The presently disclosed embodiments generally relate to appliances for heating and cooling air, and more particularly, to an upflow condensate drain pan.
In a conventional refrigerant cycle, a compressor compresses a refrigerant and delivers the compressed refrigerant to a downstream condenser. From the condenser, the refrigerant passes through an expansion device, and subsequently, to an indoor. The refrigerant from the indoor is returned to the compressor. In a split system heating and/or cooling system, the condenser may be known as an outdoor heat exchanger and the indoor as an indoor heat exchanger, when the system operates in a cooling mode. In a heating mode, their functions are reversed.
In the split system, the indoor may be part of a fan coil assembly. A typical fan coil assembly includes an indoor coil (e.g., a coil shaped like a “V”, which is referred to as a “V-coil”) and a condensate drain pan disposed within a casing. A V-coil may be referred to as a “multi-poise” coil because it may be oriented either horizontally or vertically in the casing of the fan coil assembly.
During a cooling mode operation, a blower circulates air through the casing of the fan coil assembly, where the air cools as it passes over the indoor coil. The blower then circulates the air to a space to be cooled. Depending on the particular application, a fan coil assembly including a vertically oriented V-coil may be an upflow arrangement.
Typically, a refrigerant is enclosed in piping that is used to form the indoor coil. If the temperature of the indoor coil surface is lower than the dew point of air passing over it, the indoor coil removes moisture from the air. Specifically, as air passes over the indoor coil, water vapor condenses on the indoor coil. The condensate drain pan of the indoor assembly collects the condensed water as it drips off of the indoor coil, or runs along the surface of the indoor coil. The collected condensation then typically drains out of the condensate drain pan through at least one of two drain holes in the condensate drain pan. Typically, the drain holes are oriented in a substantially vertical orientation to accommodate the primary drainage and an overflow drainage. The substantially vertical orientation increases the overall size of the condensate drain pan; thus, this orientation may increase the size and cost of the fan coil assembly. There is, therefore, a need for a smaller sized condensate drain pan.
In one aspect, a condensate drain pan configured to contain a portion of a coil is provided. In one embodiment, the condensate drain pan includes a front wall, a rear wall, and opposing side walls extending from a drain pan panel, including a panel interior side and a panel exterior side, to form a receptacle. In one embodiment, the front wall includes a front wall longitudinal axis, a first aperture, and a second aperture. The first aperture and the second aperture include an aperture axis that forms an angle less than 90 degrees with the front wall longitudinal axis. In one embodiment, at least a portion of the opposing side walls include a curvature biased towards the drain pan surface. In one embodiment, the curvatures may be adjacent to the drain pan surface. In at least one embodiment a channel member may be formed on the panel exterior side. In at least one embodiment, the channel member may be longitudinally disposed on the panel exterior side. In at least one embodiment, the channel member may be substantially centered on a longitudinal axis on the panel exterior side.
In one aspect, a fan coil assembly is provided. In one embodiment, the fan coil assembly includes a coil, including a first coil slab and a second coil slab, disposed within a casing. The fan coil assembly further includes the condensate drain pan positioned to receive at least a portion of condensate that may drip from the coil. In one embodiment, a first space may be created between an edge of the first coil slab and one of the opposing side walls, and a second space may be created between an edge of the second coil slab and the other opposing side wall. In one embodiment, the first space and the second space include a first dimension less than or equal to approximately 0.375 inch.
In one embodiment, a third space may be created between an end of the first coil slab and a top edge of one of the opposing side walls, and a fourth space may be created between an end of the second coil slab and a top edge of the other opposing wall. In one embodiment, the third space and the fourth space include a second dimension less than or equal to approximately 0.750 inch.
In one embodiment, the fan coil assembly further includes a fan disposed within the casing. In one embodiment, the fan coil assembly further includes an auxiliary heating assembly operably coupled to the casing.
The embodiments and other features, advantages and disclosures contained herein, and the manner of attaining them, will become apparent and the present disclosure will be better understood by reference to the following description of various exemplary embodiments of the present disclosure taken in conjunction with the accompanying drawings, wherein:
For the purposes of promoting an understanding of the principles of the present disclosure, reference will now be made to the embodiments illustrated in the drawings, and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of this disclosure is thereby intended.
In at least one embodiment, the fan coil assembly 50 includes a condensate pan mounting bracket 64 disposed within the casing 52. In at least one embodiment, the condensate pan mounting bracket 64 may be disposed below the fan 60. In at least one embodiment, the condensate pan mounting bracket 64 may be substantially horizontally centered in the casing 52. In at least one embodiment, the channel member 42 may engage the condensate pan mounting bracket 64 to enable installation of the coil 54 within the fan coil assembly 50. It will be appreciated that by placing the condensate pan mounting bracket 60 substantially horizontally centered in the casing 52, the coil 54 may be easily inserted and removed from the casing 52 for maintenance and service. It will also be appreciated that by placing the condensate pan mounting bracket 64 substantially horizontally centered in the casing 54, airflow produced by fan 60 may be evenly distributed across the first and second coil slabs 56 and 58.
In one embodiment, a third space 74 may be created between an end 76 of the first coil slab 56 and the top edge 78 of the opposing wall 24, and a fourth space 80 may be created between an end 82 of the second coil slab 58 and the top edge 84 of the opposing wall 26. In one embodiment, the third space 74 and the fourth space 80 include a second dimension less than or equal to approximately 0.750 inch. For example, to maximize the amount of airflow exposure to the coil 54, it may be desired for the opposing walls 24 and 26 of the condensate drain pan 10 to cover no more than 0.750 inch from the bottom ends 76 and 82 of the coil 54. It will be appreciated that the second dimension may be greater than 0.750 inches in other embodiments.
It will be appreciated that the condensate drain pan 10 includes a channel member 42 formed on the a panel exterior side 18 to enable easier insertion and removal of the coil 54 from the fan coil assembly 50 for maintenance and service.
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only certain embodiments have been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.
The present application is related to, and claims the priority benefit of, U.S. Provisional Patent Application Ser. No. 61/910,760 filed Dec. 2, 2013, the contents of which are hereby incorporated in their entirety into the present disclosure.
Number | Date | Country | |
---|---|---|---|
61910760 | Dec 2013 | US |