the one or more components to resume processing the interests and/or the content objects in accordance with the update.
  • 12. The apparatus of claim 11, wherein the update message adds a new component to the transport stack.
  • 13. The apparatus of claim 11, wherein the pause message precludes the one or more components from processing the interests and/or the content objects in a specified namespace.
  • 14. The apparatus of claim 11, wherein the processor is further configured to: send an acknowledgment message up the transport stack, wherein the acknowledgment message indicates that the pause message has been successfully processed by the one or more components.
  • 15. The apparatus of claim 11, wherein the processor is further configured to: send a pause failure message up the transport stack, wherein the pause failure message indicates that the pause message has not been successfully processed by the one or more components.
  • 16. One or more non-transitory computer-readable storage media storing instructions that, when executed by a processor of a content centric network node including a transport stack having a plurality of components, cause the processor to: send a pause message down the transport stack while the plurality of components are processing interests and/or content objects, wherein the pause message precludes one or more components of the plurality of components from processing the interests and/or the content objects;after sending the pause message, send an update message down the transport stack, wherein the update message provides an update for the transport stack while the one or more components are precluded from processing the interests and/or the content objects; andafter sending the update message, send a resume message down the transport stack, wherein the resume message causes the one or more components to resume processing the interests and/or the content objects in accordance with the update.
  • 17. The one or more non-transitory computer-readable storage media of claim 16, wherein the update message adds a new component to the transport stack.
  • 18. The one or more non-transitory computer-readable storage media of claim 16, wherein the pause message precludes the one or more components from processing the interests and/or the content objects in a specified namespace.
  • 19. The one or more non-transitory computer-readable storage media of claim 16, wherein the instructions further cause the processor to: send an acknowledgment message up the transport stack, wherein the acknowledgment message indicates that the pause message has been successfully processed by the one or more components.
  • 20. The one or more non-transitory computer-readable storage media of claim 16, wherein the instructions further cause the processor to: send a pause failure message up the transport stack, wherein the pause failure message indicates that the pause message has not been successfully processed by the one or more components.
RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 15/154,837, filed May 13, 2016, which is incorporated herein by reference.

US Referenced Citations (607)
Number Name Date Kind
817441 Niesz Apr 1906 A
4309569 Merkle Jan 1982 A
4921898 Lenney May 1990 A
5070134 Oyamada Dec 1991 A
5110856 Oyamada May 1992 A
5214702 Fischer May 1993 A
5377354 Scannell Dec 1994 A
5506844 Rao Apr 1996 A
5629370 Freidzon May 1997 A
5845207 Amin Dec 1998 A
5870605 Bracho Feb 1999 A
6021464 Yao Feb 2000 A
6047331 Medard Apr 2000 A
6052683 Irwin Apr 2000 A
6085320 Kaliski, Jr. Jul 2000 A
6091724 Chandra Jul 2000 A
6128623 Mattis Oct 2000 A
6128627 Mattis Oct 2000 A
6173364 Zenchelsky Jan 2001 B1
6209003 Mattis Mar 2001 B1
6226618 Downs May 2001 B1
6233617 Rothwein May 2001 B1
6233646 Hahm May 2001 B1
6289358 Mattis Sep 2001 B1
6292880 Mattis Sep 2001 B1
6332158 Risley Dec 2001 B1
6363067 Chung Mar 2002 B1
6366988 Skiba Apr 2002 B1
6574377 Cahill Jun 2003 B1
6654792 Verma Nov 2003 B1
6667957 Corson Dec 2003 B1
6681220 Kaplan Jan 2004 B1
6681326 Son Jan 2004 B2
6732273 Byers May 2004 B1
6769066 Botros Jul 2004 B1
6772333 Brendel Aug 2004 B1
6775258 vanValkenburg Aug 2004 B1
6834272 Naor Dec 2004 B1
6862280 Bertagna Mar 2005 B1
6901452 Bertagna May 2005 B1
6915307 Mattis Jul 2005 B1
6917985 Madruga Jul 2005 B2
6957228 Graser Oct 2005 B1
6968393 Chen Nov 2005 B1
6981029 Menditto Dec 2005 B1
7007024 Zelenka Feb 2006 B2
7013389 Srivastava Mar 2006 B1
7031308 Garcia-Luna-Aceves Apr 2006 B2
7043637 Bolosky May 2006 B2
7061877 Gummalla Jun 2006 B1
7080073 Jiang Jul 2006 B1
RE39360 Aziz Oct 2006 E
7149750 Chadwick Dec 2006 B2
7152094 Jannu Dec 2006 B1
7177646 ONeill Feb 2007 B2
7206860 Murakami Apr 2007 B2
7206861 Callon Apr 2007 B1
7210326 Kawamoto May 2007 B2
7233948 Shamoon Jun 2007 B1
7246159 Aggarwal Jul 2007 B2
7257837 Xu Aug 2007 B2
7287275 Moskowitz Oct 2007 B2
7315541 Housel Jan 2008 B1
7339929 Zelig Mar 2008 B2
7350229 Lander Mar 2008 B1
7362727 ONeill Apr 2008 B1
7382787 Barnes Jun 2008 B1
7395507 Robarts Jul 2008 B2
7430755 Hughes Sep 2008 B1
7444251 Nikovski Oct 2008 B2
7466703 Arunachalam Dec 2008 B1
7472422 Agbabian Dec 2008 B1
7496668 Hawkinson Feb 2009 B2
7509425 Rosenberg Mar 2009 B1
7523016 Surdulescu Apr 2009 B1
7535926 Deshpande May 2009 B1
7542471 Samuels Jun 2009 B2
7543064 Juncker Jun 2009 B2
7552233 Raju Jun 2009 B2
7555482 Korkus Jun 2009 B2
7555563 Ott Jun 2009 B2
7564812 Elliott Jul 2009 B1
7567547 Mosko Jul 2009 B2
7567946 Andreoli Jul 2009 B2
7580971 Gollapudi Aug 2009 B1
7623535 Guichard Nov 2009 B2
7636767 Lev-Ran Dec 2009 B2
7647507 Feng Jan 2010 B1
7660324 Oguchi Feb 2010 B2
7685290 Satapati Mar 2010 B2
7698463 Ogier Apr 2010 B2
7698559 Chaudhury Apr 2010 B1
7769887 Bhattacharyya Aug 2010 B1
7779467 Choi Aug 2010 B2
7801069 Cheung Sep 2010 B2
7801177 Luss Sep 2010 B2
7816441 Elizalde Oct 2010 B2
7831733 Sultan Nov 2010 B2
7873619 Faibish Jan 2011 B1
7908337 Garcia-Luna-Aceves Mar 2011 B2
7924837 Shabtay Apr 2011 B1
7953014 Toda May 2011 B2
7953885 Devireddy May 2011 B1
7979912 Roka Jul 2011 B1
8000267 Solis Aug 2011 B2
8010691 Kollmansberger Aug 2011 B2
8069023 Frailong Nov 2011 B1
8074289 Carpentier Dec 2011 B1
8117441 Kurien Feb 2012 B2
8160069 Jacobson Apr 2012 B2
8204060 Jacobson Jun 2012 B2
8214364 Bigus Jul 2012 B2
8224985 Takeda Jul 2012 B2
8225057 Zheng Jul 2012 B1
8239331 Shanmugavelayutham Aug 2012 B2
8271578 Sheffi Sep 2012 B2
8271687 Turner Sep 2012 B2
8312064 Gauvin Nov 2012 B1
8332357 Chung Dec 2012 B1
8375420 Farrell Feb 2013 B2
8386622 Jacobson Feb 2013 B2
8447851 Anderson May 2013 B1
8462781 McGhee Jun 2013 B2
8467297 Liu Jun 2013 B2
8473633 Eardley Jun 2013 B2
8553562 Allan Oct 2013 B2
8572214 Garcia-Luna-Aceves Oct 2013 B2
8654649 Vasseur Feb 2014 B2
8665757 Kling Mar 2014 B2
8667172 Ravindran Mar 2014 B2
8677451 Bhimaraju Mar 2014 B1
8688619 Ezick Apr 2014 B1
8699350 Kumar Apr 2014 B1
8718055 Vasseur May 2014 B2
8750820 Allan Jun 2014 B2
8761022 Chiabaut Jun 2014 B2
8762477 Xie Jun 2014 B2
8762570 Qian Jun 2014 B2
8762707 Killian Jun 2014 B2
8767627 Ezure Jul 2014 B2
8817594 Gero Aug 2014 B2
8826381 Kim Sep 2014 B2
8832302 Bradford Sep 2014 B1
8836536 Marwah Sep 2014 B2
8861356 Kozat Oct 2014 B2
8862774 Vasseur Oct 2014 B2
8868779 ONeill Oct 2014 B2
8874842 Kimmel Oct 2014 B1
8880682 Bishop Nov 2014 B2
8903756 Zhao Dec 2014 B2
8923293 Jacobson Dec 2014 B2
8934496 Vasseur Jan 2015 B2
8937865 Kumar Jan 2015 B1
8972969 Gaither Mar 2015 B2
8977596 Montulli Mar 2015 B2
9002921 Westphal Apr 2015 B2
9032095 Traina May 2015 B1
9071498 Baser Jun 2015 B2
9112895 Lin Aug 2015 B1
9137152 Xie Sep 2015 B2
9253087 Zhang Feb 2016 B2
9270598 Oran Feb 2016 B1
9230610 Gruber Mar 2016 B2
9456054 Jacobson et al. Sep 2016 B2
9832291 Solis et al. Nov 2017 B2
9978025 Solis May 2018 B2
20020002680 Carbajal Jan 2002 A1
20020010795 Brown Jan 2002 A1
20020038296 Margolus Mar 2002 A1
20020048269 Hong Apr 2002 A1
20020054593 Morohashi May 2002 A1
20020077988 Sasaki Jun 2002 A1
20020078066 Robinson Jun 2002 A1
20020138551 Erickson Sep 2002 A1
20020152305 Jackson Oct 2002 A1
20020176404 Girard Nov 2002 A1
20020188605 Adya Dec 2002 A1
20020199014 Yang Dec 2002 A1
20030004621 Bousquet Jan 2003 A1
20030009365 Tynan Jan 2003 A1
20030033394 Stine Feb 2003 A1
20030046396 Richter Mar 2003 A1
20030046421 Horvitz et al. Mar 2003 A1
20030046437 Eytchison Mar 2003 A1
20030048793 Pochon Mar 2003 A1
20030051100 Patel Mar 2003 A1
20030061384 Nakatani Mar 2003 A1
20030074472 Lucco Apr 2003 A1
20030088696 McCanne May 2003 A1
20030097447 Johnston May 2003 A1
20030099237 Mita May 2003 A1
20030140257 Peterka Jul 2003 A1
20030229892 Sardera Dec 2003 A1
20040024879 Dingman Feb 2004 A1
20040030602 Rosenquist Feb 2004 A1
20040064737 Milliken Apr 2004 A1
20040071140 Jason Apr 2004 A1
20040073617 Milliken Apr 2004 A1
20040073715 Folkes Apr 2004 A1
20040139230 Kim Jul 2004 A1
20040196783 Shinomiya Oct 2004 A1
20040218548 Kennedy Nov 2004 A1
20040221047 Grover Nov 2004 A1
20040225627 Botros Nov 2004 A1
20040233916 Takeuchi Nov 2004 A1
20040246902 Weinstein Dec 2004 A1
20040252683 Kennedy Dec 2004 A1
20040267902 Yang Dec 2004 A1
20050003032 Osafuhe Jan 2005 A1
20050028156 Hammond Feb 2005 A1
20050043060 Brandenberg Feb 2005 A1
20050050211 Kaul Mar 2005 A1
20050066121 Keeler Mar 2005 A1
20050074001 Mattes Apr 2005 A1
20050132207 Mourad Jun 2005 A1
20050149508 Deshpande Jul 2005 A1
20050159823 Hayes Jul 2005 A1
20050198351 Nog Sep 2005 A1
20050249196 Ansari Nov 2005 A1
20050259637 Chu Nov 2005 A1
20050262217 Nonaka Nov 2005 A1
20050281288 Banerjee Dec 2005 A1
20050286535 Shrum Dec 2005 A1
20050289222 Sahim Dec 2005 A1
20060010249 Sabesan Jan 2006 A1
20060029102 Abe Feb 2006 A1
20060039379 Abe Feb 2006 A1
20060051055 Ohkawa Mar 2006 A1
20060072523 Richardson Apr 2006 A1
20060099973 Nair May 2006 A1
20060129514 Watanabe Jun 2006 A1
20060133275 Dabagh et al. Jun 2006 A1
20060133343 Huang Jun 2006 A1
20060146686 Kim Jul 2006 A1
20060173831 Basso Aug 2006 A1
20060193295 White Aug 2006 A1
20060203804 Whitmore Sep 2006 A1
20060206445 Andreoli Sep 2006 A1
20060215684 Capone Sep 2006 A1
20060223504 Ishak Oct 2006 A1
20060242155 Moore Oct 2006 A1
20060256767 Suzuki Nov 2006 A1
20060268792 Belcea Nov 2006 A1
20060288237 Goodwill Dec 2006 A1
20070019619 Foster Jan 2007 A1
20070073888 Madhok Mar 2007 A1
20070094265 Korkus Apr 2007 A1
20070112880 Yang May 2007 A1
20070124412 Narayanaswami May 2007 A1
20070127457 Mirtorabi Jun 2007 A1
20070156998 Gorobets Jul 2007 A1
20070160062 Morishita Jul 2007 A1
20070162394 Zager Jul 2007 A1
20070171828 Dalal Jul 2007 A1
20070189284 Kecskemeti Aug 2007 A1
20070195765 Heissenbuttel Aug 2007 A1
20070204011 Shaver Aug 2007 A1
20070209067 Fogel Sep 2007 A1
20070239892 Ott Oct 2007 A1
20070240207 Belakhdar Oct 2007 A1
20070245034 Retana Oct 2007 A1
20070253418 Shiri Nov 2007 A1
20070255677 Alexander Nov 2007 A1
20070255699 Sreenivas Nov 2007 A1
20070255781 Li Nov 2007 A1
20070274504 Maes Nov 2007 A1
20070275701 Jonker Nov 2007 A1
20070276907 Maes Nov 2007 A1
20070283158 Danseglio Dec 2007 A1
20070294187 Scherrer Dec 2007 A1
20080005056 Stelzig Jan 2008 A1
20080005223 Flake Jan 2008 A1
20080010366 Duggan Jan 2008 A1
20080037420 Tang Feb 2008 A1
20080043989 Furutono Feb 2008 A1
20080046340 Brown Feb 2008 A1
20080059631 Bergstrom Mar 2008 A1
20080080440 Yarvis Apr 2008 A1
20080082662 Dandliker Apr 2008 A1
20080095159 Suzuki Apr 2008 A1
20080101357 Iovanna May 2008 A1
20080107034 Jetcheva May 2008 A1
20080107259 Satou May 2008 A1
20080123862 Rowley May 2008 A1
20080133583 Artan Jun 2008 A1
20080133755 Pollack Jun 2008 A1
20080151755 Nishioka Jun 2008 A1
20080159271 Kutt Jul 2008 A1
20080165775 Das Jul 2008 A1
20080186901 Itagaki Aug 2008 A1
20080200153 Fitzpatrick Aug 2008 A1
20080215669 Gaddy Sep 2008 A1
20080216086 Tanaka Sep 2008 A1
20080243992 Jardetzky Oct 2008 A1
20080250006 Dettinger Oct 2008 A1
20080256138 Sim-Tang Oct 2008 A1
20080256359 Kahn Oct 2008 A1
20080270618 Rosenberg Oct 2008 A1
20080271143 Stephens Oct 2008 A1
20080287142 Keighran Nov 2008 A1
20080288580 Wang Nov 2008 A1
20080291923 Back Nov 2008 A1
20080298376 Takeda Dec 2008 A1
20080320148 Capuozzo Dec 2008 A1
20090006659 Collins Jan 2009 A1
20090013324 Gobara Jan 2009 A1
20090022154 Kiribe Jan 2009 A1
20090024641 Quigley Jan 2009 A1
20090030978 Johnson Jan 2009 A1
20090037763 Adhya Feb 2009 A1
20090052660 Chen Feb 2009 A1
20090067429 Nagai Mar 2009 A1
20090077184 Brewer Mar 2009 A1
20090092043 Lapuh Apr 2009 A1
20090097631 Gisby Apr 2009 A1
20090103515 Pointer Apr 2009 A1
20090113068 Fujihira Apr 2009 A1
20090116393 Hughes May 2009 A1
20090117922 Bell May 2009 A1
20090132662 Sheridan May 2009 A1
20090135728 Shen May 2009 A1
20090144300 Chatley Jun 2009 A1
20090157887 Froment Jun 2009 A1
20090185745 Momosaki Jul 2009 A1
20090193101 Munetsugu Jul 2009 A1
20090198832 Shah Aug 2009 A1
20090222344 Greene Sep 2009 A1
20090228593 Takeda Sep 2009 A1
20090254572 Redlich Oct 2009 A1
20090268905 Matsushima Oct 2009 A1
20090274158 Sharp Nov 2009 A1
20090276396 Gorman Nov 2009 A1
20090285209 Stewart Nov 2009 A1
20090287835 Jacobson Nov 2009 A1
20090287853 Carson Nov 2009 A1
20090288076 Johnson Nov 2009 A1
20090288143 Stebila Nov 2009 A1
20090288163 Jacobson Nov 2009 A1
20090292743 Bigus Nov 2009 A1
20090293121 Bigus Nov 2009 A1
20090296719 Maier Dec 2009 A1
20090300079 Shitomi Dec 2009 A1
20090300407 Kamath Dec 2009 A1
20090300512 Ahn Dec 2009 A1
20090307286 Laffin Dec 2009 A1
20090307333 Welingkar Dec 2009 A1
20090323632 Nix Dec 2009 A1
20100005061 Basco Jan 2010 A1
20100027539 Beverly Feb 2010 A1
20100046546 Ram Feb 2010 A1
20100057929 Merat Mar 2010 A1
20100058346 Narang Mar 2010 A1
20100088370 Wu Apr 2010 A1
20100094767 Miltonberger Apr 2010 A1
20100094876 Huang Apr 2010 A1
20100098093 Ejzak Apr 2010 A1
20100100465 Cooke Apr 2010 A1
20100103870 Garcia-Luna-Aceves Apr 2010 A1
20100124191 Vos May 2010 A1
20100125911 Bhaskaran May 2010 A1
20100131660 Dec May 2010 A1
20100150155 Napierala Jun 2010 A1
20100165976 Khan Jul 2010 A1
20100169478 Saha Jul 2010 A1
20100169503 Kollmansberger Jul 2010 A1
20100180332 Ben-Yochanan Jul 2010 A1
20100182995 Hwang Jul 2010 A1
20100185753 Liu Jul 2010 A1
20100195653 Jacobson Aug 2010 A1
20100195654 Jacobson Aug 2010 A1
20100195655 Jacobson Aug 2010 A1
20100217874 Anantharaman Aug 2010 A1
20100217985 Fahrny Aug 2010 A1
20100232402 Przybysz Sep 2010 A1
20100232439 Dham Sep 2010 A1
20100235516 Nakamura Sep 2010 A1
20100246549 Zhang Sep 2010 A1
20100250497 Redlich Sep 2010 A1
20100250939 Adams Sep 2010 A1
20100257149 Cognigni Oct 2010 A1
20100268732 Zombek Oct 2010 A1
20100272107 Papp Oct 2010 A1
20100281263 Ugawa Nov 2010 A1
20100284309 Allan Nov 2010 A1
20100284404 Gopinath Nov 2010 A1
20100293293 Beser Nov 2010 A1
20100316052 Petersen Dec 2010 A1
20100322249 Thathapudi Dec 2010 A1
20100332595 Fullagar Dec 2010 A1
20110013637 Xue Jan 2011 A1
20110019674 Iovanna Jan 2011 A1
20110022812 vanderLinden Jan 2011 A1
20110029952 Harrington Feb 2011 A1
20110055392 Shen Mar 2011 A1
20110055921 Narayanaswamy Mar 2011 A1
20110060716 Forman Mar 2011 A1
20110060717 Forman Mar 2011 A1
20110090908 Jacobson Apr 2011 A1
20110106755 Hao May 2011 A1
20110131308 Eriksson Jun 2011 A1
20110137919 Ryu Jun 2011 A1
20110145597 Yamaguchi Jun 2011 A1
20110145858 Philpott Jun 2011 A1
20110149858 Hwang Jun 2011 A1
20110153840 Narayana Jun 2011 A1
20110158122 Murphy Jun 2011 A1
20110161408 Kim Jun 2011 A1
20110202609 Chaturvedi Aug 2011 A1
20110219093 Ragunathan Sep 2011 A1
20110219427 Hito Sep 2011 A1
20110219727 May Sep 2011 A1
20110225293 Rathod Sep 2011 A1
20110231578 Nagappan Sep 2011 A1
20110239256 Gholmieh Sep 2011 A1
20110258049 Ramer Oct 2011 A1
20110264824 Venkata Subramanian Oct 2011 A1
20110265159 Ronda Oct 2011 A1
20110265174 Thornton Oct 2011 A1
20110271007 Wang Nov 2011 A1
20110280214 Lee Nov 2011 A1
20110286457 Ee Nov 2011 A1
20110286459 Rembarz Nov 2011 A1
20110295783 Zhao Dec 2011 A1
20110299454 Krishnaswamy Dec 2011 A1
20120011170 Elad Jan 2012 A1
20120011551 Levy Jan 2012 A1
20120023113 Ferren Jan 2012 A1
20120036180 Thornton Feb 2012 A1
20120045064 Rembarz Feb 2012 A1
20120047361 Erdmann Feb 2012 A1
20120066727 Nozoe Mar 2012 A1
20120079056 Turanyi et al. Mar 2012 A1
20120102136 Srebrny Apr 2012 A1
20120106339 Mishra May 2012 A1
20120110159 Richardson May 2012 A1
20120114313 Phillips May 2012 A1
20120120803 Farkas May 2012 A1
20120127994 Ko May 2012 A1
20120136676 Goodall May 2012 A1
20120136936 Quintuna May 2012 A1
20120136945 Lee May 2012 A1
20120137367 Dupont May 2012 A1
20120141093 Yamaguchi Jun 2012 A1
20120155464 Kim Jun 2012 A1
20120158973 Jacobson Jun 2012 A1
20120163373 Lo Jun 2012 A1
20120166433 Tseng Jun 2012 A1
20120170913 Isozaki Jul 2012 A1
20120179653 Araki Jul 2012 A1
20120197690 Agulnek Aug 2012 A1
20120198048 Ioffe Aug 2012 A1
20120221150 Arensmeier Aug 2012 A1
20120224487 Hui Sep 2012 A1
20120226902 Kim Sep 2012 A1
20120257500 Lynch Oct 2012 A1
20120284791 Miller Nov 2012 A1
20120290669 Parks Nov 2012 A1
20120290919 Melnyk Nov 2012 A1
20120291102 Cohen Nov 2012 A1
20120300669 Zahavi Nov 2012 A1
20120307629 Vasseur Dec 2012 A1
20120314580 Hong Dec 2012 A1
20120317307 Ravindran Dec 2012 A1
20120317655 Zhang Dec 2012 A1
20120322422 Frecks Dec 2012 A1
20120323933 He Dec 2012 A1
20120331112 Chatani Dec 2012 A1
20130024560 Vasseur Jan 2013 A1
20130041982 Shi Feb 2013 A1
20130051392 Filsfils Feb 2013 A1
20130054971 Yamaguchi Feb 2013 A1
20130060962 Wang Mar 2013 A1
20130061084 Barton Mar 2013 A1
20130066823 Sweeney Mar 2013 A1
20130073552 Rangwala Mar 2013 A1
20130073882 Inbaraj Mar 2013 A1
20130074155 Huh Mar 2013 A1
20130090942 Robinson Apr 2013 A1
20130091237 Ambalavanar Apr 2013 A1
20130091539 Khurana Apr 2013 A1
20130110987 Kim May 2013 A1
20130111063 Lee May 2013 A1
20130128786 Sultan May 2013 A1
20130132719 Kobayashi May 2013 A1
20130139245 Thomas May 2013 A1
20130151584 Westphal Jun 2013 A1
20130151646 Chidambaram Jun 2013 A1
20130152070 Bhullar Jun 2013 A1
20130163426 Beliveau Jun 2013 A1
20130166668 Byun Jun 2013 A1
20130173822 Hong Jul 2013 A1
20130182568 Lee Jul 2013 A1
20130182931 Fan Jul 2013 A1
20130185406 Choi Jul 2013 A1
20130191412 Kitamura Jul 2013 A1
20130197698 Shah Aug 2013 A1
20130198119 Eberhardt, III Aug 2013 A1
20130212185 Pasquero Aug 2013 A1
20130219038 Lee Aug 2013 A1
20130219081 Qian Aug 2013 A1
20130219478 Mahamuni Aug 2013 A1
20130223237 Hui Aug 2013 A1
20130227048 Xie Aug 2013 A1
20130227114 Vasseur Aug 2013 A1
20130227166 Ravindran Aug 2013 A1
20130242996 Varvello Sep 2013 A1
20130250809 Hui Sep 2013 A1
20130262365 Dolbear Oct 2013 A1
20130262698 Schwan Oct 2013 A1
20130275544 Westphal Oct 2013 A1
20130282854 Jang Oct 2013 A1
20130282860 Zhang Oct 2013 A1
20130282920 Zhang Oct 2013 A1
20130304758 Gruber Nov 2013 A1
20130304937 Lee Nov 2013 A1
20130315235 Foo Nov 2013 A1
20130325888 Oneppo Dec 2013 A1
20130329696 Xu Dec 2013 A1
20130332971 Fisher Dec 2013 A1
20130336103 Vasseur Dec 2013 A1
20130336323 Srinivasan Dec 2013 A1
20130339481 Hong Dec 2013 A1
20130343408 Cook Dec 2013 A1
20140003232 Guichard Jan 2014 A1
20140003424 Matsuhira Jan 2014 A1
20140006354 Parkison Jan 2014 A1
20140006565 Muscariello Jan 2014 A1
20140029445 Hui Jan 2014 A1
20140032714 Liu Jan 2014 A1
20140033193 Palaniappan Jan 2014 A1
20140040505 Barton Feb 2014 A1
20140040628 Fort Feb 2014 A1
20140043987 Watve Feb 2014 A1
20140047513 vantNoordende Feb 2014 A1
20140074730 Arensmeier Mar 2014 A1
20140075567 Raleigh Mar 2014 A1
20140082135 Jung Mar 2014 A1
20140082661 Krahnstoever Mar 2014 A1
20140089454 Jeon Mar 2014 A1
20140096249 Dupont Apr 2014 A1
20140098685 Shattil Apr 2014 A1
20140108313 Heidasch Apr 2014 A1
20140108474 David Apr 2014 A1
20140115037 Liu Apr 2014 A1
20140122587 Petker et al. May 2014 A1
20140129736 Yu May 2014 A1
20140136814 Stark May 2014 A1
20140140348 Perlman May 2014 A1
20140143370 Vilenski May 2014 A1
20140146819 Bae May 2014 A1
20140149733 Kim May 2014 A1
20140156396 deKozan Jun 2014 A1
20140165207 Engel Jun 2014 A1
20140172783 Suzuki Jun 2014 A1
20140172981 Kim Jun 2014 A1
20140173034 Liu Jun 2014 A1
20140173076 Ravindran Jun 2014 A1
20140181140 Kim Jun 2014 A1
20140192677 Chew Jul 2014 A1
20140192717 Liu Jul 2014 A1
20140195328 Ferens Jul 2014 A1
20140195641 Wang Jul 2014 A1
20140195666 Dumitriu Jul 2014 A1
20140204945 Byun Jul 2014 A1
20140214942 Ozonat Jul 2014 A1
20140233575 Xie Aug 2014 A1
20140237085 Park Aug 2014 A1
20140237095 Bevilacqua-Linn Aug 2014 A1
20140245359 DeFoy Aug 2014 A1
20140253674 Grondal Sep 2014 A1
20140254595 Luo Sep 2014 A1
20140280823 Varvello Sep 2014 A1
20140281489 Peterka Sep 2014 A1
20140281505 Zhang Sep 2014 A1
20140282816 Xie Sep 2014 A1
20140289325 Solis Sep 2014 A1
20140289790 Wilson Sep 2014 A1
20140298248 Kang Oct 2014 A1
20140314093 You Oct 2014 A1
20140337276 Iordanov Nov 2014 A1
20140365550 Jang Dec 2014 A1
20150006896 Franck Jan 2015 A1
20150018770 Baran Jan 2015 A1
20150032892 Narayanan Jan 2015 A1
20150033365 Mellor Jan 2015 A1
20150039890 Khosravi Feb 2015 A1
20150063802 Bahadur Mar 2015 A1
20150089081 Thubert Mar 2015 A1
20150095481 Ohnishi Apr 2015 A1
20150095514 Yu Apr 2015 A1
20150120663 LeScouarnec Apr 2015 A1
20150169758 Assom Jun 2015 A1
20150188770 Naiksatam Jul 2015 A1
20150195149 Vasseur Jul 2015 A1
20150207633 Ravindran Jul 2015 A1
20150207864 Wilson Jul 2015 A1
20150279348 Cao Oct 2015 A1
20150288755 Mosko Oct 2015 A1
20150312300 Mosko Oct 2015 A1
20150349961 Mosko Dec 2015 A1
20150372903 Hui Dec 2015 A1
20150381546 Mahadevan Dec 2015 A1
20160019275 Mosko Jan 2016 A1
20160021172 Mahadevan Jan 2016 A1
20160062840 Scott Mar 2016 A1
20160110466 Uzun Apr 2016 A1
20160171184 Solis Jun 2016 A1
Foreign Referenced Citations (31)
Number Date Country
103873371 Jun 2014 CN
1720277 Jun 1967 DE
19620817 Nov 1997 DE
0295727 Dec 1988 EP
0757065 Jul 1996 EP
1077422 Feb 2001 EP
1383265 Jan 2004 EP
1384729 Jan 2004 EP
1473889 Nov 2004 EP
2120402 Nov 2009 EP
2120419 Nov 2009 EP
2120419 Nov 2009 EP
2124415 Nov 2009 EP
2214357 Aug 2010 EP
2299754 Mar 2011 EP
2323346 May 2011 EP
2552083 Jan 2013 EP
2214356 May 2016 EP
03005288 Jan 2003 WO
03042254 May 2003 WO
03049369 Jun 2003 WO
03091297 Nov 2003 WO
2005041527 May 2005 WO
2007113180 Oct 2007 WO
2007122620 Nov 2007 WO
2007144388 Dec 2007 WO
2011049890 Apr 2011 WO
2013123410 Aug 2013 WO
2014023072 Feb 2014 WO
2015084327 Jun 2015 WO
2012077073 Jun 2016 WO
Non-Patent Literature Citations (177)
Entry
International Search Report and Written Opinion in counterpart International Application No. PCT/US2017/031126, dated Jul. 21, 2017, 14 pages.
Rosa, et al., “Building Adaptive Systems with Service Composition Frameworks,” in OTM 2007: On the Move to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS, Nov. 2007, 18 pages.
Gazis, et al., “A Survey of Dynamically Adaptable Protocol Stacks,” IEEE Communications Surveys & Tutorials, vol. 12, No. 1, Jan. 2010, 21 pages.
Rosa, et al., “Building Adaptive Services for Distributed,” Oct. 2007, http://repositorio.ul.pt.pitstream/10455/2974/1/07-21.pdf, 20 pages.
Marc Mosko: “CCNx 1.0 Protocol Introduction” Apr. 2, 2014 [Retrieved from the internet Jun. 8, 2016] http://www.ccnx.org/pubs/hhg/1.1%20CCNx%201.0%20Protocol%20Introduction.pdf *paragraphs [01.3], [002], [02.1], [0003].
Akash Baid et al: “Comparing alternative approaches for networking of named objects in the future Internet”, Computer Communications Workshops (Infocom Wkshps), 2012 IEEE Conference on, IEEE, Mar. 25, 2012, pp. 298-303, *Paragraph [002]* *figure 1*.
Priya Mahadevan: “CCNx 1.0 Tutorial”, Mar. 16, 2014, pp. 1-11, Retrieved from the Internet: http://www.ccnx.org/pubs/hhg/1.2%20CCNx%201.0%20Tutorial.pdf [retrieved on Aug. 8, 2016] *paragraphs [003]-[006], [0011], [0013] * *figures 1,2*.
Marc Mosko et al “All-in-One Streams for Content Centric Networks”, May 24, 2015, retrieved from the Internet: http://www.ccnx.org/pubs/AllinOne.pdf [downloaded Jun. 9, 2016] *the whole document*.
Cesar Ghali et al. “Elements of Trust in Named-Data Networking”, Feb. 13, 2014 Retrieved from the internet Jun. 17, 2016 http://ardv.org/pdf/1402.333v5.pdf *p. 8, col. 1* *p. 2, col. 1-2* *Section 4.1; p. 4, col. 2* *Section 4.2; p. 4, col. 2*.
Priya Mahadevan et al. “CCN-KRS”, Proceedings of the 1st International Conference on Information-Centric Networking, Inc. '14, Sep. 24, 2014.
Flavio Roberto Santos Et al. “Funnel: Choking Polluters in BitTorrent File Sharing Communities”, IEEE Transactions on Network and Service Management, IEEE vol. 8, No. 4, Dec. 1, 2011.
Liu Wai-Xi et al: “Multisource Dissemination in content-centric networking”, 2013 Fourth International conference on the network of the future (NOF), IEEE, Oct. 23, 2013, pp. 1-5.
Marie-Jose Montpetit et al.: “Network coding meets information-centric networking”, Proceedings of the 1st ACM workshop on emerging Name-Oriented mobile networking design, architecture, algorithms, and applications, NOM '12, Jun. 11, 2012, pp. 31-36.
Asokan et al.: “Server-Supported Signatures”, Computer Security Esorics 96, Sep. 25, 1996, pp. 131-143, Section 3.
Mandt et al.: “A Fast FPGA Based Coprocessor Supporting Hard Real-Time Search”, New Frontiers of Information Technology, Proceedings of the 23rd Euromicro Conference Budapest, Sep. 1, 1997, pp. 499-506 *The Whole Document*.
Sun et al.: “Content-Based Route Lookup Using CAMs”, Global Communications Conference, IEEE, Dec. 3, 2012 *The Whole Document*.
Gelenbe et al.: “Networks With Cognitive Packets”, Modeling, Analysis and Simulation of Computer and Telecommunications Systems, 2000, IEEE, Aug. 29, 2000, pp. 3-10.
Vangelis et al.: “On the Role of Semantic Description for Adaptable Protocol Stacks in the Internet of Things”, 2014 38th International Conference on Advanced Information Networking and Application Workshops, IEEE, May 13, 2014, pp. 437-443, *last paragraph of section 11.B*.
Smetters et al. “Securing Network Content” Technical Report, PARC TR-2009-1, Oct. 1, 2009, Retrieved from the internet URL:http//www.parc.com/content/attachments/TR-2009-01.pdf [retrieved Nov. 1, 2016].
Marc Mosko “CCNx Label Forwarding (CCNLF)” Jul. 21, 2014.
Gallo Alcatel-Lucent Bell Labs “Content Centric Networking Packet Header Format” Jan. 26, 2015.
Huard J-F et al. “A Programmable Transport Architecture with QOS Guarantees” IEEE Communications Magazine, vol. 36, No. 10, Oct. 1, 1998.
Microsoft Computer Dictionary, Fifth Edition, 2002, Microsoft Press, p. 23.
Mind—A Brief Introduction, John R. Searle, 2004, Oxford University Press, pp. 62-67.
Jacobson, Van et al., “Content-Centric Networking, Whitepaper Describing Future Assurable Global Networks”, Palo Alto Research Center, Inc., Jan. 30, 2007, pp. 1-9.
Koponen, Teemu et al., “A Data-Oriented (and Beyond) Network Architecture”, SIGCOMM '07, Aug. 27-31, 2007, Kyoto, Japan, XP-002579021, p. 181-192.
Ao-Jan Su, David R. Choffnes, Aleksandar Kuzmanovic, and Fabian E. Bustamante. Drafting Behind Akamai: Inferring Network Conditions Based on CDN Redirections. IEEE/ACM Transactions on Networking (Feb. 2009).
“PBC Library-Pairing Based Cryptography—About,” http://crypto.stanford.edu/pbc. downloaded Apr. 27, 2015.
C. Gentry and A. Silverberg. Hierarchical ID-Based Cryptography. Advances in Cryptology—ASIACRYPT 2002. Springer Berlin Heidelberg (2002).
Boneh et al., “Collusion Resistant Broadcast Encryption With Short Ciphertexts and Private Keys”, 2005.
D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. Advances in Cryptology—CRYPTO 2001, vol. 2139, Springer Berlin Heidelberg (2001).
Anteniese et al., “Improved Proxy Re-Encryption Schemes with Applications to Secure Distributed Storage”, 2006.
Xiong et al., “CloudSeal: End-to-End Content Protection in Cloud-based Storage and Delivery Services”, 2012.
J. Bethencourt, A, Sahai, and B. Waters, ‘Ciphertext-policy attribute-based encryption,’ In Proc. IEEE Security & Privacy 2007, Berkeley, CA, USA, May 2007, pp. 321-334.
J. Lotspiech, S. Nusser, and F. Pestoni. Anonymous Trust: Digit.
J. Shao and Z. Cao. CCA-Seieure Proxy Re-Encryption without Pairings. Public Key Cryptography. Springer Lecture Notes in Computer Science vol. 5443 (2009).
Gopal et al. “Integrating content-based Mechanisms with hierarchical File systems”, Feb. 1999, University of Arizona, 15 pages.
R. H. Deng, J. Weng, S. Liu, and K. Chen, Chosen-Ciphertext Secure Proxy Re-Encryption without Pairings, CANS. Spring Lecture Notes in Computer Science vol. 5339 (2008).
RTMP (2009), Available online at http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/rtmp/ pdf/rtmp specification 1.0.pdf.
S. Chow, J. Weng, Y. Yang, and R. Deng. Efficient Unidirectional Proxy Re-Encryption. Progress in Cryptology—AFRICACRYPT 2010. Springer Berlin Heidelberg (2010).
S. Kamara and K. Lauter. Cryptographic Cloud Storable. Financial Cryptography and Data Security. Springer Berlin Heidelberg (2010).
Sandvine, Global Internet Phenomena Report—Spring 2012. Located online at http://www.sandvine.com/downloads/ documents/Phenomenal H 2012/Sandvine Global Internet Phenomena Report 1H 2012.pdf.
The Despotify Project (2012), Available online at http://despotify.sourceforge.net/.
V. K. Adhikari, S. Jain, Y. Chen, and Z.-L. Zhang. Vivisecting Youtube:An Active Measurement Study. In INFOCOM12 Mini-conference (2012).
Vijay Kumar Adhikari, Yang Guo, Fang Hao, Matteo Varvello, Volker Hilt, Moritz Steiner, and Zhi-Li Zhang. Unreeling Netflix. Understanding and Improving Multi-CDN Movie Delivery. In the Proceedings of IEEE INFOCOM 2012 (2012).
Jacobson, Van et al. ‘VoCCN: Voice Over Content-Centric Networks.’ Dec. 1, 2009. ACM ReArch'09.
Rosenberg, J. “Interactive Connectivity Establishment (ICE): Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols”, Apr. 2010, pp. 1-117.
Shih, Eugene et al., ‘Wake on Wireless: An Event Driven Energy Saving Strategy for Battery Operated Devices’, Sep. 23, 2002, pp. 160-171.
Fall, K. et al., “DTN: an architectural retrospective”, Selected areas in communications, IEEE Journal on, vol. 28, No. 5, Jun. 1, 2008, pp. 828-835.
Gritter, M. et al., ‘An Architecture for content routing support in the Internet’, Proceedings of 3rd Usenix Symposium on Internet Technologies and Systems, 2001, pp. 37-48.
“CCNx,” http://ccnx.org/. downloaded Mar. 11, 2015.
“Content Delivery Network”, Wikipedia, Dec. 10, 2011, http://en.wikipedia.org/w/index.php?title=Content_delivery_network&oldid=465077460.
“Digital Signature” archived on Aug. 31, 2009 at http://web.archive.org/web/20090831170721/http://en.wikipedia.org./wiki/Digital_signature.
“Introducing JSON,” http://www.json.org/. downloaded Mar. 11, 2015.
“Microsoft PlayReady,” http://www.microsoft.com/playready/.downloaded Mar. 11, 2015.
“Pursuing a pub/sub internet (PURSUIT),” http://www.fp7-pursuit.ew/PursuitWeb/. downloaded Mar. 11, 2015.
“The FP7 4WARD project,” http://www.4ward-project.eu/. downloaded Mar. 11, 2015.
A. Broder and A. Karlin, “Multilevel Adaptive Hashing”, Jan. 1990, pp. 43-53.
Detti, Andrea, et al. “CONET: a content centric inter-networking architecture.” Proceedings of the ACM SIGCOMM workshop on Information-centric networking. ACM. 2011.
A. Wolman, M. Voelker, N. Sharma N. Cardwell, A. Karlin, and H.M. Levy, “On the scale and performance of cooperative web proxy caching,” ACM SIGHOPS Operating Systems Review, vol. 33, No. 5, pp. 16-31, Dec. 1999.
Afanasyev, Alexander, et al. “Interest flooding attack and countermeasures in Named Data Networking.” IFIP Networking Conference, 2013. IEEE, 2013.
B. Ahlgren et al., ‘A Survey of Information-centric Networking’ IEEE Commun. Magazine, Jul. 2012, pp. 26-36.
Bari, MdFaizul, et al. ‘A survey of naming and routing in information-centric networks.’ Communications Magazine, IEEE 50.12 (2012): 44-53.
Baugher, Mark et al., “Self-Verifying Names for Read-Only Named Data”, 2012 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Mar. 2012, pp. 274-279.
Brambley, Michael, A novel, low-cost, reduced-sensor approach for providing smart remote monitoring and diagnostics for packaged air conditioners and heat pumps. Pacific Northwest National Laboratory, 2009.
C.A. Wood and E. Uzun, “Flexible end-to-end content security in CCN,” in Proc. IEEE CCNC 2014, Las Vegas, CA, USA, Jan. 2014.
Carzangia, Antonio, Matthew J. Rutherford, and Alexander L. Wolf. ‘A routing scheme for content-based networking.’ INFOCOM 2004. Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies. vol. 2. IEEE, 2004.
Cho, Jin-Hee, Ananthram Swami, and Ray Chen. “A survey on trust management for mobile ad hoc networks.” Communications Surveys & Tutorials, IEEE 13.4 (2011): 562-583.
Compagno, Alberto, et al. “Poseidon: Mitigating interest flooding DDoS attacks in named data networking.” Local Computer Networks (LCN), 2013 IEEE 38th Conference on. IEEE, 2013.
Conner, William, et al. “A trust management framework for service-oriented environments.” Proceedings of the 18th international conference on World wide web. ACM, 2009.
Content Centric Networking Project (CCN) [online], http://ccnx.org/releases/latest/doc/technical/, Downloaded Mar. 9, 2015.
Content Mediator Architecture for Content-aware Networks (COMET) Project [online], http://www.comet-project.org/, Downloaded Mar. 9, 2015.
D.K. Smetters, P. Golle, and J.D. Thornton, “CCNx access control specifications,” PARC, Tech. Rep., Jul. 2010.
Dabirmoghaddam, Ali, Maziar Mirzazad Barijough, and J. J. Garcia-Luna-Aceves. ‘Understanding optimal caching and opportunistic caching at the edge of information centric networks.’ Proceedings of the 1st international conference on information-centric networking. ACM, 2014.
Detti et al., “Supporting the Web with an information centric network that routes by name”, Aug. 2012, Computer Networks 56, pp. 3705-3702.
Dijkstra, Edsger W., and Carel S. Scholten. ‘Termination detection for diffusing computations.’ Information Processing Letters 11.1 (1980):1-4.
Dijkstra, Edsger W., Wim HJ Feijen, and A_JM. Van Gasteren. “Derivation of a termination detection algorithm for distributed computations.” Control Flow and Data Flow: concepts of distributed programming. Springer Berlin Heidelberg, 1986. 507-512.
E. Rescorla and N. Modadugu, “Datagram transport layer security,” IETF RFC 4347, Apr. 2006.
E.W. Dijkstra, W. Feijen, and A.J.M. Van Gasteren, “Derivation of a Termination Detection Algorithm for Distributed Computations,” Information Processing Letter, vol. 16, No. 5, 1983.
Fayazbakhsh, S. K., Lin, Y., Tooloonchian, A., Ghodsi, A., Koponen, T., Maggs, B., & Shenker, S. {Aug. 2013). Less pain, most of the gain: Incrementally deployable ICN. In ACM SIGCOMM Computer Communication Review (vol. 43, No. 4, pp. 147-158). ACM.
G. Tyson, S. Kaune, S. Miles, Y. El-Khatib, A. Mauthe, and A. Taweel, “A trace-driven analysis of caching in content-centric networks,” in Proc. IEEE ICCCN 2012, Munich, Germany, Jul.-Aug. 2012, pp. 1-7.
G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-base encryption for fine-grained access control in cloud storage services,” in Proc. ACM CCS 2010, Chicago, IL, USA, Oct. 2010, pp. 735-737.
G. Xylomenos et al., “A Survey of Information-centric Networking Research,” IEEE Communication Surveys and Tutorials, Jul. 2013.
Garcia, Humberto E., Wen-Chiao Lin, and Semyon M. Meerkov. “A resilient condition assesment monitoring systems.” Resilient Control Systems (ISRCS), 2012 5th International Symposium on. IEEE, 2012.
Garcia-Luna-Aceves, Jose J. ‘A unified approach to loop-free routing using distance vectors or link states.’ ACM SIGCOMM Computer Communications Review. vol. 19. No. 4. ACM. 1989.
Garcia-Luna-Aceves, Jose J. ‘Name-Based Content Routing in Information Centric Networks Using Distance Information’ Proc ACM ICN 2014, Sep. 2014.
Ghali, Cesar, GeneTsudik, and Ersin Uzun. “Needle in a Haystack: Mitigating Content Poisoning in Named-Data Networking.” Proceedings of NDSS Workshop on Security of Emerging Networking Technologies (SENT), 2014.
Ghodsi, Ali, et al. “Information-centric networking: seeing the forest for the trees.” Proceedings of the 10th ACM Workshop on Hot Topics in the Networks. ACM, 2011.
Ghodsi, Ali, et al. “Naming in content-oriented architectures.” Proceedings of the ACM SIGCOMM workshop on Information-centric networking. ACM, 2011.
Gupta, Anjali, Barbara Liskov, and Rodrigo Rodrigues. “Efficient Routing for Peer-to-Peer Overlays.” NSDI. vol. 4. 2004.
Heckerman, David, John S. Breese, and Koos Rommelse. “Decision-Theoretic Troubleshooting.” Communications of the ACM. 1995.
Heinemeier, Kristin, et al. “Uncertainties in Achieving Energy Saving from HVAC Maintenance Measures in the Field.” ASHRAE Transactions 118.Part 2 {2012).
Herlich, Matthias et al., “Optimizing Energy Efficiency for Bulk Transfer Networks”, Apr. 13, 2010, pp. 1-3, retrieved for the Internet: URL:http://www.cs.uni-paderborn.de/fileadmin/informationik/ag-karl/publications/miscellaneous/optimizing.pdf (retrieved on Mar. 9, 2012).
Hoque et al., ‘NLSR: Named-data Link State Routing Protocol’, Aug. 12, 2013, ICN 2013, pp. 15-20.
https://code.google.com/p/ccnx-trace/.
I. Psaras, R.G. Clegg, R. Landa, W.K. Chai, and G. Pavlou, “Modeling and evaluation of CCN-caching trees,” in Proc. IFIP Networking 2011, Valencia, Spain, May 2011, pp. 78-91.
Intanagonwiwat, Chelermek, Ramesh Govindan, and Deborah Estrin. ‘Directed diffusion: a scalable and robust communication paradigm for sensor networks.’ Proceedings of the 6th annual international confernce on Mobile computing and networking. ACM, 2000.
J. Aumasson and D. Bernstein, “SipHash: a test short-input PRF”, Sep. 18, 2012.
J. Hur, “Improving security and efficiency in attribute-based data sharing,” IEEE Trans. Knowledge Data Eng., vol. 25, No. 10, pp. 2271-2282, Oct. 2013.
V. Jacobson et al., ‘Networking Named Content,’ Proc. IEEE CoNEXT '09, Dec. 2009.
Jacobson et al., “Custodian-Based Information Sharing,” Jul. 2012, IEEE Communications Magazine: vol. 50 Issue 7 (p. 3843).
Ji, Kun, et al. “Prognostics enabled resilient control for model-based building automation systems.” Proceedings of the 12th Conference of International Building Performance Simulation Association. 2011.
K. Liang, L. Fang, W. Susilo, and D.S. Wong, “A Ciphertext-policy attribute-based proxy re-encryption with chosen-ciphertext security,” in Proc. INCoS 2013, Xian, China, Sep. 2013, pp. 552-559.
Katipamula, Srinvas, and Michael R. Brambley. “Review article: methods for fault detection, diagnostics, and prognostics for building systemsa review, Part I.” HVAC&R Research 11.1 (2005): 3-25.
Katipamula, Srinvas, and Michael R. Brambley. “Review article: methods for fault detection, diagnostics, and prognostics for building systemsa review, Part II,” HVAC&R Research 11.2 (2005): 169-187.
L. Wang et al., ‘OSPFN: An OSPF Based Routing Protocol for Named Data Networking,’ Technical Report NDN-0003, 2012.
L. Zhou, V. Varadharajan, and M. Hitchens, “Achieving secure role-based access control on encrypted data in cloud storage,” IEEE Trans. Inf. Forensics Security, vol. 8, No. 12, pp. 1947-1960, Dec. 2013.
Li, Wenjia, Anupam Joshi, and Tim Finin. “Coping with node misbehaviors in ad hoc networks: A multi-dimensional trust management approach.” Mobile Data Management (MDM), 2010 Eleventh International Conference on. IEEE, 2010.
Lopez, Javier, et al. “Trust management systems for wireless sensor networks: Best practices.” Computer Communications 33.9 (2010): 1086-1093.
M. Green and G. Ateniese, “Identity-based proxy re-encryption,” in Proc. ACNS 2007, Zhuhai, China, Jun. 2007, pp. 288-306.
M. Ion, J. Zhang, and E.M. Schooler, “Toward content-centric privacy in ICN: Attribute-based encryption and routing,” in Proc. ACM SIGCOMM ICN 2013, Hong Kong, China, Aug. 2013, pp. 39-40.
M. Naor and B. Pinkas “Efficent trace and revoke schemes,” in Proc. FC 2000, Anguilla, British West Indies, Feb. 2000, pp. 1-20.
M. Nystrom, S. Parkinson, A. Rusch, and M. Scott, “PKCS#12: Personal information exchange syntax v. 1.1,” IETF RFC 7292, K. Moriarty, Ed., Jul. 2014.
M. Parsa and J.J. Garcia-Luna-Aceves, “A Protocol for Scalable Loop-free Multicast Routing.” IEEE JSAC, Apr. 1997.
M. Walfish, H. Balakrishnan, and S. Shenker, “Untangling the web from DNS,” in Proc. USENIX NSDI 2004, Oct. 2010, pp. 735-737.
Mahadevan, Priya, et al. “Orbis: rescaling degree correlations to generate annotated internet topologies.” ACM SIGCOMM Computer Communcations Review. vol. 37. No. 4. ACM, 2007.
Mahadevan, Priya, et al. “Systematic topology analysis and generation using degree correlations,” ACM SIGCOMM Computer Communication Review. vol. 36. No. 4. ACM, 2006.
Matocha, Jeff, and Tracy Camp. ‘A taxonomy of distributed termination detection algorithms.’ Journal of Systems and Software 43.3 (1998): 207-221.
Matteo Varello et al., “Caesar: A Content Router for High Speed Forwarding”, ICN 2012, Second Edition on Information-Centric Networking, New York, Aug. 2012.
McWilliams, Jennifer A., and Iain S. Walker. “Home Energy Article: A Systems Approach to Retrofitting Residential HVAC Systems.” Lawrence Berkeley National Laboratory (2005).
Merindol et al., “An efficient algorithm to enable path diversity in link state routing networks”, Jan. 10, Computer Networks 55 (2011), pp. 1132-1140.
Mobility First Project [online], http://mobilityfirst.winlab.rutgers.edu/, Downloaded Mar. 9, 2015.
Narasimhan Sriram, and Lee Brownston. “HyDE-A General Framework for Stochastic and Hybrid Modelbased Diagnosis.” Proc. DX 7 (2007): 162-169.
NDN Project [online], http://www.named-data.net/, Downloaded Mar. 9, 2015.
Omar, Mawloud, Yacine Challal, and Abdelmadjid Bouabdallah. “Certification-based trust models in mobile ad hoc networks: A survey and taxonomy.” Journal of Network and Computer Applications 35.1 (2012): 268-286.
P. Mahadevan, E.Uzun, S. Sevilla, and J. Garcia-Luna-Aceves, “CCN-kra: A key resolution service for ccn,” in Proceedings of the 1st International Conference on Information-centric Networking, Ser. INC 14 New York, NY, USA: ACM, 2014, pp. 97-106. [Online]. Available: http://doi.acm.org/10.1145/2660129.2660154.
S. Deering, “Multicast Routing in Internetworks and Extended LANs,” Proc. ACM SIGCOMM '88, Aug. 1988.
S. Deering et al., “The PIM architecture for wide-area multicast routing,” IEEE/ACM Trans, on Networking, vol. 4, No. 2, Apr. 1996.
S. Jahid, P. Mittal, and N. Borisov, “EASiER: Encryption-based access control in social network with efficient revocation,” in Proc. ACM ASIACCS 2011, Hong Kong, China, Mar. 2011, pp. 411-415.
S. Kamara and K. Lauter, “Cryptographics cloud storage,” in Proc. FC 2010, Tenerife, Canary Islands, Spain, Jan. 2010, pp. 136-149.
S. Kumar et al. “Peacock Hashing: Deterministic and Updatable Hashing for High Performance Networking,” 2008, pp. 556-564.
S. Misra, R. Tourani, and N.E. Majd, “Secure content delivery in information-centric networks: Design, implementation. and analyses,” in Proc. ACM SIGCOMM ICN 2013, Hong Kong, China,. Aug. 2013, pp. 73-78.
S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and fine-grained data access control in cloud computing,” in Proc. IEEE INFOCOM 2010, San Diego, CA, USA, Mar. 2010, pp. 1-9.
S.J. Lee, M. Gerla, and C. Chiang, “On-demand Multicast Routing Protocol in Multihop Wireless Mobile Networks,” Mobile Networks and Applications, vol. 7, No. 6, 2002.
Scalable and Adaptive Internet Solutions (SAIL) Project [online], http://sail-project.edu/ Downloaded Mar. 9, 2015.
Scheiln, Jeffrey, and Steven T. Bushby. A Simulation Study of a Hierarchical, Rule-Based Method for System-Level Fault Detection and Diagnostics in HVAC Systems, US Department of Commerce,[Technology Administration], National Institute of Standards and Technology, 2005.
Shani, Guy, Joelle Pineau, and Robert Kaplow., “A survey of point-based POMDP solvers.” Autonomous Agents and Multi-Agent Systems 27.1 (2013): 1-51.
Sheppard, John W., and Stephyn GW Butcher. “A formal analysis of fault diagnosis with d-matrices.” Journal of Electronic Testing 23.4 (2007): 309-322.
Shneyderman, Alex et al., ‘Mobile VPN: Delivering Advanced Services in Next Generation Wireless Systems’, Jan. 1, 2003, pp. 3-29.
Solis, Ignacio, and J. J. Garcia-Luna-Aceves. ‘Robust content dissemination in disrupted environments.’ proceedings of the third ACM workshop on Challenged networks. ACM, 2008.
Sun, Ying, and Daniel S. Weld. “A framework for model-based repair.” AAAI, 1993.
T. Ballardie, P. Francis, and J. Crowcroft, “Core Based Trees (CBT),” Proc. ACM SIGCOMM '88, Aug. 1988.
T. Dierts, “The transport layer security (TLS) protocol version 1.2,” IETF RFC 5246, 2008.
T. Koponen, M. Chawla, B. -G. Chun, A. Ermolinsky, K. H. Kim, S. Shenker, and I. Stoica, ‘A data-oriented (and beyond) network architecture,’ ACM SIGCOMM Computer Communication Review, vol. 37, No. 4, pp. 181-192, Oct. 2007.
V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-grained access control of encrypted data,” in Proc. ACM CCS 2006, Alexandria, VA, USA, Oct.-Nov. 2006, pp. 89-98.
V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs, and R.L. Braynard, ‘Networking named content,’ in Proc. ACM CoNEXT 2009, Rome, Italy, Dec. 2009, pp. 1-12.
Verma, Vandi, Joquin Fernandez, and Reid Simmons, “Probabilistic models for monitoring and fault diagnosis.” The Second IARP and IEEE/RAS Joint Workshop on Technical Challanges for Dependable Robots in Human Environments. Ed. Raja Chatila. Oct. 2002.
Vutukury, Srinivas, and J. J. Garcia-Luna-Aceves. A simple approximation to minimum-delay routing. vol. 29. No. 4. ACM, 1999.
W.-G. Tzeng and Z.-J. Tzeng, “A public-key traitor tracing scheme with revocation using dynamic shares,” in Proc. PKC 2001, Cheju Island, Korea, Feb. 2001, pp. 207-224.
Waldvogel, Marcel “Fast Longest Prefix Matching: Algorithms, Analysis, and Applications”, A dissertation submitted to the Swiss Federal Institute of technology Zurich, 2002.
Walker, Iain S. Best practices guide for residential HVAC Retrofits. No. LBNL-53592. Ernest Orlando Lawrence Berkeley Laboratory, Berkeley, CA (US), 2003.
Wang, Jiangzhe et al., “DMND: Collecting Data from Mobiles Using Named Data”, Vehicular Networking Conference, 2010 IEEE, pp. 49-56.
Xylomenos, George, et al. “A survey of information-centric networking research.” Communications Surveys & Tutorials, IEEE 16.2 (2014): 1024-1049.
Yi, Cheng, et al. ‘A case for stateful forwarding plane.’ Computer Communications 36.7 (2013): 779-791.
Yi, Cheng, et al. ‘Adaptive forwarding in named data networking,’ ACM SIGCOMM computer communication review 42.3 (2012): 62-67.
Zahariadis, Theodore, et al. “Trust management in wireless sensor networks.” European Transactions on Telecommunications 21.4 (2010): 386-395.
Zhang, et al., “Named Data Networking (NDN) Project”, http://www.parc.com/publication/2709/named-data-networking-ndn-project.html, Oct. 2010, NDN-0001, PARC Tech Report.
Zhang, Lixia, et al. ‘Named data networking.’ ACM SIGCOMM Computer Communicaiton Review 44.3 {2014): 66-73.
Soh et al., “Efficient Prefix Updates for IP Router Using Lexicographic Ordering and Updateable Address Set”, Jan. 2008, IEEE Transactions on Computers, vol. 57, No. 1.
Beben et al., “Content Aware Network based on Virtual Infrastructure”, 2012 13th ACIS International Conference on Software Engineering.
Biradar et al., “Review of multicast routing mechanisms in mobile ad hoc networks”, Aug. 2016, Journal of Network and Computer Applications 35 (2012) 221-229.
D. Trossen and G. Parisis, “Designing and realizing and information-centric internet,” IEEE Communications Magazing, vol. 50, No. 7, pp. 60-67, Jul. 2012.
Garcia-Luna-Aceves et al., “Automatic Routing Using Multiple Prefix Labels”, 2012, IEEE, Ad Hoc and Sensor Networking Symposium.
Gasti, Paolo et al., ‘DoS & DDoS in Named Data Networking’, 2013 22nd International Conference on Computer Communications and Networks (ICCCN), Aug. 2013, pp. 1-7.
Ishiyama, “On the Effectiveness of Diffusive Content Caching in Content-Centric Networking”, Nov. 5, 2012, IEEE, Information and Telecommunication Technologies (APSITT), 2012 9th Asia-Pacific Symposium.
J. Hur and D.K. Noh, “Attribute-based access control with efficient revocation in data outsourcing systems,” IEEE Trans. Parallel Distrib. Syst, vol. 22, No. 7, pp. 1214-1221, Jul. 2011.
Kaya et al., “A Low Power Lookup Technique for Multi-Hashing Network Applications”, 2006 IEEE Computer Society Annual Symposium on Emerging VLSI Technologies and Architectures, Mar. 2006.
Hoque et al., “NLSR: Named-data Link State Routing Protocol”, Aug. 12, 2013, ICN'13.
Nadeem Javaid, “Analysis and design of quality link metrics for routing protocols in Wireless Networks”, PhD Thesis Defense, Dec. 15, 2010, Universete Paris-Est.
Wetherall, David, “Active Network vision and reality: Lessons form a capsule-based system”, ACM Symposium on Operating Systems Principles, Dec. 1, 1999. pp. 64-79.
Kulkarni A.B. et al., “Implementation of a prototype active network”, IEEE, Open Architectures and Network Programming, Apr. 3, 1998, pp. 130-142.
Xie et al. “Collaborative Forwarding and Caching in Content Centric Networks”, Networking 2012.
Lui et al. (A TLV-Structured Data Naming Scheme for Content-Oriented Networking, pp. 5822-5827, International Workshop on the Network of the Future, Communications (ICC), 2012 IEEE International Conference on Jun. 10-15, 2012).
Peter Dely et al. “OpenFlow for Wireless Mesh Networks” Computer Communications and Networks, 2011 Proceedings of 20th International Conference on, IEEE, Jul. 31, 2011 (Jul. 31, 2011), pp. 1-6.
Garnepudi Parimala et al “Proactive, reactive and hybrid multicast routing protocols for Wireless Mesh Networks”, 2013 IEEE International Conference on Computational Intelligence and Computing Research, IEEE, Dec. 26, 2013, pp. 1-7.
Tiancheng Zhuang et al. “Managing Ad Hoc Networks of Smartphones”, International Journal of Information and Education Technology, Oct. 1, 2013.
Amadeo et al. “Design and Analysis of Transport-Level Solution for Content-Centric VANETs”, University “Mediterranea” of Reggio Calabria, Jun. 15, 2013.
Related Publications (1)
Number Date Country
20180295025 A1 Oct 2018 US
Continuations (1)
Number Date Country
Parent 15154837 May 2016 US
Child 16005091 US