The field of the invention is resolution of uplink (UL) interference in wireless communication systems.
Throughout this document the term station, such as used in base station, macro station, macro base station, femto base station, and femto station, is intended to denote the communications equipment. The term cell, such as used in femtocell or macrocell, is intended to denote the coverage footprint of a corresponding station or the coverage footprint of a sector of a multi-sector base station.
Broadband wireless cells tend to be UL interference limited. There are many scenarios that can cause UL interference. The most common has historically been cell edge interference in a frequency reuse 1 network (where the same frequencies are used throughout a geographic area) or when neighboring cells share a frequency channel causing co-channel interference.
However, the Long Term Evolution (LTE) wireless standard adds an additional scenario. When a femto base station is present in the macrocell coverage footprint of a macro base station in a frequency reuse 1 network, this can create what is termed in LTE as the near-far problem. If a user equipment (UE) is in the femtocell coverage area of the femto base station, but is in communication with the more distant macro base station it may be transmitting using a very high power, causing excessive uplink interference at the femto base station. Many other uplink interference scenarios exist.
Aside from brute force methods such as using very robust and inefficient modulation and coding schemes, current methods to combat this include coordinated multipoint (CoMP) which contains multiple methods. First, fractional frequency reuse may be used, coordinating the UL resources so that a UE communication with a macrocell and a UE communication with a femto base station that has an overlapping coverage footprint do not transmit on the same subcarriers simultaneously. This technique has been previously used in WiMAX. Second, the two base stations may use beamforming to coordinate the UL resources spatially. Both of these methods require coordinated scheduling. Additionally, using joint reception, both base stations receive the same data from an individual UE using the same subcarriers at the same time. This may additionally be beamformed. The joint reception, of course, uses double the resources since the resources of both base stations are tied up with the same reception.
Fractional frequency reuse is inefficient due to the need for one base station to not schedule UL resources while the other is using them. Beamforming requires significant antenna resources which may not be available on a femto base station. Additionally, there may be times when coordinated scheduling of beamforming cannot be achieved due to the bandwidth and quality of service (QoS)/quality of experience (QoE) needs of interfering UEs, requiring a fallback to fractional frequency reuse.
Other attempts to combat uplink interference include use of Inter-Cell Interference Cancellation (ICIC) techniques. Such ICIC techniques include signaling between base stations to inform other stations about future planned transmissions of a base station, and reporting the interference levels experienced by a base station. These techniques use High Interference Indicator (HII) and an Overload Indicator (OI) respectively. HII technique is not spectrally efficient since it may result in base stations avoiding use of bandwidth resources if they heed the planned transmission information provided by the base station providing the HII. OI technique has the additional drawback that it only reports the exposure to interference level after the exposure has occurred.
There exists a need for a spectrally efficient (e.g., efficient modulation and coding, transmitting using substantially more available time and frequency resources) method to resolve UL interference as an alternative to existing spectrally inefficient solutions which merely mitigate UL interference.
In one aspect, a method is provided for interference resolution of an uplink transmission by an access node in a wireless communication system. The method includes: receiving, at the access node, an uplink transmission and deriving local uplink transmission data associated with the received uplink transmission; sending a request to a first neighboring access node for first neighboring uplink transmission data associated with the uplink transmission as received by the first neighboring access node; receiving, from the first neighboring access node, the first neighboring uplink transmission data; conducting interference resolution of the uplink transmission based on the local uplink transmission data and the first neighboring uplink transmission data to obtain resolved uplink transmission data; and decoding the resolved uplink transmission data to obtain the decoded uplink data.
In one aspect, an access node is provided that includes: a transceiver module configured to receive an uplink transmission, a memory module, and a processor module coupled to the transceiver module and the memory module and configured to: derive local uplink transmission data associated with the received uplink transmission; send a request to a first neighboring access node for first neighboring uplink transmission data associated with the uplink transmission as received by the first neighboring access node; receive, from the first neighboring access node, the first neighboring uplink transmission data; conduct interference resolution of the uplink transmission based on the local uplink transmission data and the first neighboring uplink transmission data to obtain resolved uplink transmission data; and decode the resolved uplink transmission data to obtain the decoded uplink data.
In one aspect, a method is provided for assisting interference resolution of an uplink transmission by an access node in a wireless communication system. The method includes: a method for assisting interference resolution of an uplink transmission by an access node in a wireless communication system, the method comprising: receiving, at the access node, an uplink transmission from a terminal node and deriving local uplink transmission data associated with the received uplink transmission; receiving a request from a second access node for the local uplink transmission data; and sending the local uplink transmission data to the second access node.
In one aspect, an access node is provided that includes: a transceiver module configured to receive an uplink transmission, a memory module, and a processor module coupled to the transceiver module and the memory module and configured to: derive local uplink transmission data associated with the received uplink transmission; receive a request from a second access node for the local uplink transmission data; and send the local uplink transmission data to the second access node.
The details of the present invention, both as to its structure and operation, may be gleaned in part by study of the accompanying drawings, in which like reference numerals refer to like parts, and in which:
Systems and methods for resolving uplink interference in a communication network are provided that may allow more efficient modulation and coding and more efficient allocation of uplink resources.
In the network configuration illustrated in
In office building 120(2), an enterprise femto base station 140 provides in-building coverage to subscriber stations 150(3) and 150(6). The enterprise femto base station 140 can connect to the core network 102 via an internet service provider network 101 by utilizing a broadband connection 160 provided by an enterprise gateway 103.
The wireless communication system described with respect to
The scenarios illustrated in
The transmitter-receiver module 379 is configured to transmit and receive communications wirelessly with other devices. The base station 375 generally includes one or more antennae for transmission and reception of radio signals. The communications of the transmitter-receiver module 379 may be with terminal nodes.
The backhaul interface module 385 provides communication between the base station 375 and a core network. This may include communications directly or indirectly (through intermediate devices) with other base stations, for example to implement the LTE X2 interface. The communication may be over a backhaul connection, for example, the backhaul connection 170 of
The processor module 381 can process communications being received and transmitted by the base station 375. The storage module 383 stores data for use by the processor module 381. The storage module 383 (which may also be referred to as memory, memory device, memory module, or similar terms) may also be used to store computer readable instructions for execution by the processor module 381. The computer readable instructions can be used by the base station 375 for accomplishing the various functions of the base station 375. In an embodiment, the storage module 383 or parts of the storage module 383 may be considered a non-transitory machine readable medium. For concise explanation, the base station 375 or embodiments of it are described as having certain functionality. It will be appreciated that in some embodiments, this functionality is accomplished by the processor module 381 in conjunction with the storage module 383, transmitter-receiver module 379, and backhaul interface module 385. Furthermore, in addition to executing instructions, the processor module 381 may include specific purpose hardware to accomplish some functions.
The transmitter-receiver module 359 is configured to transmit and receive communications with other devices. For example, the transmitter-receiver module 359 may communicate with the base station 375 of
The terminal node 355, in many embodiments, provides data to and receives data from a person (user). Accordingly, the terminal node 355 includes the user interface module 365. The user interface module 365 includes modules for communicating with a person. The user interface module 365, in an embodiment, includes a speaker and a microphone for voice communications with the user, a screen for providing visual information to the user, and a keypad for accepting alphanumeric commands and data from the user. In some embodiments, a touch screen may be used in place of or in combination with the keypad to allow graphical inputs in addition to alphanumeric inputs. In an alternative embodiment, the user interface module 365 includes a computer interface, for example, a universal serial bus (USB) interface, to interface the terminal node 355 to a computer. For example, the terminal node 355 may be in the form of a dongle that can be connected to a notebook computer via the user interface module 365. The combination of computer and dongle may also be considered a terminal node. The user interface module 365 may have other configurations and include functions such as vibrators, cameras, and lights.
The processor module 361 can process communications being received and transmitted by the terminal node 355. The processor module 361 can also process inputs from and outputs to the user interface module 365. The storage module 363 stores data for use by the processor module 361. The storage module 363 may also be used to store computer readable instructions for execution by the processor module 361. The computer readable instructions can be used by the terminal node 355 for accomplishing the various functions of the terminal node 355. In an embodiment, the storage module 363 or parts of the storage module 363 may be considered a non-transitory machine readable medium. For concise explanation, the terminal node 355 or embodiments of it are described as having certain functionality. It will be appreciated that in some embodiments, this functionality is accomplished by the processor module 361 in conjunction with the storage module 363, the transmitter-receiver module 359, and the user interface module 365. Furthermore, in addition to executing instructions, the processor module 361 may include specific purpose hardware to accomplish some functions.
On-Demand Uncoordinated UL Multipoint Interference Resolution
On-demand uncoordinated UL multipoint interference resolution includes passing information from an assisting base station to a base station requesting additional help in resolving UL interference and decoding a received signal. This turns the UL signal resolution problem into an n source, n sensor problem (or n equations and n unknowns) allowing use of techniques such as joint decoding. Joint decoding is also used in uplink multiple-input multiple-output (UL MIMO) to separate out the UL signals and allow decoding of the data. Unlike UL MIMO, however, the UL transmissions are not coordinated other than the base stations benefit from being time synchronized to the level of tolerance of the orthogonal frequency division multiplexing (OFDM) symbol preamble, which is already necessary for evolved multimedia broadcast multicast services (eMBMS) and coordinated multipoint (CoMP), in LTE systems and is beneficial for handover in most wireless systems. Additionally, the multiple UL signals are received by different base stations rather than by different antenna on a single base station. As such, UL transmit power, modulation, and coding are not coordinated and neither is the choice of interfering UE.
The SC-FDMA receiver 500 produces PUSCH data 570 from a signal received by an antenna 505. The antenna 505 is coupled to a low-noise amplifier 510. The output of the low-noise amplifier 510 is down converted to a baseband signal in a down-converter module 515. The baseband signal is digitized in an analog-to-digital converter module 520. A cyclic prefix module 525 removes cyclic prefixes from the digitized baseband signal.
The signal is then converted to the frequency domain by FFT module 530 to produce FFT outputs 585. The FFT outputs 585 may also be referred to as received frequency-domain resource element values. From the FFT outputs 585, the resource demapper 535 produces resource demapper output data including reference signal values 580 (e.g., reference signal 1030 for the PUSCH transmission 1010 of
The data elements 590 are equalized in the frequency-domain equalizer module 540 and then converted to the time domain in IFFT module 545. The time-domain signals are then processed in essentially the inverse of the processing performed by the transmitter by a code word mapper module 550, a demodulator module 555, a descrambler module 560, and a decoder module 565 to produce the received PUSCH data 570.
The communication system 600 includes a first base station 675a and a neighboring second base station 675b. The first base station 675a and the neighboring second base station 675b may be, for example, the macro base station 110, the pico station 130, or the enterprise femto base station 140 of
The communication system 600 includes a first UE 650a and a second UE 650b. The first UE 650a and the second UE 650b may be, for example, the subscriber stations 150 of
In a given timeslot/subcarrier allocation, such as a physical resource block (PRB) in LTE or a tile in WiMAX, the first UE 650a may transmit to the first base station 675a while the second UE 650b transmits to the neighboring second base station 675b. Thus, the first base station 675a may receive a combination of wanted signal 635a from the first UE 650a and unwanted signal 645b from the second UE 650b. Since the first UE 650a transmits wanted signal 635a to the first base station 675a, the first base station 675a may view the first UE 650a as, for example, a desired UE or intended transmitter node. Similarly, the first base station 675a may view the second UE 650b as, for example, an interfering UE or interfering transmitter node.
The neighboring second base station 675b may receive a combination of wanted signal 635b from the second UE 650b and unwanted signal 645a from the first UE 650a. This may cause the first base station 675a, the neighboring second base station 675b, or both base stations to not be able to decode their respective wanted signal. This may be referred to as decoding ambiguity as each base station may not be able to correctly receive its respective wanted signal. The unwanted signals originate from the UEs as the same signals as the wanted signals but arrive at the respective base stations via different paths.
Unlike UL MIMO, neither base station has both received versions of the signals, that is to say neither base station has received both the signal representing the combination of wanted signal 635a and unwanted signal 645b and the signal representing the combination of wanted signal 635b and unwanted signal 645a. However, if a base station, for example, the first base station 675a, fails to correctly decode the wanted signal 635a in a particular PRB or tile, there may be enough information in the overall communication system 600 to correct the decoding. The first base station 675a and its neighbors, for example, the neighboring second base station 675b, both have a received signal, even if they are not able to decode that signal.
Both base stations may know information about the PRB in question for their wanted signal, for example in an OFDM or SC-FDMA system, the output of the FFT, the output of the resource demapper, a channel estimate, expected reference signals or preambles, etc.
A base station may or may not know its neighbors, where a neighbor can be any other base station with sufficient cell coverage overlap to have the potential to cause the base station to fail to decode its UL received signal. When the first base station 675a incorrectly decodes a PRB or tile, if it has sufficient processing resources and knows and is in communication with its neighbors, the first base station 675a may ask its neighbors for the baseband signals (or information associated with the signals) they received for the same PRB or tile. The request may be over a communication path 625 established for base station to base station communication, for example the X2 interface in an LTE system. The first base station 675a may also ask the neighbor for additional communication operating parameters of the neighbor's wanted signal, such as modulation, coding, and reference signal (RS) parameters. The first base station 675a may then use one of the techniques described below to improve the decoding of its own wanted signal.
First base station 675a may request a central entity 605, such as a network management system (NMS) or gateway in core network 102 of
Whether the central entity 605 assists or not, the additional signal information may be only made available on an as requested basis when initial decoding attempts fail. This on-demand aspect may cause occasional processing delay but can reduce the need to use spectrally inefficient methods to mitigate UL interference.
Methods of Operating a Base Station
The method 700 to perform initialization starts at step 710. The method may begin, for example, after the base station has powered up. At step 720, the base station identifies its neighbors. This may be accomplished a number of ways. Some protocols allow a base station to sniff the uplink to detect neighbors. Some protocols allow a base station to ask user equipment with which the base station is communicating to detect and report neighbors. Some systems may provide neighbor information through communication with a central entity, such as central entity 605 in
At step 730, the base station exchanges with its neighbors static information of use in interference resolution. This information may include, for instance, hopping sequences or information regarding reference signals. This information could alternatively be requested, on-demand, as part of the information exchanged at the time of interference resolution. This exchange could also be performed periodically or as needed when the parameters change. This information could alternatively be provided by a central entity.
After step 730, the base station operates according to one or both of two methods which may be simultaneous. The base station may proceed to method 800 (
The method 800 for performing on-demand uncoordinated UL multipoint interference resolution of
At step 840, the base station sends a request to one or more neighboring base stations for uplink transmission data. The requested uplink transmission data may be, for example, the output of a resource demapper for the resources in question and the expected reference signals. At step 845, the base station receives the uplink transmission data from the one or more neighboring base stations. The uplink transmission data may be requested and received through a central entity.
At step 850, the base station conducts interference resolution based on its local uplink transmission data (e.g., the received signal and information the base station knows about the received signal such as an expected reference signal) and the uplink transmission data received from one or more neighboring base stations. In step 855, the base station decodes the interference resolved uplink transmission data to decode the received UL signal and produce decode uplink data. In method 800, whether the decoding attempt is successful or not, the process returns to step 820.
Information from both the base station attempting interference resolution and the base station assisting interference resolution may be passed to a central entity which may also perform all or part of the interference resolution and decoding calculations.
The method 900 for on-demand uncoordinated UL multipoint interference resolution assistance begins at step 910. The base station may transition to step 910 from the initialization process shown in
If the base station performing on-demand uncoordinated UL multipoint interference resolution assistance as described in the flowchart of
The base station may utilize an assistance mode indication to determine that it should activate its receiver to receive an uplink signal on uplink resources even if there is no expected (e.g., a transmission is not scheduled by the base station) transmission from a user device on those resources. In an aspect, such an assistance mode indication may be received in the form of an assistance request from a neighboring base station. In an aspect, an assistance mode indication may be received from a network device in the network, such as central entity 605 of
After reception of an uplink signal in step 920, the process moves to step 930 where uplink transmission data is stored in a memory device, for instance in storage module 383 of
At step 940, the base station determines if the requested uplink transmission data is available. The uplink transmission data may not be available, for example, if the base station had not stored the requested uplink transmission data (e.g., if the base station did not have an UL transmission scheduled on the relevant resources). The uplink transmission data may not be available if the request is received after a timeout period has expired and the uplink transmission data was deleted from storage. Data may also be deleted from storage to free storage space for other uses. If the requested uplink transmission data is available, the process moves to step 950; otherwise, the process returns to step 920.
In step 950, the base station transfers the requested uplink transmission data to the requesting neighbor base station. The uplink transmission data may be transferred via a central entity. At step 960, the base station may discard the transferred uplink transmission data to free storage space. Uplink transmission data may also be discarded for other reasons.
The methods described herein may be applied to any neighboring co-channel cells (e.g., coverage areas as described above) whether implemented as neighboring base stations or as neighboring cells within the same base station, for instance a sectorized base station with multiple co-channel sectors or cells. In this latter case, the information exchange is within the sectorized base station, for example, between the hardware, software, or other logic controlling the receivers corresponding to the separate sectors.
LTE Background
The LTE SC-FDMA uplink, which is OFDM with an additional FFT precoder, is divided in time into 0.5 millisecond (ms) slots. In time, a slot is comprised of 7 OFDM symbols using the normal cyclic prefix or 6 OFDM symbols using the extended cyclic prefix. In frequency, a slot is composed of some number of 15 kilohertz (kHz) subcarriers. For instance a 5 megahertz (MHz) wide channel is composed of 300 subcarriers taking 4.5 MHz of the channel bandwidth and a 10 MHz channel is composed of 600 subcarriers taking 9 MHz of the channel bandwidth, leaving a guard band between channels. Physical resource blocks (PRBs) are defined as 12 contiguous subcarriers (also referred to as frequency subchannels or subchannels) across all 6 or 7 OFDM symbols of a slot. A PRB is the smallest unit of uplink bandwidth allocation given to a UE. Physical resource blocks may also be referred to as resource blocks.
The first M resource blocks of the PUSCH transmission 1010 and the M resource blocks of PUSCH transmission 1055 overlap both in time and frequency. The portion of data element 1020 that overlaps with data element 1065 of PUSCH transmission 1055 is referred to as “First Interfered Data Portion” 1020a. The portion of the reference signal 1030 that overlaps with reference signal 1075 of PUSCH transmission 1055 is referred to as “First Interfered RS Portion” 1030a. The portion of data element 1020 that does not overlap with data element 1065 of PUSCH transmission 1055, comprising N−M resource blocks, is referred to as “Second Interfered Data Portion” 1020b. The portion of reference signal 1030 that does not overlap with reference signal 1075 of PUSCH transmission 1055 is referred to as “Second Interfered RS Portion” 1030b. Data element 1065 may also be referred to as “First Interfering Data Portion,” and reference signal 1075 may also be referred to as “First Interfering RS Portion.”
PUSCH transmission 1055 overlaps both in time and frequency with the first M resource blocks of PUSCH transmission 1010. The next N−M resource blocks of PUSCH transmission 1010 overlap in both time and frequency with the first N−M resource blocks of PUSCH transmission 1080. The portion of the data element 1090 that overlaps with Second Interfered Data Portion 1020b of PUSCH transmission 1010 is referred to as “Second Interfering Data Portion” 1090a. The portion of reference signal 1095 that overlaps with Second Interfered RS Portion 1030b is referred to as “Second Interfering RS Portion” 1095a. The portion of the data element 1090 that does not overlap with Second Interfered Data Portion 1020b of PUSCH transmission 1010 is referred to as “Third Interfering Data Portion” 1090b. The portion of reference signal 1095 that does not overlap with Second Interfered RS Portion 1030b is referred to as “Third Interfering RS Portion” 1095b.
In addition to PUSCH transmission 1505 and PUSCH transmission 1010 being different lengths, the reference signal 1510 may have been derived from a different Zadoff-Chu sequence or may be a different QPSK reference sequence than was used for reference signal 1030, the data element 1515 may contain different data than data element 1020, and different modulation and coding may be used. In addition, depending on the choice of N and P, one or both of reference signal 1030 and reference signal 1510 may be QPSK references signals. Since N and P are different, the derivation of reference signals 1030 and 1510 may be different.
In
Processes for Interference Resolution
Processes for interference resolution will be described with reference to the communication system of
In a first process for interference resolution, the assisted access node and assisting access node receive transmissions from a first UE and a second UE that use a same set of frequency subchannels in a same slot.
The received uplink transmission can be analyzed to estimate a channel that includes the radio channel and portions of the UE transmitter and base station receiver. The channel can be analyzed, for example, at the received frequency-domain resource element values (FFT output 585) in the SC-FDMA receiver 500 of
In a single input single output (SISO) model of the channel between a transmitter and a receiver, the channel transfer functions per resource element (one subcarrier of one OFDM symbol) are multiplicative scalars. At the first base station 675a receiving wanted signal 635a from the first UE 650a and unwanted signal 645b from the second UE 650b, the channel output at OFDM symbol index i and subcarrier index j is given as,
y
i,j
=h
i,j
d
x
i,j
d
+h
i,j
u
x
i,j
u
+n
i,j (1)
Where yi,j is the 1×1 (scalar) channel output (e.g., data elements 590); xi,jd is the 1×1 frequency domain resource element value from wanted signal 635a from the desired first UE 650a; hi,jd is the 1×1 channel transfer function between the desired first UE 650a and the receiver of the first base station 675a; xi,ju is the 1×1 frequency domain resource element value from interfering second UE 650b; hi,ju is the 1×1 channel transfer function between the interfering second UE 650b and the receiver of the first base station 675a; and ni,j is a 1×1 noise value. The result, {circumflex over (x)}i,jd, of trying to solve for xi,jd may be impaired by interference of the unwanted signal 645b from interfering second UE 650b and noise.
If interference and noise are within bounds, error tolerance and correction in demodulation and decoding allow the first base station 675a to properly reconstruct the original input data, xi,jd, from {circumflex over (x)}i,jd. If the original data cannot be reconstructed, additional information within communication system 600 may be used to properly reconstruct the original input data.
The received signal at neighboring second base station 675b can be written as
y′
i,j
=h
i,j
d′
x
i,j
d
+h
i,j
u′
x
i,j
u
+n′
i,j (2)
where y′i,j is the 1×1 channel output; hi,jd′ is the 1×1 channel transfer function between the desired first UE 650a and the receiver of the neighboring second base station 675b; hi,ju′ is the 1×1 channel transfer function between the interfering second UE 650b and the receiver of the neighboring second base station 675b; and n′i,j is a 1×1 noise value.
Availability to the first base station 675a of the signal received by the neighboring second base station 675b has the potential of significantly increasing the decoding performance at the first base station 675a. To facilitate this, the first base station 675a is operated as described in method 800 of
For each UL transmission received in a slot, the neighboring second base station 675b stores local uplink transmission data, for example, its received frequency domain data elements, y′i,j (e.g. data elements 590) and both received and expected reference signal. For each UL transmission received in a slot that first base station 675a attempts to decode but cannot, first base station 675a requests the frequency domain data elements y′i,j and received and expected reference signals for UL transmissions received by neighboring second base station 675b that overlap the un-decodable UL transmission. In response to a request received from first base station 675a, the neighboring second base station 675b may send its local uplink transmission data for the UL transmissions it received that overlap the UL transmission subcarriers as requested by the first base station 675a.
The neighboring second base station 675b may store and communicate its local uplink transmission data in various forms. The local uplink transmission data may include the received frequency domain data elements for the data element portion of the transmission and received and expected values for the reference signal portion of the transmission. Alternatively, the neighboring second base station 675b sends first base station 675a the output of the FFT (some or all subcarriers) for all OFDM symbols and lets it extract the frequency domain data elements y′i,j from the demapper. Alternatively, in an aspect, the neighboring second base station 675b may send first base station 675a information sufficient to create the expected reference signals rather than the actual expected reference signals.
With local uplink transmission data from the neighboring second base station 675b, the decoding ambiguity introduced by the interference element, hi,juxi,ju of equation (1) can be substantially reduced.
The interference resolution process is further explained using equation (3), which is the two-dimensional mathematical model obtained by aggregating equations (1) and (2).
Where Hi,j is the channel transfer function matrix; Yi,j is the output vector; Xi,j is the input vector; and Ni,j is the noise vector.
First base station 675a desires to resolve xi,jd, the frequency domain resource element value from wanted signal 635a, and can conduct interference resolution based on its local uplink transmission data and the neighbor uplink transmission data received from neighboring second base station 675b to obtain resolved uplink transmission data. As described above, first base station 675a knows yi,j, y′i,j, and an estimate of hi,jd from a combination of the functionality of its receiver and the uplink transmission data received from the neighboring second base station 675b. With the expected reference signal from the neighboring second base station 675b, the first base station 675a has enough information to estimate the channel transfer function matrix H in equation (3).
For interference resolution, the first base station 675a can calculate the estimated channel transfer functions, as shown below, for example:
First base station 675a then has output matrix Yi,j, and Ĥ, an estimate of the channel transfer function matrix Hi,j. The estimated channel transfer function matrix, H, is formed as shown in equation (4) from the components calculated in the correlation procedure.
The estimated channel transfer function matrix, Ĥ can be used to obtain the equalized and joint estimate {circumflex over (X)}i,j for
as shown in equation (5). This calculation of {circumflex over (X)}i,j may be referred to as zero forcing.
{circumflex over (X)}
i,j
=Ĥ
−1
Y
i,j
=Ĥ
−1
H
i,j
X
i,j
+Ĥ
−1
N
i,j (5)
If interference and noise are within bounds, error tolerance and correction in demodulation and decoding allow the first base station 675a to properly reconstruct the original input data from the impaired version of xi,jd in {circumflex over (X)}.
The estimated channel transfer function matrix, Ĥ may be obtained over an entire OFDM or SC-FDMA uplink transmission attributable to a UE, as in the above example, where one estimated channel transfer function matrix is used the entire range of symbol index i and subcarrier index j of the uplink transmission. Alternatively, a number of different Ĥ matrices may be obtained over one or more subsets of such a transmission. An obtained Ĥ matrix may be used for the entire OFDM or SC-FDMA region of interest, or for a subset of the region or for individual resource elements. That is, different Ĥ matrices may be obtained and used for different resource elements or any subset of an OFDM or SC-FDMA transmission.
A second process for interference resolution is similar to the first process described above. In the second process for interference resolution, the assisting access node calculates part of the estimated channel transfer function matrix Ĥ and supplies this information to the assisted access node. The neighboring second base station 675b estimates channel transfer function hi,jd′ creating h21 by using information that it has obtained about the reference signal used by the first UE 650a. The neighboring second base station 675b estimates channel transfer function hi,ju′ creating h22 by correlating the reference signal it extracted with the expected reference signal associated with the second UE 650b. The neighboring second base station 675b can furnish the transfer function estimates h21 and h22, to first base station 675a on request along with y′i,j and the expected reference signal transmitted by the second UE 650b. First base station 675a calculates h11 and h12 as described above and then has two equations relating xi,ju and xi,jd and thus it can obtain detected values for {circumflex over (x)}i,ju and {circumflex over (x)}i,jd using equations (4) and (5).
A third process for interference resolution is similar to the second process described above. In the third process, when the first base station 675a requests information from the neighboring second base station 675b, the first base station 675a includes the expected reference signal associated with the first UE 650a or information enabling the determination of the expected reference signal. This allows the neighboring second base station 675b to make an estimate of channel transfer function hi,jd′, creating h21 by correlating the reference signal it extracted with the expected reference signal associated with the first UE 650a received from the first base station 675a. Then, as in the second process, the neighboring second base station 675b estimates channel transfer function hi,ju′, creating h22, and furnishes the transfer function estimates h21 and h22 to first base station 675a along with y′i,j and the expected reference signal transmitted by second UE 650b or information enabling the determination of that expected reference signal. First base station 675a calculates h11 and h12 as described above and then has two equations relating xi,ju and xi,jd from which it can obtain detected values for {circumflex over (x)}i,ju and {circumflex over (x)}i,jd using equations (4) and (5).
A fourth process for interference resolution is similar to the processes described above. In the fourth process, when first base station 675a requests uplink transmission data from the neighboring second base station 675b, the neighboring second base station 675b returns for each i, j its detected value {circumflex over (x)}i,ju for xi,ju, the frequency domain resource element value from interfering second UE 650b, for the interfered resource elements. The neighboring second base station 675b also returns the reference signal that neighboring second base station 675b expected to be used by the second UE 650b or information enabling the determination of the reference signal. These data may have been stored by neighboring second base station 675b, for instance as shown in step 930 of method 900 of
First base station 675a calculates h11 and h12 as described above. For each resource element i, j, the first base station 675a uses yi,j the 1×1 channel output (e.g., data elements 590), {circumflex over (x)}i,ju, h11, and h12 to calculate {circumflex over (x)}i,jd as shown in equation (6).
A fifth process for interference resolution is similar to the processes described above. The fifth process may be used when there are partially overlapping uplink transmissions, for example, as shown in
Since, in this scenario, there is no transmission from a UE interfering with the N−M resource blocks in the Second Interfered Data Portion 1020b and the Second Interfered RS Portion 1030b, the channel output at OFDM symbol index i and subcarrier index j for these resource blocks is as shown in equation (7).
y
i,j
=h
i,j
d
x
i,j
d
+n
i,j (7)
The received signal at the neighboring second base station 675b in PUSCH transmission 1055 can be written as shown in equation (2).
For each UL transmission that first base station 675a attempts to decode but cannot, first base station 675a requests uplink transmission data from the neighboring second base station 675b. The uplink transmission data can be in the various forms as described for other interference resolution processes. The uplink transmission data of interest here is for UL transmissions received by neighboring second base station 675b that overlap the undecodable UL transmission, for example, from the First Interfering Data Portion 1065 and the First Interfering RS Portion 1075.
The first base station 675a may resolve interference for the First Interfered Data Portion 1020a, separately from resolving interference for the Second Interfered Data Portion 1020b. As described above, first base station 675a knows yi,j from its receiver and y′i,j from uplink transmission data from neighboring second base station 675b. First base station 675a can estimate the channel transfer function matrix H, obtaining Ĥ as shown in equation (4). The first base station 675a can estimate the channel transfer function matrix H using the expected reference signal from neighboring second base station 675b and its local information.
Similar to the first process, the first base station 675a can, for example, calculate:
Alternatively, first base station 675a may calculate h11 by correlating the received version of full reference signal 1030, composed of 1030a and Second Interfered RS Portion 1030b, that is extracted by its receiver with the full length reference signal it expected to be used by first UE 650a. Using the full reference signal may be easier to implement or may provide improved performance in some receiver architectures.
Alternatively or additionally, first base station 675a may calculate h21 by correlating the full length reference signal composed of the received version of reference signal 1075 and the reference signal resource elements from the additional N−M resource blocks which overlap Second Interfered RS Portion 1030b, extracted by the neighboring second base station 675b, with the full length reference signal expected to be used by the first UE 650a. This requires neighboring second base station 675b to also store and provide upon request to first base station 675a the local uplink transmission data for the additional N−M resource blocks which overlap Second Interfered RS Portion 1030b. Alternatively, in the request for information, first base station 675a may provide neighboring second base station 675b with the full length reference signal expected to be used by the first UE 650a, or a means of constructing it. In this alternative, neighboring second base station 675b calculates and returns h21.
For the First Interfered Data Portion 1020a, the first base station 675a now has output vector Yi,j and Ĥ, an estimate of channel transfer function matrix H. The estimated channel transfer function matrix Ĥ can then be used to obtain the equalized joint estimate {circumflex over (X)}i,j for
as shown in equation (5).
In a variation of this interference resolution process, when first base station 675a requests information from neighboring second base station 675b, neighboring second base station 675b returns for each i, j its detection value {circumflex over (x)}i,ju for xi,ju, the equalized received frequency domain resource element values for First Interfering Data Portion 1065 from interfering second UE 650b. First base station 675a calculates h11 and h12 as described above. For each resource element i, j, the first base station 675a uses yi,j the 1×1 channel output {circumflex over (x)}i,ju in place of xi,ju, h11, and h12, allowing the calculation of {circumflex over (x)}i,jd through interference cancellation as shown in equation (6).
For decoding the Second Interfered Data Portion 1020b, which in this scenario has not been interfered by a UE communicating with the neighboring second base station 675b, hi,jd is needed to resolve the channel. The first base station 675a calculates an estimate h11 of hi,jd by correlating the reference signal extracted (e.g., 580) by its receiver with the same length corresponding portion of the reference signal it expected to be used by the first UE 650a for the Second Interfered RS Portion 1030b. Estimated channel transfer function h11 can be used to obtain the equalized estimate {circumflex over (x)}i,jd of xi,jd as shown in equation (8).
{circumflex over (x)}
i,j
d
=h
11
−1
y
i,j (8)
As described above with respect to decoding the First Interfered Data Portion 1020a, for some receiver architectures it may be easier or provide improved performance for the first base station 675a to calculate h11 by correlating the received version of full reference signal 1030, composed of 1030a and 1030b, that is extracted by its receiver with the full length reference signal it expected to be used by the first UE 650a. The resulting estimated channel transfer function h11 can be used to obtain the equalized estimate {circumflex over (x)}i,jd of xi,jd as shown in equation (8).
For further assistance in decoding the Second Interfered Data Portion 1020b, the first base station 675a may request from the neighboring second base station 675b the reference signal resource elements from the additional N−M resource blocks which overlap the Second Interfered RS Portion 1030b. The first base station 675a may calculate h21 by correlating the reference signal resource elements from the additional N−M resource blocks, received by neighboring second base station 675b, which overlap the Second Interfered RS Portion 1030b with the same length corresponding portion of the reference signal it expected to be used by the first UE 650a. As described above, h21 may be calculated by neighboring second base station 675b. The first base station 675a may also request from the neighboring second base station 675b the data portion resource elements y′i,j from the additional N−M resource blocks which overlap the Second Interfered Data Portion 1020b. Channel transfer function estimate h21 along with data portion resource elements y′i,j from the additional N−M resource blocks which overlap the Second Interfered Data Portion 1020b may be used in equation (9), which is an extension of equation (8).
{circumflex over (x)}
i,j
d
=h
11
−1
y
i,j
+h
21
−1
y
i,j′ (9)
If interference and noise are within bounds, error tolerance and correction in demodulation and decoding allow the first base station 675a to properly reconstruct the original input data for the data elements i, j corresponding to the First Interfered Data Portion 1020a and the Second Interfered Data Portion 1020b from the {circumflex over (x)}i,jd, the impaired estimates of the xi,jd.
The method of resolving Second Interfered Data Portion 1020b can also be used in the case where there is no First Interfered Data Portion 1020a, that is to say when M=0.
As an alternative to resolving decoding ambiguity in the First Interfered Data Portion 1020a and the Second Interfered Data Portion 1020b separately, they may be processed together. In this case, h12, h21, and h22 are calculated using one of the methods described above for individual processing of First Interfered Data Portion 1020a, and h11 is calculated using one of the methods described above for individual processing of either of First Interfered Data Portion 1020a or of Second Interfered Data Portion 1020b. If the First Interfered Data Portion 1020a and the Second Interfered Data Portion 1020b are processed together, data portion resource elements y′i,j from the additional N−M resource blocks which overlap Second Interfered Data Portion 1020b from neighboring second base station 675b may be used. Alternately values of zero in place of the data portion resource elements y′i,j from the additional N−M resource blocks which overlap Second Interfered Data Portion 1020b may be used, for example, to enhance immunity against noise.
A sixth process for interference resolution is similar to the processes described above. The sixth process may be used when there are overlapping or partially overlapping uplink transmissions from two interfering UEs, for example, as shown in
The first base station 675a can resolve interference from First Interfering Data Portion 1065 to First Interfered Data Portion 1020a, for example, as described above for the fifth process for interference resolution.
Interference from Second Interfering Data Portion 1090a to Second Interfered Data Portion 1020b is resolved in a similar manner. In addition to the information that neighboring second base station 675b sends to first base station 675a for resolution of interference from First Interfering Data Portion 1065 to First Interfered Data Portion 1020a, neighboring second base station 675b also sends the corresponding information for Second Interfering Data Portion 1090a and Second Interfering RS Portion 1095a.
Similar to the interference resolution for the First Interfered Data Portion 1020a first process, for the Second Interfered Data Portion 1020b, the first base station 675a can, calculate the estimated channel transfer functions, as shown below, for example:
At this point, for the Second Interfered Data Portion 1020b, first base station 675a has output vector Yi,j, and Ĥ, an estimate of channel transfer function matrix H, as shown in equation (4). The estimated channel transfer function matrix Ĥ can then be used to obtain the equalized joint estimate {circumflex over (X)}i,j for
as shown in equation (5).
Many variations on this interference resolution process are possible. For example, first base station 675a may be passed the received version of the full reference signal 1095, composed of Second Interfering RS Portion 1095a and Third Interfering RS Portion 1095b, extracted by neighboring second base station 675b. First base station 675a may then calculate, for example, alternative estimated channel transfer functions as:
A seventh process for interference resolution is similar to the processes described above. The seventh process may be used when there are partially overlapping uplink transmissions, for example, as shown in
Upon request from first base station 675a, neighboring second base station 675b provides the corresponding received frequency domain data elements, y′i,j for Fourth Interfering Data Portion 1515a and provides the expected and received Fourth Interfering RS Portion 1510a.
First base station 675a can estimate the channel transfer functions using its local uplink transmission data and uplink transmission data received from the neighboring second base station 675b. The neighboring second base station 675b may perform some of the calculations. Example calculations of the estimated channel transfer functions include calculating:
For data element 1020, first base station 675a now has matrix Yi,j, and Ĥ, an estimate of channel transfer function matrix H. The estimated channel transfer function matrix Ĥ can then be used to obtain the equalized joint estimate {circumflex over (X)}i,j for
as shown in equation (5).
Many variations on this interference resolution process are possible. For example, neighboring second base station 675b may provide the full length expected reference signal for reference signal 1510, composed of Fourth Interfering RS Portion 1510a and Fifth Interfering RS Portion 1510b, and the received version of full reference signal 1510 extracted by neighboring second base station 675b. First base station 675a may then calculate alternative channel transfer functions estimates. Example calculations of the alternative estimated channel transfer functions include calculating:
An eighth process for interference resolution is similar to the processes described above. The eighth process may be used when there are interfering uplink transmissions from multiple UEs transmitting to multiple other base stations, for example, as shown in
From the point of view of first base station 675a, the channel output at OFDM symbol index i, and subcarrier index j is given as shown in equation (10).
y
i,j
=h
i,j
d
x
i,j
d
+h
i,j
u2
x
i,j
u2
+h
i,j
u3
x
i,j
u3
+n
i,j (10)
Where yi,j is the 1×1 channel output, xi,jd is the 1×1 frequency domain resource element value from wanted signal 635a from the desired first UE 650a. hi,jd is the 1×1 channel transfer function between the first UE 650a and the receiver of the first base station 675a, xi,ju2 is the frequency domain resource element value from interfering second UE 650b. hi,ju2 is the 1×1 channel transfer function between the interfering second UE 650b and the receiver of the first base station 675a. xi,ju3 is the frequency domain resource element value from interfering third UE. hi,ju3 is the 1×1 channel transfer function between the interfering third UE and the receiver of the first base station 675a. ni,j is the 1×1 noise value. The result, {circumflex over (x)}i,jd of trying to solve for xi,jd may be impaired by interference of the unwanted signals from interfering second UE 650b and interfering third UE and noise.
The received signal at the neighboring second base station 675b can be written as
y′
i,j
=h
i,j
d′
x
i,j
d
+h
i,j
u2′
x
i,j
u2
+h
i,j
u3′
x
i,j
u3′
+n′
i,j (11)
where y′i,j is the 1×1 channel output, hi,jd′; is the 1×1 channel transfer function between the first UE 650a and the receiver of the neighboring second base station 675b, hi,ju2′ is the 1×1 channel transfer function between the interfering second UE 650b and the receiver of the neighboring second base station 675b, hi,ju3′is the 1×1 channel transfer function between the interfering third UE and the receiver of the neighboring second base station 675b, n′i,j is the 1×1 noise value.
The received signal at neighboring third base station can be written as:
y″
i,j
=h
i,j
d″
x
i,j
d
+h
i,j
u2″
x
i,j
u2
+h
i,j
u3″
x
i,j
u3
+n″
i,j (12)
where y″i,j is the 1×1 channel output, hi,jd″ is the 1×1 channel transfer function between the first UE 650a and the receiver of the neighboring third base station, is the 1×1 channel transfer function between the interfering second UE 650b and the receiver of the neighboring third base station, hi,ju3″ is the 1×1 channel transfer function between the interfering third UE and the receiver of the neighboring third base station, n″i,j is the 1×1 noise value.
Equation (3) is then replaced with equation (13) which is the 3×3 matrix representation obtained by aggregating equations (10), (11), and (12).
To decode the received data, first base station 675a will create an estimate, {circumflex over (x)}i,jd for each xi,jd for all i, j. To do this, first base station 675a may build the matrix Yi,j from the frequency domain data elements received by its receiver (e.g., received frequency-domain resource element values 585 in the SC-FDMA receiver 500) and those received by neighboring base stations' receivers. Additionally, an estimate of channel matrix Hi,j may be calculated, resulting in Ĥ as shown in equation (14).
For the resource blocks corresponding to interfered PUSCH transmission 1010, first base station 675a requests uplink transmission data from neighboring second base station 675b. The requested uplink transmission data may include:
For the resource blocks corresponding to interfered PUSCH transmission 1010, first base station 675a requests uplink transmission data from neighboring third base station. The requested uplink transmission data may include:
First base station 675a can estimate the channel transfer functions using its local uplink transmission data and the uplink transmission data received from the neighboring base stations. Some of the calculations may be performed by the neighboring base stations or a central entity. Similar to the first process, the first base station 675a may, for example, calculate:
For data element 1020, first base station 675a now has matrix Yi,j, and Ĥ, an estimate of channel transfer function matrix H, as shown in equation (13). The estimated channel transfer function matrix Ĥ can then be used to obtain the equalized joint estimate {circumflex over (X)}i,j for Xi,j as shown in equation (5), providing estimate {circumflex over (x)}i,jd. In this case only the top row of the inverse estimated channel transfer function matrix Ĥ−1 is used for calculating estimate {circumflex over (x)}i,jd of xi,jd as only xi,jd is the target of estimation.
Instead of initially requesting help from multiple neighboring base stations, the first base station may request and use information from one neighboring base station and if that is unsuccessful, requesting information from one or more additional neighboring base stations, retrying until decoding is successful or help from neighboring base station is exhausted.
The various interference resolution and decoding ambiguity reduction methods described herein may be applied individually or in combination. The method may be applied to all or subsets of all possible combinations of interfered and not interfered portions of a PUSCH transmission. The methods may be performed on smaller or larger sets of resource blocks, individual resource blocks, or sets of frequency subchannels. The methods may also be applied when there is no interfering UE, but a neighboring base station listens to the uplink and aids with interference mitigation. Additionally, if a calculation requires a piece of information from each of two base stations, a protocol can be implemented where either the first base station can transmit it's portion to the second base station as a part of the request, allowing the second base station to calculate the desired result and return it in a response, or the second base station may return the information required for the calculation to the first base station which would then perform the calculation locally. Alternatively, a central entity may receive perform the calculations.
LTE allows neighboring base stations to use different channel bandwidths. For instance, one base station may be using 10 MHz channels while an adjacent base station may be using 5 MHz channels. While this may impact the description of the interfered and interfering portions used in requests and responses, the interference resolution and decoding ambiguity reduction methods described herein may be adapted for use with different channel bandwidths.
Forms of Information Exchange
The interference resolution and decoding ambiguity reduction methods described herein include the exchange of information between base stations (or other entities).
In an initial request for assistance, a first base station may include an indication of the uplink time-frequency resources that were interfered, allowing an assisting neighboring second base station to know what UL transmission the assisting neighboring second base station expected to receive were overlapping in time and frequency. For instance, in an LTE system, the first base station may indicate the frame number, either absolute or relative, in which the interference or inability to decode the uplink transmission occurred. Alternatively it may specify a time in accordance with a time standard such as provided by the global positioning system (GPS). The first base station may also specify the resource blocks of interest. Resource blocks may be indicated by the subframe within the frame and the slot within the subframe as well as the subchannels within the slots. Identification of resource blocks may alternatively be expressed in a form similar (for example, normalized for frequency hopping) to how the resource blocks making up the uplink resource grant is expressed to the UE which transmitted in the uplink resource grant. If neighboring base stations are allowed to have different channelization, the request may also include a description of the channel such as center frequency, channel width (e.g., 5 MHz or 10 MHz), and subchannel spacing or FFT size.
The response from the neighboring second base station may include the same information for every UL transmission it expected on the uplink that overlaps in time and frequency with the interfered reception of the first base station. Neighboring second base station may also include indications of portions of its uplink that overlapped in time and frequency with the interfered reception of the first base station but did not contain any interfering uplink transmissions by UEs to the neighboring second base station.
Observed or estimated frequency domain data element values, e.g., y′i,j and {circumflex over (x)}i,ju, may be exchanged, for instance, in the form of phase, amplitude pairs identified per symbol i and subcarrier j.
Received reference signal may also take the form of phase, amplitude pairs for each symbol and subcarrier of the reference signal.
The expected reference signal may take the same form as the received reference signal. Alternatively, information that allows the reconstruction of the expected reference signal or selection from a known set of reference signals may be exchanged. For instance, in LTE, a reference signal can be described by sequence length in resource blocks, sequence group number, cyclic shift value, usage information related to orthogonal cover code of LTE, and operating parameters that are associated with group hopping, sequence hopping and cyclic shift hopping patterns.
Channel transfer functions, e.g., h21 and h22, are complex values and may be exchanged as pairs of fixed or floating point numbers.
The FFT output, when exchanged, may take the form of a series of in-phase and quadrature (I&Q) value pairs, which may be exchanged as fixed or floating point numbers, binned by subchannel for each OFDM symbol in the reception in question.
Cross Correlation Nulling
The interference resolution methods described above may have reduced performance when the reference signal, or portion thereof, expected to be received by the first base station and the reference signal, or portion thereof, expected to be received by a neighboring base station in the same slot and in overlapping subcarriers have a non-zero cross correlation which impacts the ability to estimate the channel transfer functions. Cross correlation nulling techniques to remedy such impact are provided. Additionally, the cross correlation nulling techniques may be used to improve the channel transfer function estimate even when the reference signals come from the same base station, as long as they have some difference such as length or offset in subchannel.
In step 1710, the process determines information regarding a reference signal expected to be used in a transmission from an interfering UE. The expected reference signal information may be, for example, the expected reference signal or information from with the expected reference signal can be created. The information may be obtained, upon request, from a neighboring base station that was the intended recipient of the transmission from the interfering UE.
When information regarding reference signals expected to be received at neighboring base stations is available at a first base station, for example via the information exchanges described above, the first base station may create an improved version, Ĥ′ of the estimated channel transfer function matrix Ĥ. Examples of improved versions of the channel transfer function estimate matrix are shown for the 2×2 and 3×3 cases in equation (15), corresponding to equations (4) and (14).
In step 1720, the process creates a correction matrix. The correction matrix may also be referred to as a cross-correlation matrix when it removes or reduces the effects of cross-correlation on estimated channel transfer functions.
In step 1730, the process creates one or more corrected channel transfer function estimates or corrected estimated channel transfer function matrices. A corrected estimated channel transfer function matrix may also be referred to as an improved estimated channel transfer function matrix. The corrected estimated channel transfer functions can then be used in an interference resolution process. The corrected estimated channel transfer functions may be created by applying the correction matrix to previously calculated estimated channel transfer functions.
To apply cross correlation nulling, a cross-correlation matrix, C, is calculated from the reference signal expected to be received by the first base station and the reference signals expected to be received by neighboring base stations. The inverse of cross-correlation matrix C is applied to the estimated channel transfer function matrix Ĥ to create the improved estimated channel transfer function matrix Ĥ′ as shown in equation (16).
Ĥ′=ĤC
−1 (16)
The transmission overlap scenarios previously discussed with respect to
A first example of cross-correlation nulling will be described with reference to
c
1
=cxcorr(RA,RB) (17)
Where RA denotes reference signal 1030 and RB denotes reference signal 1070. The cross correlation value c1 is calculated by a cross correlation function cxcorr with the two argument vectors RA and RB. The cross correlation function cxcorr for example may be the circular cross correlation between its two argument vectors calculated at a zero relative delay value and normalized by the length of the argument vectors. Other cross-correlation functions may also be used.
The cross-correlation matrix C for this scenario is shown in equation (18), where c1* denotes the conjugate of c1.
The cross-correlation matrix C is applied as shown in equation (16) to create improved channel transfer function estimates that may be used in the interference resolution processes described herein.
A second example of cross-correlation nulling will be described with respect to
In a variation of the fifth process for interference resolution described above for this interference scenario, h11 is calculated by correlating the received version of full reference signal 1030, composed of First Interfered RS Portion 1030a and Second Interfered RS Portion 1030b, that is extracted by the receiver of first base station 675a with the full length reference signal expected to be used by the first UE 650a, and h21 is calculated by correlating the full length reference signal composed of the received version of reference signal 1075 and the reference signal resource elements from the additional N−M resource blocks which overlap Second Interfered RS Portion 1030b, extracted by the neighboring second base station 675b, with the full length reference signal expected to be used by the first UE 650a. In this variation, two cross correlations may be calculated to construct the cross-correlation matrix C. The first calculated cross correlation is the cross correlation of the entire expected reference signal 1030 with the expected reference signal 1075 padded to be the same length as expected reference signal 1030 by inserting zeros for subchannels of slot 1045 not overlapped by subchannels of reference signal 1075. This is shown in equation (19), where RA denotes reference signal 1030 and RB denotes reference signal 1075 and where [nj: nk] denotes the range of subchannels from j to k. The second calculated cross correlation is the cross correlation of only the portion of expected reference signal 1030 transmitted over those subchannels that are overlapped by reference signal 1075, for example first interfered RS portion 1030a, with the expected reference signal 1075. This is shown in equation (20).
c
1
=cxcorr(RA,RB+zeros[nm+1:nN]) (19)
c
2
=cxcorr(RA[1:nm],RB) (20)
The cross-correlation matrix C for this scenario as shown in equation (21), and may be applied to create improved channel transfer function estimates that may be used as described earlier.
Alternatively, c2 from equation (20) can be used by itself. The cross-correlation matrix C for this scenario is shown in equation (22).
The above equations can be adapted to scenarios, for example, where reference signal 1075 overlapped a different, for example last or middle, subset of the subchannels of reference signal 1030.
Another example of cross-correlation nulling will be described with respect to
For first interfered RS portion 1030a, the expected reference signal is cross correlated with the expected reference signal for first interfering RS portion 1075 as shown in equation (20).
The cross-correlation matrix C for this scenario is shown in equation (22), and may be applied to improve the channel transfer function estimate for the subchannels on which the first interfered RS portion 1030a was transmitted.
For second interfered RS portion 1030b, the expected reference signal is cross correlated with the expected reference signal for second interfering RS portion 1095a of expected reference signal 1095 as shown in equation (23), where Rc denotes reference signal 1095.
c
3
=cxcorr(RA[nm+1:nN],RC[1:nN−M]) (23)
The cross-correlation matrix C for this scenario as shown in equation (24), and may be applied to improve the channel transfer function estimate for the subchannels on which the second interfered RS portion 1030b was transmitted.
Another example of cross-correlation nulling will be described with respect to
c
1
=cxcorr(RA,RB[1:nN]) (25)
In the first method with respect to the overlap scenario of
c
2
=cxcorr(RA+zeros[nN+1:nP],RB) (26)
The cross correlations c1 and c2 may be used together in equation (21) to produce an alternative cross-correlation matrix C for the overlap scenario of
Another example of cross-correlation nulling will be described with respect to
Cross correlation c1 is calculated as in equation (18). Cross correlation c2 is calculated as in equation (27). Cross correlation c3 is calculated as in equation (28). Where RA denotes reference signal 1030, RB denotes reference signal 1070, and RC denotes reference signal 1530,
c
2
=cxcorr(RA,RC) (27)
c
3
=cxcorr(RB,RC) (28)
Cross correlations c1, c2, and c3 are used in equation (29) to calculate the 3×3 version of cross-correlation matrix C which can be used to create an improved channel transfer function estimate to be used in the interference resolution processes described herein.
The cross correlation nulling for the described scenarios provides building blocks which may be used and extended to improve channel transfer function estimates for all combinations of overlap scenarios that may arise in performing interference resolution.
Improving the channel estimate with the above techniques may allow the first base station (which is performing interference resolution) to be more aggressive in its use of spectrum. For example, the first base station may use more efficient modulation or coding schemes than it could without the techniques for interference resolution. The first base station may also use fewer retransmissions, such as fewer hybrid automatic repeat request (HARQ) retransmissions. The first base station may use a more efficient unacknowledged transport mode rather than an acknowledged transport mode.
The embodiments disclosed herein related to channel estimation and detection are presented for explanatory purposes and it should be appreciated that the concepts presented herein can also be applied to other techniques and modalities. The foregoing systems and methods and associated devices and modules are susceptible to many variations. For example, the systems and methods method can be extended to MIMO systems by using appropriately dimensioned channel transfer functions. Additionally, for clarity and concision, many descriptions of the systems and methods have been simplified. For example, the figures generally illustrate one of each type of device (e.g., one base station, one user equipment), but a communication system may have many of each type of device. Similarly, many descriptions use terminology and structures of a specific wireless standard such as LTE. However, the disclosed systems and methods are more broadly applicable, including for example, in WiMAX systems.
Those of skill will appreciate that the various illustrative logical blocks, modules, units, and algorithm steps described in connection with the embodiments disclosed herein can often be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular constraints imposed on the overall system. Skilled persons can implement the described functionality in varying ways for each particular system, but such implementation decisions should not be interpreted as causing a departure from the scope of the invention. In addition, the grouping of functions within a unit, module, block, or step is for ease of description. Specific functions or steps can be moved from one unit, module, or block without departing from the invention.
The various illustrative logical blocks, units, steps and modules described in connection with the embodiments disclosed herein can be implemented or performed with a processor, such as a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor can be a microprocessor, but in the alternative, the processor can be any processor, controller, microcontroller, or state machine. A processor can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The steps of a method or algorithm and the processes of a block or module described in connection with the embodiments disclosed herein can be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium. An exemplary storage medium can be coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium can be integral to the processor. The processor and the storage medium can reside in an ASIC. Additionally, device, blocks, or modules that are described as coupled may be coupled via intermediary device, blocks, or modules. Similarly, a first device may be described a transmitting data to (or receiving from) a second device when there are intermediary devices that couple the first and second device and also when the first device is unaware of the ultimate destination of the data.
The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles described herein can be applied to other embodiments without departing from the spirit or scope of the invention. Thus, it is to be understood that the description and drawings presented herein represent a presently preferred embodiment of the invention and are therefore representative of the subject matter that is broadly contemplated by the present invention. It is further understood that the scope of the present invention fully encompasses other embodiments that may become obvious to those skilled in the art and that the scope of the present invention is accordingly limited by nothing other than the appended claims.
The application claims the benefit of U.S. provisional patent application Ser. No. 61/832,629, entitled “Uplink Interference Resolution,” filed Jun. 7, 2013 and U.S. provisional patent application Ser. No. 61/835,431, entitled “Uplink Interference Resolution,” filed Jun. 14, 2013, which are hereby incorporated by reference. This application is also a continuation-in-part of U.S. patent application Ser. No. 14/206,853, entitled “Uplink Interference Resolution in a Wireless Communication System,” filed Mar. 12, 2014, which claims the benefit of U.S. provisional patent application Ser. No. 61/798,572, entitled “Uplink Interference Resolution,” filed Mar. 15, 2013, which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61832629 | Jun 2013 | US | |
61835431 | Jun 2013 | US | |
61798572 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14206853 | Mar 2014 | US |
Child | 14298741 | US |