Upgradeable and easily serviceable imaging systems with a removable module and methods for using the same

Information

  • Patent Grant
  • 6535704
  • Patent Number
    6,535,704
  • Date Filed
    Monday, November 20, 2000
    23 years ago
  • Date Issued
    Tuesday, March 18, 2003
    21 years ago
Abstract
An imaging system including a plurality of developing stations for developing an image on a sheet, a releasably removable image receiving module having at least one exposing unit and an image receiving substrate and a support structure for receiving the releasably removable image receiving module. The releasably removable image receiving module is configured to engage the support structure of the system such that the image receiving substrate of the module can be disposed in an operative relationship with the developing stations when the removable module is engaged with the support structure. This imaging system provides a method for upgrading, downgrading or modifying the imaging system that could be substantially performed by an end user. This imaging system may be embodied in a monocolor or multicolor printer, copier, facsimile machine or other electrophotographic based apparatus.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to an image forming apparatus such as an electrophotographic copier, printer or the like and, in particular, to a system and method for providing a simplified upgrade path for a color image forming apparatus.




2. Background Art




Electrophotographic imaging (or xerography) is a well known method of copying or otherwise printing documents. In general, electrophotographic imaging uses a charge-retentive, photosensitive surface (known as a photoreceptor), that is initially charged uniformly. The photoreceptor is then exposed to a light image representation of a desired image that discharges specific areas of the photoreceptor surface creating a latent image. Dry toner powder is applied to the latent image, forming a developed image. This developed image is then transferred from the photoreceptor to a substrate (e.g. paper, transparency, and the like) generally by the use of electrostatic attraction between the charged toner particles and oppositely charged ions sprayed on the substrate by a transfer charger.




This electrophotographic process can be used to produce color images by repeating the above-described process for each color of toner used. This approach is referred to a tone-on-tone (or “image-on-image”) color accumulation approach. In the general case of a tone-on-tone electrophotographic apparatus, the device includes a photoreceptor (belt or drum), a series of four print stations (e.g. yellow, magenta, cyan and black), a transfer charger, some means for placing the substrate (paper or otherwise) between the photoreceptor and transfer charger and some means for fixing the positive toner image on the substrate. The photoreceptor is supported and generally driven to rotate such that each part of the photoreceptor is brought into operable registration with the print stations and transfer charger.




Each of the four print station generally includes three components: a charger, a light exposure device and a developer. The operation and interaction of each print station is generally the same. The charger charges the image area of the photoreceptor uniformly. (The charger can be any device capable of setting up a uniform electric field on the order of 500 volts magnitude on the photoreceptor, such as an AC or DC corotron, scorotron, dicorotron, a discorotron, a pin scorotron.)




The light source (any coherent light source, such as a laser or light emitting diode “LED”) selectively exposes the photoreceptor to a modulated light causing the photoreceptor charge to dissipate wherever light falls. By controlling the light beam and its scan path the latent image is created. The developer provides toner having a charge opposite to that of the photoreceptor. The developers used in tone-on-tone processes have no physical contact with the photoreceptor because such contact would disturb previously deposited toner.




The various toners which accumulate on the photoreceptor are transferred from the photoreceptor to substrate by operation of transfer charger. In particular, a substrate is placed between the photoreceptor and transfer charger by a drive means, the transfer charger sprays ions having a charge opposite to that of the toner—on the back of the substrate to attract the toner onto the substrate. The resulting image is then fixed on to the substrate by way of a fuser unit or other fixing device and the substrate is fed into an output tray.




Unfortunately, these color capable electrophotographic systems tend to be expensive to produce because of the quantity and complexity of the components. As a result, these types of systems are only available to wealthier businesses that can afford the high cost. At present, attempts to solve this problem include new electrophotographic systems that only use one or two print stations to produce the color image at a lower cost. However, this approach is not a highly desirable solution because the speed of the processing increases when fewer print stations are utilized because the photoreceptor must then perform multiple passes for each color. Therefore, there is a need for an electrophotographic imaging system that is both quick and affordable.




Similarly, color capable electrophotographic systems have been more expensive and time consuming to repair than monochrome systems. The additional parts result in more frequent problems and require availability of greater replacement parts. In some cases, this leads to increase time before repair service is even available for a businesses. Consequently, there is a need for an electrophotographic imaging system that provides for quicker repair.




SUMMARY OF THE DISCLOSURE




A number of technical advances are achieved in the art, by implementation of an imaging system including a plurality of developing stations for developing an image on a sheet, a releasably removable image receiving module having at least one exposing unit and an image receiving substrate and a support structure for receiving the releasably removable image receiving module. The releasably removable image receiving module is configured to engage the support structure of the system such that the image receiving substrate of the module can be disposed in an operative relationship with the developing stations when the removable module is engaged with the support structure.




This imaging system provides a method for upgrading, downgrading or modifying the imaging system that could be substantially performed by an end user.




This imaging system may be embodied in a monocolor or multicolor printer, copier, facsimile machine or other electrophotographic based apparatus.




Other systems, methods, features and advantages of the invention will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the accompanying claims.











BRIEF DESCRIPTION OF THE DRAWINGS




The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. In the figures, like reference numerals designate corresponding parts throughout the different views.





FIG. 1

is a top plan view of a releasably removable image receiving module;





FIG. 2

is a break-away perspective view of the releasably removable image receiving module of

FIG. 1

;





FIG. 3

is a graphical depiction of an electrophotographic apparatus configured to receive the releasably removable image receiving module of

FIG. 1

;





FIG. 4

is a partial top view of the graphical depiction of the electrophotographic apparatus of

FIG. 3

with the releasably removable image receiving module of

FIG. 1

inserted therein;





FIG. 5

is a cross-sectional side schematic view of one exemplary electrophotographic apparatus into which the releasably removable image receiving module of

FIG. 1

may be inserted; and





FIG. 6

is a side view of the exemplary electrophotographic apparatus of FIG.


5


.











BEST MODES OF PRACTICING THE INVENTION




While the present invention may be embodied in many different forms, there is shown in the drawings and discussed herein a few specific embodiments with the understanding that the present disclosure is to be considered only as an exemplification of the principles of the invention and is not intended to limit the invention to the embodiments illustrated.




The invention includes a novel imaging system with its removable image receiving module. The system and module provide for easier upgradeability, downgradeability and simpler repair. As a result, color electrophotographic systems may be more within the financial reach of small businesses. Additionally, the releasably removable cartridge may also provide for quicker repair (or even replacement) via a remote service center.




As shown in

FIGS. 1 and 2

, the releasably removable image receiving module


52


includes an image receiving substrate


72


supported by a frame assembly


96


. In this particular example, the image receiving substrate


72


is a belt-type photoreceptor. Image receiving substrate may alternatively be a drum-type photoreceptor. In the example of

FIGS. 1 and 2

the frame assembly


96


includes a first roller


94




a


, a second roller


94




b


, a top frame


114




a


, and a bottom frame


114




b


. Additionally, the releasably removable image receiving module


52


includes exposure regions


76




a


,


76




b


,


76




c


and


76




d.






As shown in

FIG. 2

, disposed on the frame assembly is a module support structure


72


. The module support structure


72


includes exposure unit mounting brackets


122




a


,


122




b


,


122




c


and


122




d


. In the example shown in

FIG. 2

, two exposing units


124




b


and


124




d


are releasably engaged by brackets


122




b


and


122




d


, respectively. The exposing units


124


may be lasers, light-emitting diodes or “LED” printer heads (“LPHs”). In each case, each exposing unit is selectively actuated to project light corresponding to an image corresponding to one color at a time to discharge electrostatic charge on the image receiving substrate


72


at desired locations on its surface to produce a latent image. As shown in

FIG. 2

, the releasably removable image receiving module


52


is powered via releasably removable power cord


138


, which forms a make and break connection


140


(shown in

FIG. 4

) with the module


52


, as is well known in the electrical art.




The releasably removable image receiving module


52


is designed to accept from one to four exposing units at a time. With one exposing unit mounted in a respective exposure unit mounting bracket, the releasably removable image receiving module


52


can be used to print monochrome images in one rotation of the image receiving substrate or full color images (using four subtractive colored images (e.g. yellow, magenta, cyan and black)) in four passes. Similarly, with two exposing unit mounted in respective exposure unit mounting brackets, the releasably removable image receiving module


52


can be used to print full color images (using an additive tone-on-tone color scheme) in two passes. In the example shown in these figures, the maximum number of units corresponds to the number of toner colors used in the standard electrophotographic four subtractive color scheme known in the art and used in many color electrophotographic units. Of course, in a system utilizing a different color generation scheme, the number of exposure unit mounting brackets (and, in turn, exposure units) may be varied, as would be understood by those of skill in the art having the present disclosure before then.




It follows from these examples that the fewer number of exposing unit included in the module


52


the more time required to develop a four color subtractive image on the image receiving substrate. Conversely, the fewer exposing units, the lower the overall cost for the module


52


and, hence, the imaging system.




The frame assembly additionally includes a system engagement mechanism


102


(shown in

FIG. 1

) configured to be releasably engageable with a system support structure


100


mounted on an interior wall


104


of an imaging system


50


(shown in

FIGS. 3

,


5


and


6


). In the example of

FIGS. 1 and 5

, the system engagement mechanism


102


includes slide member


112


with a bulbous engaging nub


120


, which in turn releasably engage slot


108


and recess


118


on the imaging system


50


.




As shown in the example of

FIGS. 3

,


4


and


5


, by grasping handle


116


(

FIGS. 1

,


4


and


5


), the releasably removable image receiving module


52


can be moved in directions indicated by arrows B and C (

FIG. 5

) toward respectively, removing and inserting the module into the imaging system


50


. In the particularly disclosed example, this involves lowering the module


52


as an angle into the housing


54


of the imaging system


50


. The generalized case for this example is shown in

FIG. 3

wherein the module


52


is inserted via opening


56


into an angular passageway formed within the imaging system bounded by top path


174


and bottom path


176


within which no permanent components of the imaging system may be placed such that the module


52


may freely be inserted and removed from the housing. The example of an angled passageway is not intended as a limitation. Rather, it should be understood to those of skill in the art having the present disclosure before them that imaging system


50


may be designed to have a horizontal, vertical or other angled passageway for insertion of the removable module


52


without departing from the spirit of this invention.




As depicted in

FIG. 4

, upon complete engagement within the system support structure


100


of the imaging system


50


, nubs


112


will engage the slot


108


, the bulbous engaging nub


120


will seat fully within recess


118


, and the image receiving substrate


72


will consequently be disposed in an operative relationship with the imaging stations (shown in FIG.


5


). As shown in

FIG. 5

, each of the four imaging stations include only a charger and a developer. The associatively operative exposure device for each imaging station is disposed within the releasably removable image receiving module


52


. In the case of color imaging and only one inserted exposure unit, that single exposure unit is the associatively operative exposure device for each imaging station At the other end of the spectrum, in the present example, when four exposing units each imaging station will have its own associated exposure device.




As also shown in

FIG. 5

, the imaging system


50


includes a substrate supply tray containing substrates (e.g. paper or transparencies) that an image will be formed on. A conveying system removes the substrates from the supply tray and disposes each substrate between the image receiving substrate and a transfer charger whereupon the image is transferred to the substrate. The conveying system them moves the substrate to a fusing unit where the image is fixed and passed to an output tray (see FIG.


6


). As further shown in

FIG. 5

, the imaging system includes a cleaning unit


66


that removes any residual developer from the surface of the image receiving substrate


72


. This cleaning unit


66


is necessarily removable from the housing to dispose of the accumulated residual developer.




In the example of

FIG. 2

, module support structure


72


also supports control means


128


. Control means


128


may include a microprocessor and memory for use in controlling the imaging system


50


in accordance with the number of exposing units inserted in the receiving module. The memory may provide general-purpose and/or application specific storage such as a read only memory “ROM,” random access memory “RAM,” or equivalent type storage unit. The control means


128


may utilize the information from the memory to determine the number of passes that the image receiving substrate must make past the imaging stations to form a complete image.




In this manner, the releasably removable image receiving module


52


can be used to upgrade or downgrade the imaging system. In particular, the imaging system can be upgraded by providing the releasably removable image receiving module


52


; determining the number of exposing units


124


in the releasably removable image receiving module


52


; and inserting at least one additional exposing unit


124


in the releasably removable image receiving module. Similarly, the imaging system can be downgraded by providing the releasably removable image receiving module


52


; determining the number of exposing units


124


in the releasably removable image receiving module; and removing at least one additional exposing unit


124


in the releasably removable image receiving module. In either instance, the control means


128


would be updated to reflect the number of exposure units actually seated in a functional manner within the releasably removable image receiving module


52


.




In this manner, the releasably removable image receiving module


52


can also be used to modify the imaging system. In particular, by providing two releasably removable image receiving modules, the first releasably removable image receiving module


52


can be replaced by a second releasably removable image receiving module (not shown). In this manner, a malfunctioning imaging system may be quickly upgraded or downgraded or even potentially repaired (particularly if the failure is associated with the releasably removable image receiving module). As the photoreceptor, support structure and exposure units are disposed on the releasably removable image receiving module


52


it may be more likely that the failure is associated with the removable module. Of course, as more components are disposed within the module the probability that the failing component is removed with the module increases.





FIG. 6

shows the exemplary electrophotographic apparatus (“imaging system”) that utilizes the releasably removable image receiving module


52


. The imaging system


50


may be a printer (monocolor or multicolor), copier (monocolor or multicolor), facsimile machine (monocolor or multicolor) or any device that is a combination of these devices. The imaging system


50


includes the housing


54


with top access panel


58


and side access panel


62


. As disclosed in the exemplary embodiment, by opening top access panel


58


, the user can fully access the releasably removable image receiving module


52


toward removing same from the housing


54


. Similarly, the user can fully access the developer units by opening side access panel


62


. By so doing, the user can replentish toner. The imaging system


50


may be operably connected to the Internet by way of connection


154


. By way of this connection, the photocopier manufacturer, distributor or repair agency may communicate with the imaging system


50


toward determining, among other things, the present configuration of the releasably removable image receiving module


52


.




The foregoing description and drawings merely explain and illustrate the invention. Those of skill in the art who have the present disclosure before them will be able to make modifications and variations therein without departing from the scope of the present invention.



Claims
  • 1. An imaging system comprising:a plurality of developing stations for developing an image on a sheet; a releasably removable image receiving module having an image receiving substrate and a plurality of exposing unit mounting elements, each of the plurality of exposing unit mounting elements capable of receiving an individually removable exposing unit; and a support structure for receiving the releasably removable image receiving module, releasably removable image receiving module being configured to be engageable with the support structure and the image receiving substrate being disposed in an operative relationship with the developing stations when the releasably removable image receiving module is engaged with the support structure.
  • 2. The invention according to claim 1 wherein the image receiving substrate is a substantially transparent photoreceptor.
  • 3. The invention according to claim 2 wherein the image receiving substrate is formed as a belt.
  • 4. The invention according to claim 2 wherein the image receiving substrate is formed as a drum.
  • 5. The invention according to claim 1 wherein the exposing unit comprises a LED array.
  • 6. The invention of claim 1 wherein the releasably removable image receiving module further includes at least one individually removable exposing unit mounted on a respective one of the plurality of exposing unit mounting elements.
  • 7. A method for upgrading an imaging system, the imaging system including at least one developing station and having a support structure, the method comprising:providing a releasably removable image receiving module having at least one exposing unit and an image receiving substrate, the releasably removable image receiving module being configured to be engageable with the support structure such that the image receiving substrate is disposed in an operative relationship with the at least one developing station when the releasably removable image receiving module is engaged with the support structure; determining the number of exposing units in the releasably removable image receiving module; and inserting at least one additional exposing unit in the releasably removable image receiving module.
  • 8. A method for downgrading an imaging system, the imaging system including at least one developing station and having a support structure, the method comprising:providing a releasably removable image receiving module having at least one exposing unit and an image receiving substrate, the releasably removable image receiving module being configured to be engageable with the support structure such that the image receiving substrate is disposed in an operative relationship with the at least one developing station when the releasably removable image receiving module is engaged with the support structure; determining the number of exposing units in the releasably removable image receiving module; and removing at least one additional exposing unit in the releasably removable image receiving module.
  • 9. A releasably removable image receiving module for an imaging system, the imaging system including a system frame with system support structure and at least one developing station having a charging unit and a developing unit, the releasably removable image receiving module comprising:a frame assembly; a module support structure, disposed on the frame assembly and configured to be releasably engageable with the system support structure of the imaging system; the module support structure having a plurality of exposing unit mounting elements, each of the plurality of exposing unit mounting elements capable of receiving an individually removable exposing unit; and an image receiving substrate supported by the frame assembly, the image receiving substrate being disposed in an operative relationship with the imaging stations when the module support structure is engaged with the system support structure.
  • 10. The invention according to claim 9 wherein the image receiving substrate is a substantially transparent photoreceptor.
  • 11. The invention according to claim 10 wherein the image receiving substrate is formed as a belt.
  • 12. The invention according to claim 10 wherein the image receiving substrate is formed as a drum.
  • 13. The invention according to claim 9 wherein the exposing unit comprises a LED array.
  • 14. A method for modifying an imaging system, the method comprising:providing an imaging system including: a plurality of developing stations; a first releasably removable image receiving module including an image receiving substrate having a plurality of exposing unit mounting elements, each of the plurality of exposing unit mounting elements capable of receiving an individually removable exposing unit; and a support structure for receiving the first releasably removable image receiving module; the first releasably removable image receiving module being configured to be engageable with the support structure; and the image receiving substrate being disposed in an operative relationship with the developing stations when the first releasably removable image receiving module is engaged with the support structure; providing a second releasably removable image receiving module including an image receiving substrate having a plurality of exposing unit mounting elements, each of the plurality of exposing unit mounting elements capable of receiving an individually removable exposing unit; and the second releasably removable image receiving module being configured to be engageable with the support structure; and removing the first releasably removable image receiving module from the imaging system; and inserting the second releasably removable image receiving module into the imaging system.
US Referenced Citations (5)
Number Name Date Kind
4344700 Kasama et al. Aug 1982 A
4757344 Idenawa et al. Jul 1988 A
5722013 Nagase et al. Feb 1998 A
5752137 Haneda May 1998 A
5758243 Haneda et al. May 1998 A