This patent application is a U.S. National Phase application under 35 U.S.C. § 371 of International Application No. PCT/CN2016/096734, filed on 25 Aug. 2016, entitled UPLINK TRANSMISSION RESOURCE SCHEDULING METHOD DEVICE, AND UPLINK TRANSMISSION METHOD AND DEVICE, which claims the benefit of priority from Chinese Patent Application No. 201510625037.8, filed with the Chinese Patent Office on Sep. 25, 2015 and entitled “Method and apparatus for scheduling an uplink transmission resource, and method and apparatus for uplink transmission”, which was incorporated by reference in its entirety.
The present application relates to the field of communications, and particularly to a method and apparatus for scheduling an uplink transmission resource, and a method and apparatus for uplink transmission.
As there is a constantly growing amount of mobile data traffic, spectrum resources are increasingly insufficient, and the demand for the amount of traffic may have failed to be satisfied by deploying a network, and transmitting the traffic, only over licensed spectrum resources, so transmission may be deployed over unlicensed spectrum resources in a Long Term Evolution (LTE) system, where this LTE system can be referred to as Unlicensed LTE (or simply U-LTE or LTE-U), to thereby improve the experience of a user equipment, and extend a coverage area. However there has been absent so far a specific solution to how the LTE system operates over an unlicensed spectrum resource.
There is no particular application system planned in any unlicensed spectrum, so the unlicensed spectrum can be shared by various wireless communication systems, e.g., Bluetooth, Wireless Fidelity (WiFi), etc., where the systems access the shared unlicensed spectrum resources by preempting the resources. Accordingly the coexistence between LTE-U systems deployed by different operators, and between an LTE-U system and a WiFi or another wireless communication system has been studied as a focus. As specified by the 3GPP, an LTE-U system and a WiFi or another wireless communication system shall coexist in a fair mode, where an unlicensed frequency band operates as a secondary carrier with the assistance of a primary carrier in a licensed frequency band. Unlike the LTE system in the licensed frequency band, a User Equipment (UE) in the LTE-U system in the unlicensed frequency band needs to operate in the Listen Before Talk (LBT) mode, before the UE transmits data, and when the unlicensed frequency band operates in the time division multiplexing mode, the UE transmitting a signal will be sure to block a subsequently scheduled UE from accessing a channel.
In summary, there has been absent in the prior art a solution to scheduling and accessing an unlicensed spectrum resource.
Embodiments of the application provide a method and apparatus for scheduling an uplink transmission resource, and a method and apparatus for uplink transmission so as to reserve an uplink transmission resource over an unlicensed carrier, so that a UE will not transmit any uplink signal over the reserved resource, to thereby avoid the scheduled UE from failing to access a channel, and so as to access the uplink transmission resource over the unlicensed carrier in a time division multiplexing mode.
An embodiment of the application provides a method for scheduling an uplink transmission resource, the method including:
determining, by a base station, a resource to be reserved in an uplink sub-frame, wherein the resource to be reserved is a transmission resource over an unlicensed carrier; and
sending, by the base station, a notification of the resource to be reserved in the uplink sub-frame to a UE.
With this method, the base station determines the resource to be reserved in the uplink sub-frame, where the resource to be reserved is a transmission resource over the unlicensed carrier; and the base station sends the notification of the resource to be reserved in the uplink sub-frame to the UE, so that the uplink transmission resource over the unlicensed carrier is reserved, thus the UE will not transmit any uplink signal over the resource to be reserved, to thereby avoid a scheduled UE from failing to access a channel, and the uplink transmission resource over the unlicensed carrier can be accessed in a time division multiplexing mode.
Optionally the base station sends the notification of the resource to be reserved in the uplink sub-frame to the UE semi-statically or dynamically.
Optionally when the base station sends the notification of the resource to be reserved in the uplink sub-frame to the UE semi-statically, sending, by the base station, the notification of the resource to be reserved in the uplink sub-frame to the UE via non-physical layer signaling; or
when the base station sends the notification of the resource to be reserved in the uplink sub-frame to the UE dynamically, sending, by the base station, the notification of the resource to be reserved in the uplink sub-frame to the UE via physical layer signaling.
Optionally the resource to be reserved is used for the UE to perform Listen Before Talk (LBT) operations.
Optionally the notification carries one or a combination of:
an indicator that the UE needs to reserve the resource in the uplink sub-frame;
the uplink sub-frame including the resource to be reserved, and a position of the resource to be reserved in the uplink sub-frame; and
a size of the resource to be reserved in the uplink sub-frame including the resource to be reserved.
Optionally the resource to be reserved is located at a head or a tail of at least one uplink sub-frame.
An embodiment of the application provides a method for uplink transmission, the method including:
determining, by a UE, a resource to be reserved in an uplink sub-frame, wherein the resource to be reserved is a transmission resource over an unlicensed carrier; and
deciding, by the UE, not to transmit any uplink signal over the resource to be reserved.
Optionally the method further includes:
when the UE does not access a channel, perform, by the UE, Listen Before Talk (LBT) operations over the resource to be reserved; or
when the UE accesses the channel, transmitting, by the UE, an uplink signal over an uplink resource scheduled by a base station.
Optionally the resource to be reserved in the uplink sub-frame is preconfigured; or
the UE receives a notification of the resource to be reserved in the uplink sub-frame, sent semi-statically or dynamically by the base station, and determines from the notification the resource to be reserved in the uplink sub-frame.
An embodiment of the application provides an apparatus for scheduling an uplink transmission resource, the apparatus including:
a reserving unit configured to determine a resource to be reserved in an uplink sub-frame, wherein the resource to be reserved is a transmission resource over an unlicensed carrier; and
a notification unit configured to send a notification of the resource to be reserved in the uplink sub-frame to a UE.
Optionally the notification unit is configured to send the notification of the resource to be reserved in the uplink sub-frame to the UE semi-statically or dynamically.
Optionally the notification unit is configured: when the notification unit sends the notification of the resource to be reserved in the uplink sub-frame to the UE semi-statically, to send the notification of the resource to be reserved in the uplink sub-frame to the UE via non-physical layer signaling; or
when the notification unit sends the notification of the resource to be reserved in the uplink sub-frame to the UE dynamically, to send the notification of the resource to be reserved in the uplink sub-frame to the UE via physical layer signaling.
Optionally the resource to be reserved is used for the UE to perform Listen Before Talk (LBT) operations.
Optionally the signaling carries one or a combination of:
an indicator that the UE needs to reserve the resource in the uplink sub-frame;
the uplink sub-frame including the resource to be reserved, and a position of the resource to be reserved in the uplink sub-frame; and
a size of the resource to be reserved in the uplink sub-frame including the resource to be reserved.
Optionally the resource to be reserved is located at the head or the tail of at least one uplink sub-frame.
An embodiment of the application provides an apparatus for uplink transmission, the apparatus including:
a first unit configured to determine a resource to be reserved in an uplink sub-frame, wherein the resource to be reserved is a transmission resource over an unlicensed carrier; and
a second unit configured to decide not to transmit any uplink signal over the resource to be reserved.
Optionally the second unit is further configured:
when a UE including the apparatus does not access a channel, to perform Listen Before Talk (LBT) operations over the resource to be reserved; or
when a UE including the apparatus accesses the channel, to transmit an uplink signal over an uplink resource scheduled by a base station.
Optionally the resource to be reserved in the uplink sub-frame, determined by the first unit is preconfigured; or
the first unit receives a notification of the resource to be reserved in the uplink sub-frame, signaled semi-statically or dynamically by the base station, and determines from the notification the resource to be reserved in the uplink sub-frame.
The embodiments of the application provide a method and apparatus for scheduling an uplink transmission resource, and a method and apparatus for uplink transmission so as to reserve an uplink transmission resource over an unlicensed carrier, so that a UE will not transmit any uplink signal over the reserved resource, to thereby avoid a scheduled UE from failing to access a channel, and so as to access the uplink transmission resource over the unlicensed carrier in a time division multiplexing mode.
The LBT in the embodiments of the application is general contention access means in the LTE-U system. Essentially in the LBT technology, an 802.11 system operates with the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) mechanism, and the WiFi system preempts a resource in an unlicensed spectrum as illustrated in
In order to provide a flexible, fair, and adaptive channel access mechanism, the LBT technology is required in Europe to be applied in the unlicensed frequency bands of 5150-5350 MHz, and 5470-5725 MHz. Clear Channel Assessment (CCA) determines whether there is a signal being transmitted over the current channel, as a result of energy detection to thereby determine whether the channel is occupied.
Two LBT modes in an unlicensed frequency band as illustrated respectively in
Referring to
Referring to
The LTE system supports two duplex modes of FDD and TDD, and different frame structures are applied to these two duplex modes. The two frame structures are common in that each radio frame includes 10 sub-frames of 1 ms. A first type of frame structure applied to an FDD system is as illustrated in
There are four categories of LBT currently defined in the 3GPP.
The LBT category 1 requires no LBT.
The LBT category 2 has a fixed backoff value, where no random backoff is required before a data burst is transmitted, but CCA detection is performed once, and then the channel is accessed; and the FBE is a special example of the LBT category 2.
Both the LBT category 3 and the LBT category 4 apply a random backoff value similar to that in the CSMA/CA mechanism, where there is a fixed contention window for the LBT category 3, and the ESTI LBE option B belongs to the LBT category 3.
The LBT category 4 is a modification to the ESTI LBE option B, where the load based LBT is applied thereto, and a contention window thereof is extended exponentially, or configured semi-statically. Since the contention window is extended exponentially in the WiFi system operating with the CSMA/CA access mechanism, in order to enable the LTE-U system to coexist with the WiFi system in a fair mode, the LBT category 4 shall be applied at least to downlink transmission in the LTE-U system as required in the 3GPP, and all of the four categories of LBT may be applicable to uplink transmission in the LTE-U system, so no conclusion has been made so far.
No matter whatever channel access mechanism is applied to uplink (UL) transmission, a scheduled UE may need to transmit in a time division multiplexing mode in a plurality of uplink transmission sub-frames. In one instance, for example, some UE transmits uplink data for a long period of time, e.g., in a plurality of sub-frames, and another UE only needs to transmit data in a very short period of time, e.g., in one sub-frame; and in another instance, if the maximum channel occupied time of a UE specified in some region or country is less than the number of configured uplink sub-frames, then different UEs transmit in the uplink sub-frames in the time division multiplexing mode becomes a problem that must be solved.
Unlike the LTE system in the licensed frequency band, the UE in the LTE-U system in the unlicensed frequency band needs to perform the LBT operation, before the UE transmits data, and when the LTE-U system operates in the time division multiplexing mode, the UE transmitting a signal will be sure to block a subsequently scheduled UE from accessing the channel. However, there has been absent at present a solution to how to perform the time division multiplexing for a plurality of UEs in the LTE-U uplink transmission, and how to reserve a resource for LBT for a new accessed UE when performing the time division multiplexing.
Accordingly the embodiments of the application provide a method for configuring a UE to reserve a resource for LBT or other operations, when a plurality of UEs operate in the uplink (UL) in a time division multiplexing mode in an unlicensed frequency band, and particular technical solutions thereof will be described as follows.
Referring to
S101: A base station determines a resource to be reserved in an uplink sub-frame, where the resource to be reserved is a transmission resource over an unlicensed carrier.
S102: The base station sends a notification of the resource to be reserved in the uplink sub-frame to a UE.
With this method, the base station determines the resource to be reserved in the uplink sub-frame, where the resource to be reserved is a transmission resource over the unlicensed carrier; and the base station sends the notification of the resource to be reserved in the uplink sub-frame to the UE, so that the uplink transmission resource over the unlicensed carrier is reserved, so that the UE will not transmit any uplink signal over the resource to be reserved, to thereby avoid a scheduled UE from failing to access a channel, and the uplink transmission resource over the unlicensed carrier can be accessed in a time division multiplexing mode.
Here the resource to be reserved in the uplink sub-frame by a scheduled UE for LBT or other operations can be configured statically, semi-statically, or dynamically.
Optionally the base station sends the notification of the resource to be reserved in the uplink sub-frame to the UE semi-statically or dynamically.
Optionally when the base station sends the notification of the resource to be reserved in the uplink sub-frame to the UE semi-statically, the base station sends the notification of the resource to be reserved in the uplink sub-frame to the UE via non-physical layer signaling; or when the base station sends the notification of the resource to be reserved in the uplink sub-frame to the UE dynamically, the base station sends the notification of the resource to be reserved in the uplink sub-frame to the UE via physical layer signaling.
Optionally the resource to be reserved is used for a UE to perform Listen Before Talk (LBT) operations.
Optionally the notification carries one or a combination of: an indicator that the UE needs to reserve the resource in the uplink sub-frame; the uplink sub-frame including the resource to be reserved, and the position of the resource to be reserved in the uplink sub-frame; and the size of the resource to be reserved in the uplink sub-frame including the resource to be reserved.
Where the indicator that the UE needs to reserve the resource in the uplink sub-frame is provided as follows: for example, one bit is added to a UL grant to notify the UE whether to reserve a resource in a PUSCH scheduled by the UL grant (for example, a particular symbol resource to be reserved is either the last one or N symbols, or the first one or N symbols, all of these changes are applicable).
The size of the resource to be reserved in the uplink sub-frame including the resource to be reserved can be agreed on in advance, or can be signaled.
Optionally the resource to be reserved is located at the head or tail of at least one uplink sub-frame, and the resource to be reserved may be located in one or more uplink sub-frames, and may be located at the head(s), middle(s), or tail(s) of the uplink sub-frame(s).
For example, the base station and the UE configure an LBT sub-frame, and a resource for LBT in the LBT sub-frame once every N sub-frames. Of course, they can alternatively configure an LBT sub-frame at a varying interval, and the number of LBT sub-frames may alternatively be more than one.
Accordingly the UE does not transmit any signal over the corresponding resource to be reserved, as configured by the base station; any scheduled UE receiving correctly a UL grant (signaling applied in semi-static scheduling or dynamic scheduling) performs LBT operations over the resource to be reserved for LBT, as configured by the base station; and the UE accessing the channel transmits an uplink signal over a scheduled uplink resource.
Referring to
S201: A UE determines a resource to be reserved in an uplink sub-frame, where the resource to be reserved is a transmission resource over an unlicensed carrier.
S202: The UE decides not to transmit any uplink signal over the resource to be reserved.
Optionally the method further includes: when the UE does not access a channel, it performs Listen Before Talk (LBT) operations over the resource to be reserved; or when the UE accesses the channel, it transmits an uplink signal over an uplink resource scheduled by a base station.
Optionally the resource to be reserved in the uplink sub-frame is preconfigured; or the UE receives a notification of the resource to be reserved in the uplink sub-frame, sent semi-statically or dynamically by the base station, and determines from the notification the resource to be reserved in the uplink sub-frame.
In an embodiment, if the resource to be reserved in the uplink sub-frame is configured statically, then the base station and the UE will agree on (instead of signaling to indicate) that a resource for LBT operations is reserved in all of uplink sub-frames or a subset of the uplink sub-frames (i.e., a part of the uplink sub-frames). Particularly they can agree on an uplink sub-frame including a resource for LBT to be reserved, where the sub-frame is defined as an LBT sub-frame (this definition will apply to all the embodiments, so a repeated description thereof will be omitted below), and agree on the resource for LBT operations to be reserved in these configured LBT sub-frames (at least the position and the size thereof). As illustrated in
In an embodiment, if the resource to be reserved in the uplink sub-frame is configured semi-statically, then the base station will indicate semi-statically via non-physical layer signaling a resource for LBT operations reserved in all of uplink sub-frames or a subset of the uplink sub-frames. Particularly the base station can configure via non-physical layer signaling an uplink sub-frame for the UE to perform LBT operations, and configure a resource (at least the position and the size thereof) for LBT in the LBT sub-frame as indicated via the non-physical layer signaling, and/or agreed on. For example, the base station can configure an LBT sub-frame, and a resource for LBT in the LBT sub-frame once every N sub-frames, or can configure an LBT sub-frame at a varying interval as needed for scheduling, and the size of the configured LBT resource may be a length of an integer number of SC-FDM symbols, or may be a length of a non-integer number of SC-FDM symbols. The position of the configured LBT resource may be located at the head of the configured LBT sub-frame, or may be located at the tail of the configured LBT sub-frame. When a UL signal is transmitted starting with the boundary of the sub-frame, the LBT resource is preferably configured at the tail of the configured LBT sub-frame, a UE transmitting a signal in the LBT sub-frame needs to stop transmitting the signal over the LBT resource configured at the tail of the sub-frame, and then all the UEs receiving successfully a UL grant corresponding to the next sub-frame perform LBT operations over the LBT resource in the configured LBT sub-frame, and the UE accessing the channel performs uplink transmission; and when a UL signal is transmitted starting with other than the boundary of the sub-frame, the LBT resource is preferably configured at the head of the configured LBT sub-frame, so that all the UEs scheduled successfully in the configured LBT sub-frame preferably perform LBT operations instead of transmitting any signal over the LBT resource configured at the head of the sub-frame, and the UE accessing the channel performs uplink transmission. The LBT resource may alternatively be located at another position in the configured sub-frame than the head or the tail of the LBT sub-frame.
In an embodiment, if the resource to be reserved in the uplink sub-frame is configured dynamically, then the base station will indicate dynamically via physical layer signaling a resource for LBT operations reserved in all of uplink sub-frames, or some subset of the uplink sub-frames.
In the embodiment where the resource to be reserved in the uplink sub-frame is configured dynamically, one bit is added to an UL grant to notify the UE whether to reserve a resource in a PUSCH scheduled by the UL grant (for example, a particular symbol resource to be reserved is either the last one or N symbols, or the first one or N symbols, all of these changes are applicable).
In a possible implementation, the base station indicates dynamically the uplink sub-frame including the resource to be reserved, via physical layer signaling, and configures the resource for LBT operations in the LBT sub-frame as indicated via the signaling, and/or agreed on. Preferably the base station indicates dynamically the uplink sub-frame including the resource to be reserved, via physical layer signaling particularly by adding one bit to a UL grant which is dynamic signaling to notify the UE whether to reserve a resource for LBT operations in a PUSCH scheduled by the UL grant. The base station configures an LBT sub-frame among UL sub-frames, and a resource for LBT in the LBT sub-frame at a fixed or varying interval as needed for scheduling, and the size of the configured LBT resource may be a length of an integer number of SC-FDM symbols, or may be a length of a non-integer number of SC-FDM symbols. The position of the configured LBT resource may be located at the head of the configured LBT sub-frame, or may be located at the tail of the configured LBT sub-frame. When a UL signal is transmitted starting with the boundary of the sub-frame, the LBT resource is preferably configured at the tail of the configured LBT sub-frame, a UE transmitting a signal in the LBT sub-frame needs to stop transmitting the signal over the LBT resource configured at the tail of the sub-frame, and then all the UEs receiving successfully a UL grant corresponding to the next sub-frame perform LBT operations over the LBT resource in the configured LBT sub-frame, and the UE accessing the channel performs uplink transmission; and when a UL signal is transmitted starting with other than the boundary of the sub-frame, the LBT resource is preferably configured at the head of the configured LBT sub-frame, so that all the UEs scheduled successfully in the configured LBT sub-frame preferably perform LBT operations instead of transmitting any signal over the LBT resource configured at the head of the sub-frame, and the UE accessing the channel performs uplink transmission. The LBT resource may alternatively be located at another position in the configured sub-frame than the head or the tail of the LBT sub-frame.
Where N and M in the embodiment of the application are preset positive integers.
Referring to
Optionally the notification unit sends the notification of the resource to be reserved in the uplink sub-frame to the UE semi-statically or dynamically.
Optionally when the notification unit sends the notification of the resource to be reserved in the uplink sub-frame to the UE semi-statically, the notification unit sends the notification of the resource to be reserved in the uplink sub-frame to the UE via non-physical layer signaling; or when the notification unit sends the notification of the resource to be reserved in the uplink sub-frame to the UE dynamically, the notification unit sends the notification of the resource to be reserved in the uplink sub-frame to the UE via physical layer signaling.
Optionally the resource to be reserved is used for the UE to perform Listen Before Talk (LBT) operations.
Optionally the notification carries one or a combination of: an indicator that the UE needs to reserve the resource in the uplink sub-frame; the uplink sub-frame including the resource to be reserved, and the position of the resource to be reserved in the uplink sub-frame; and the size of the resource to be reserved in the uplink sub-frame including the resource to be reserved.
Optionally the resource to be reserved is located at the head or the tail of at least one uplink sub-frame.
Referring to
Optionally the second unit is further configured: when a UE including the apparatus does not access a channel, to perform Listen Before Talk (LBT) operations over the resource to be reserved; or when a UE including the apparatus accesses the channel, to transmit an uplink signal over an uplink resource scheduled by a base station.
Optionally the resource to be reserved in the uplink sub-frame, determined by the first unit is preconfigured; or the first unit receives a notification of the resource to be reserved in the uplink sub-frame, sent semi-statically or dynamically by the base station, and determines from the notification the resource to be reserved in the uplink sub-frame.
Referring to
Optionally the processor 500 sends the notification of the resource to be reserved in the uplink sub-frame to the UE semi-statically or dynamically through the transceiver 510.
Optionally when the processor 500 sends the notification of the resource to be reserved in the uplink sub-frame to the UE semi-statically through the transceiver 510, the processor 500 sends the notification of the resource to be reserved in the uplink sub-frame to the UE via non-physical layer signaling; or when the processor 500 sends the notification of the resource to be reserved in the uplink sub-frame to the UE dynamically through the transceiver 510, the processor 500 sends the notification of the resource to be reserved in the uplink sub-frame to the UE via physical layer signaling through the transceiver 510.
Optionally the resource to be reserved is used for the UE to perform Listen Before Talk (LBT) operations.
Optionally the notification carries one or a combination of: an indicator that the UE needs to reserve the resource in the uplink sub-frame; the uplink sub-frame including the resource to be reserved, and the position of the resource to be reserved in the uplink sub-frame; and the size of the resource to be reserved in the uplink sub-frame including the resource to be reserved.
Optionally the resource to be reserved is located at the head or the tail of at least one uplink sub-frame.
The transceiver 510 is configured to be controlled by the processor 500 to receive and transmit data.
Here in
Referring to
Optionally the processor 600 is further configured: when a UE including the apparatus does not access a channel, to perform Listen Before Talk (LBT) operations over the resource to be reserved; or when a UE including the apparatus accesses the channel, to transmit an uplink signal over an uplink resource scheduled by a base station.
Optionally the resource to be reserved in the uplink sub-frame, determined by the processor 600 is preconfigured; or the processor 600 receives a notification of the resource to be reserved in the uplink sub-frame, sent semi-statically or dynamically by the base station through the transceiver 610, and determines from the notification the resource to be reserved in the uplink sub-frame.
The transceiver 610 is configured to be controlled by the processor 500 to receive and transmit data.
Here in
The processor 600 is responsible for managing the bus architecture and performing normal processes, and the memory 620 can store data for use by the processor 500 in performing the operations.
In summary, in UL transmission in the LTE-U system, for the sake of flexible scheduling, there is such a scenario that the UEs need to operate in the time division multiplexing mode, the maximum channel occupied time which is particularly allowed is short, and there are a large number of UL sub-frames. If a UE receiving a UL grant does not access the channel, then it will perform LBT operations before transmitting uplink data. However a UE accessing the channel and transmitting a signal may block the other UE from accessing, so the base station needs to configure the UE with a sub-frame and an LBT resource for LBT operations, no matter whatever position of the LBT resource in the LBT sub-frame. However, there has been absent in the prior art a specific solution, while with the technical solution provided by the embodiment of the application, the uplink transmission resource over the unlicensed carrier can be accessed in a time division multiplexing mode.
Evidently those skilled in the art can make various modifications and variations to the application without departing from the spirit and scope of the application. Thus the application is also intended to encompass these modifications and variations thereto so long as the modifications and variations come into the scope of the claims appended to the application and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
201510625037.8 | Sep 2015 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2016/096734 | 8/25/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/050087 | 3/30/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20140036853 | Kim et al. | Feb 2014 | A1 |
20140362780 | Malladi et al. | Dec 2014 | A1 |
20150085797 | Ji et al. | Mar 2015 | A1 |
20150099525 | Ji et al. | Apr 2015 | A1 |
20170041805 | Chandrasekhar | Feb 2017 | A1 |
20170111801 | Tomeba | Apr 2017 | A1 |
20170280331 | Gou | Sep 2017 | A1 |
20170339717 | Futaki | Nov 2017 | A1 |
20180270834 | Falconetti | Sep 2018 | A1 |
20180310332 | Ahn | Oct 2018 | A1 |
20210204310 | Lei | Jul 2021 | A1 |
Number | Date | Country |
---|---|---|
102378373 | Mar 2012 | CN |
102801506 | Nov 2012 | CN |
103229582 | Jul 2013 | CN |
104301273 | Jan 2015 | CN |
104540230 | Apr 2015 | CN |
1020140010450 | Jan 2014 | KR |
WO 2015116159 | Aug 2015 | WO |
Entry |
---|
IP Office of P.R. China—International Search Report of the International Searching Authority (with English Translation) dated Nov. 18, 2016 for International Application No. PCT/CN2016/096734 (5 pgs). |
IP Office of P.R. China—Written Opinion of the International Searching Authority (with English Translation) dated Nov. 18, 2016 for International Application No. PCT/CN2016/096734 (7 pgs). |
Extended European Search Report; for counterpart EP Application No. 16847969.9 11 pgs. (dated Aug. 23, 2018). |
3GPP, “CATT: listen before talk for LAA,” XP050885328, 3GPP Draft, R1-144625, 3GPP TSG RAN WG1 Meeting #79, vol. RAN WG1, No. Sas Francisco, USA, Nov. 17, 2014-Nov. 21, 2014, 6 pgs. (Nov. 8, 2014). |
3GPP, “ETRI: Discussion on UL grant for LAA,” XP050934943, 3GPP Draft, R1-152095, 3GPP TSG RAN WG1 Meeting #80bis, vol. RAN WG1, No. Belgrade, Serbia, Apr. 20, 2015-Apr. 24, 2015, 5 pgs. (Apr. 19, 2015). |
3GPP, “Intel Corporation: Uplink transmission with LBT,” XP050936083. 3GPP Draft, R2-151102, 3GPP TSG-RAN WG2 #89bis, vol. RAN WG2, No. Bratislava, Slovakia, Apr. 20, 2015-Apr. 24, 2015, 6 pgs. (Apr. 19, 2015). |
Chinese Office Action in application No. 201510625037.8; dated Dec. 17, 2018. |
Korean Office Action in application No. 10-2018-7011759; dated May 31, 2019. |
The International Preliminary Report on Patentabilty of PCT Application No. PCT/CN2016/096734, dated Mar. 27, 2018, 4 pages. |
Perahia, Eldad and Stacey, Robert. “Next Generation Wireless LANS Throughput, Robustness, and Reliability in 802.11n,” Cambridge University Press, Aug. 28, 2008. |
Number | Date | Country | |
---|---|---|---|
20180279347 A1 | Sep 2018 | US |