This invention relates to a process and apparatus for hydrogenolyzing crude oil in an electrochemical cell or reactor using hydrogen produced in situ by the cell.
Crude oil and its derivatives are subjected to a number of processes involving the addition of hydrogen in order to maximize, or upgrade, the distillable fractions to thereby obtain a wide variety of different and more valuable compounds. These processes include hydrocracking, hydrodesulfurization in order to lower the sulfur content of the feedstream and hydrotreating to reduce nitrogen, oxygen and/or metal compounds in the treated stream. In the current practice of these processes, a stream of hydrogen is typically introduced into the treatment vessel where it contacts the feedstream in the presence of one or more catalysts. The hydrogen stream is typically generated in a separate unit or facility, often using natural gas, and then purified, compressed and delivered to the processing vessel. Thus, the cost of hydrocracking, hydrotreating and other such processes must include the capital and operating costs associated with the construction and operation of the unit and/or facilities required to produce the hydrogen stream.
For convenience, the term “hydroprocessing” will be used in this description with the intention that it include any of the other specific methods and processes for treating crude oil and its fractions in which hydrogen is reacted to produce new compounds, typically of lower molecular weight and shorter chain length.
It is well known that hydrogen can be generated electrochemically by dissociation of water molecules to ionic form, i.e., hydrogen atoms, or protons, and oxygen atoms. There is disclosed in U.S. Pat. No. 6,218,556. an electrochemical process for hydrogenating an unsaturated fatty acid, mixtures of two more fatty acids, or the unsaturated fatty acid constituents of an edible or non-edible oil's triglycerides employing a solid polymer electrolyte reactor. In the disclosed process, hydrogen is generated in situ by the electro-reduction of protons that are formed at the anode and then migrate through the ion exchange membrane for reaction. It is stated that only the H+ ions, or protons, carry the electrical current between the anode and cathode thereby circumventing the need for a supporting electrolyte to conduct the electrical current for the process. The method and apparatus of this disclosure is not suitable for use with crude or other heavy mineral oils, since the membrane would be fouled quickly and already has a limited rate of ion transport; also, the membrane apparently has a maximum operating temperature of about 180° C.
A method for generating hydrogen by electrolysis in a subterranean geological formation for the treatment of tar sands is disclosed in U.S. Pat. No. 4,204,923. A typical acid electrolyte is used and the addition of the hydrogen to the petroleum appears to be by absorption. This process does not employ any catalyst or other similar hydroprocessing method.
These disclosures suggest the desirability of a process in which hydrogen is generated via an electrochemical process for use in hydroprocessing of crude oil and its fractions. However, there remains the principal problem of how to bring the hydrogen and the organic molecules of the mineral oil feedstream into contact in order to allow the hydrogenation to take place, e.g., to form an emulsion, that can include foam, while having to then separate the oil and water mixture.
It is therefore an object of the present invention to provide a process and apparatus that will permit the in situ generation of hydrogen atoms by the electrolysis of water molecules which provides for the intimate mixing of the water and hydrocarbon phases during the reaction and then permits the easy separation and recovery of the hydrocarbons from the reaction zone.
Another object of the invention is to provide a method and apparatus for the in situ electrochemical generation of hydrogen atoms, or protons, in the presence of a hydrocarbon feedstream which is subjected to hydroprocessing conditions in order that the hydrogen ions generated can take part in the upgrading reaction on an essentially stoichiometric basis.
It is a further object of the present invention to provide a method in which an ionic material that permits the formation of an intimate mixture of the hydrocarbon feedstream with the electrochemically-generated hydrogen atoms can be easily recovered and recycled for reuse in the process.
The above objects and other advantages are achieved by the process of the present invention in which an amphiphilic compound possessing both hydrophilic and hydrophobic characteristics is mixed with liquid water and a petroleum feedstream and the mixture is thereafter introduced into an electrochemical reactor having a cathode formed of a porous solid conductive material with a large surface area to retain the hydrogen ions and/or hydrogen atoms and molecules in an adsorbed state until they can complete the reaction with the hydrocarbon; the upgraded petroleum product stream and ionic material are removed from the reactor, subjected to a heating step in which either the ionic material and any remaining water or the upgraded petroleum product stream is vaporized and recovered. In a particularly preferred embodiment, the ionic material is separated during the heating step as a vapor, is condensed and returned for mixing with the heavy oil and water upstream of the reaction vessel. Oxygen recovered from the reactor can be released to the environment or collected for further processing.
In another preferred embodiment, the petroleum product stream has a lower boiling point than the aqueous ionic material and is vaporized and recovered as an upgraded stream. The ionic liquid solution remains a liquid throughout the process and is recycled for mixing with the incoming petroleum feedstream.
The process of the invention provides the advantages of using water as a source of hydrogen, the cost of which is nominal and avoids the expense of consuming natural gas or other conventional materials, and also eliminates the need for a separate hydrogen production unit, such as a steam reformer. Since the hydrogen is generated in situ at the site of the reaction, no facilities or utilities are consumed in hydrogen purification, compression and recirculation. A further advantage is the relatively higher reactivity of hydrogen atoms generated at the electrode as compared to hydrogen molecules which are introduced into the hydroprocessors of the prior art and require one or more catalysts to promote the reaction.
The mixture formed from the feedstream, water and ionic material can include emulsions and microemulsions and the degree of mixing and character of the mixture will vary with the components used. The method of the invention thus broadly comprehends a process in which there will be water molecules in the organic phase.
One advantage of the present invention is the ability to complete the reaction under relatively mild operating conditions of low pressure and temperature. This also results in a reduction in capital costs for the construction of the mixing vessel and the electrochemical reactor as compared to other forms of hydroprocessing vessels and facilities. The operational costs will also be reduced in view of the inexpensive source of hydrogen and the elimination of hydrogen-generating and treating facilities.
The invention will be described in further detail below and with reference to the attached drawings in which the same numerals are used to identify like elements and in which:
Referring now to the attached drawings, and specifically to
Reactor 30 includes anode 32 and one or more cathodes 34 to which are applied a source of DC current (not shown). The cathodes are constructed of a porous material, as further described below. The design of the reactor vessel 30 and the electrodes 32, 34 provides for intimate contact between the moving solution containing the oil that is to be hydrogenolyzed and the highly porous surface of the one or more plate or basket cathodes in order to promote the reaction of the hydrogen atoms with the oil molecules. The large surface area of the porous cathode(s) promotes a high reaction rate between hydrogen atoms generated by the dissociation of water molecules and the organic molecules of the petroleum feedstream.
As will be understood by one of ordinary skill in the art, a slight excess of water is present in the solution to exceed the stoichiometric amount required to complete the desired level of reaction. Water can also be injected into the reactor, particularly when the solubility of water in the ionic liquid is limited. The extent of hydrogenolysys can also be controlled by the surface contact time of a given volume of oil as it passes through the reactor. This contact time can further be controlled by various parameters related to the construction of reactor 30, including the flow path, creation of areas of turbulent flow to promote movement of the oil into a contact position with the cathode, the space between the cathode plates, the materials of construction and shape of the cathode plates, operational conditions of temperature, and the like.
With continuing reference to
The upgraded petroleum product stream 40 containing the ionic liquid material and any remaining water exit through reactor outlet 39 and is introduced into a suitable vessel 50 where they are heated to drive off the ionic liquid and water molecules, e.g., via vapor distillation. In a preferred embodiment of the invention, the ionic material is selected for its capability of being easily separated from the upgraded hydrocarbon stream 40. In this embodiment, a low boiling temperature relative to the petroleum portion is a desirable characteristic of the ionic liquid. In the case of some amphiphillic materials, the liquid decomposes to a gaseous or low boiling compound and then combines on cooling. As used herein, the term “vaporize” will be understood to include this change of chemical state during separation from the upgraded petroleum product.
It is also desirable to control the amount of water entering the system at 24 in order to minimize the amount of water exiting the reaction vessel 30 via stream 40. Small quantities of water in stream 40 can be tolerated; alternatively, water can be removed by other well known drying methods when the volume percent is relatively small, thereby permitting the ionic liquid to be recovered under relatively milder conditions of temperature and pressure.
The upgraded petroleum stream 54 is recovered for use or further processing. The ionic liquid and any water vapor present are condensed in vessel 60, which can take the form of a heat exchanger or other conventional condenser. The ionic liquid recovered as stream 62 is then recycled for use in the process where it can be mixed, as required, with fresh ionic liquid 22, e.g., at a mixing valve 64.
Referring now the embodiment schematically illustrated in
The upgraded hydrogenolyzed feed and ionic liquid mixture is transferred to a suitable evaporation vessel 50, which can be a flash drum for vaporizing the hydroprocessed petroleum feedstream and any remaining water which leaves as vapor stream 58. Optionally, some or all of the water can remain as a liquid with the recycled ionic liquid, particularly where the boiling point of the hydrocarbon stream is low and it can be removed without vaporizing the water.
Preferably, the water is removed from the hydrocarbon stream in residual water separator 70 which leaves as liquid water stream 72 that can be discarded or optionally returned for reuse and mixed with incoming fresh water stream 24. The hydroprocessed petroleum stream exits the separator at 74 for further processing, either in the form of a vapor or condensed liquid stream.
The ionic liquid stream 53 recovered from the bottom of the flash drum vaporizer is returned for reuse in the process via mixing valve 66 for blending with fresh ionic liquid stream 22.
Referring now to
With continuing reference to
Suitable ionic compounds for use in the method of the invention include carbamate and ammonium compounds. These compounds are produced by reacting CO2 with primary or secondary amines. The general structure of useful carbamates and quaternary ammonium compounds are set forth below.
where R1 and R2 are alkyl groups or hydrogen.
Useful ionic compounds include diethylcarbamate (anion) and diethylammonium (cation). Due to reaction variables, diethylamine (neutral) can also be present.
In the second embodiment of the process where the hydrocarbon stream is more volatile than the ionic liquid product to be hydrogenolyzed, e.g., naphtha, a different class of ionic liquids is utilized. Useful cations include: 1-alkyl-3-methylimidazolium, N-alkyl-pyridinium, tetraalkyl-ammonium, and tetraalkyl-phosphonium.
The following water-insoluble anions can be utilized in this embodiment:
[PF6]−, [(CF3SO2)2N]− and [BR1R2R3R4]−.
Partially water-soluble anions include [BF4]− and [CF3SO3]−. Substantially water-soluble anions include [CH3CO2]−, [CF3CO2]−, [NO3]−, Br−, Cl−, I−, [Al2Cl7]−, and [AlCl4]−. It is noted that the latter two aluminum ions will decompose over time in the presence of water and oxygen.
In a further embodiment of the invention, the amphiphilic material is separated from the upgraded petroleum product stream by a reaction which changes the molecular configuration to one which has only a hydrophilic characteristic. In this embodiment, the two layers are allowed to separate upon standing to form a clear interface after which the petroleum layer is easily withdrawn. In another embodiment, the ionic liquid is chosen for its ability to change characteristics in response to changes in temperature. Specifically, the ionic liquid will phase separate from the mixture upon a reduction in temperature.
In order to further illustrate the practice of the invention, the following laboratory-scale examples are provided. These examples describe the preparation of an amphiphilic ionic liquid, the preparation of a reaction mixture, and finally the determination of its conductivity.
Step I—Preparation of an Ionic Liquid
A 250 ml 2-necked round bottom flask was placed in a water bath maintained at 40° C. and 100 grams of diethylamine was added. The flask was fitted with a gas purge tube connected to a CO2 cylinder and an ethylene glycol condenser and CO2 was bubbled slowly into the diethyl amine for six hours. A clear yellowish liquid reaction product was obtained in accordance with the following reaction scheme:
2(CH3CH2)2NH2+CO2→(CH3CH2)2NH2++(CH3CH2)2NCO2− (6)
Step II—Preparation of Mixture of Ionic Liquid-Water-Hydrocarbon
To 4 grams of the liquid prepared in Step I was added one gram of water and 0.500 gram of benzene. The mixture was shaken vigorously to yield a single phase homogenous mixture that did not separate upon standing at room temperature.
Step III—Conductivity Test
The mixture prepared in Step II was placed in a 10 ml vial fitted with one platinum wire electrode and a stainless steel wire electrode to provide an electrolytic cell. The electrodes were connected to a potentiostat set at 2 volts. The current measured at room temperature was 0.078 mA. Due to the nature of the electrodes, no hydrogenation could be expected.
The following amphiphilic compounds have been identified as suitable for use in the practice of the invention:
1-benzyl-3-methyl-imidazolium chloride, (CH3CH2)2NH2+ and (CH3CH2)2NCO2−.
Surfactants comprise another class of amphiphilic compounds. The following compounds have been identified for use in the method of the invention:
As will be apparent from the above description, various modifications to the method and apparatus can be made by one of ordinary skill in the art without departing from the true scope of the invention which is to be determined with reference to the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
3870611 | Vestal | Mar 1975 | A |
3915819 | Bell et al. | Oct 1975 | A |
4043884 | Yen et al. | Aug 1977 | A |
4120763 | Breda et al. | Oct 1978 | A |
4187156 | Coleman et al. | Feb 1980 | A |
4199025 | Carpenter | Apr 1980 | A |
4204923 | Carpenter | May 1980 | A |
4226683 | Vaseen | Oct 1980 | A |
4268363 | Coughlin | May 1981 | A |
4279710 | Coughlin | Jul 1981 | A |
4302320 | Lewis | Nov 1981 | A |
4341608 | St. John | Jul 1982 | A |
4389288 | Vaughan | Jun 1983 | A |
4430175 | Kreysa et al. | Feb 1984 | A |
4670113 | Lewis | Jun 1987 | A |
5019227 | White et al. | May 1991 | A |
5723039 | Zosimov et al. | Mar 1998 | A |
5843301 | Esztergar et al. | Dec 1998 | A |
5879529 | Greaney et al. | Mar 1999 | A |
6096191 | Kalnes | Aug 2000 | A |
6103773 | Wittenbrink et al. | Aug 2000 | A |
6218556 | Pintauro | Apr 2001 | B1 |
6274026 | Schucker et al. | Aug 2001 | B1 |
6303019 | Siskin et al. | Oct 2001 | B1 |
6387228 | Maget | May 2002 | B1 |
6780304 | Maget | Aug 2004 | B1 |
6890419 | Reichman et al. | May 2005 | B2 |
6939458 | Nishimura et al. | Sep 2005 | B1 |
7004985 | Wallace et al. | Feb 2006 | B2 |
7005057 | Kalnes | Feb 2006 | B1 |
7005058 | Towler | Feb 2006 | B1 |
7014750 | Boger et al. | Mar 2006 | B2 |
7081143 | Varadaraj et al. | Jul 2006 | B2 |
20030082415 | Joshi et al. | May 2003 | A1 |
20030085156 | Schoonover | May 2003 | A1 |
20040101740 | Sanders | May 2004 | A1 |
20040202914 | Sridhar et al. | Oct 2004 | A1 |
20040256247 | Carson et al. | Dec 2004 | A1 |
20040259962 | Matsui | Dec 2004 | A1 |
20060013759 | Jiang et al. | Jan 2006 | A1 |
20060018824 | Reichman et al. | Jan 2006 | A1 |
20060019823 | Rendina | Jan 2006 | A1 |
20060049061 | Callens et al. | Mar 2006 | A1 |
20070217995 | Matsumura | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
30 29 328 | Feb 1982 | DE |
Number | Date | Country | |
---|---|---|---|
20090145806 A1 | Jun 2009 | US |