Not Applicable
Not Applicable
Not Applicable
Over the past fifteen (15) years or so the chemistry of the injurious, baked-on carbonaceous deposits have changed somewhat, primarily due to improvements in petroleum refining and the need to comply with various federal and state regulations. Changes have also been made in the composition of gasoline and oil additives and in mechanical aspects of engines—now increasingly controlled and monitored by numerous computer chips. All are designed to provide more engine efficiency, thus increasing U.S. EPA mileage ratings, while decreasing noxious tailpipe emissions.
Despite these many sophistications the problem of carbonaceous deposits remains, and in fact, continues unabated. At least in part, these build-ups can be related to unsaturated hydrocarbons (olefinics), which constitute a significant percentage of fuels, and which cannot be removed by any economically feasible process. If anything, the more complex and sensitive nature of modern engines has made them more susceptible to the many problems cause by these insidious carbon-based deposits. The need for their periodic removal remains a pressing issue.
The problems arising from the accretion of these carbonaceous engine deposits can be described with more specificity. They cause a general loss of power in the internal combustion engine. Multiplicities of factors are involved. They may cause rogue combustions that are out-of-synchrony with the timing of the primary combustion sequence. Aside from the obvious “contra-combustion” event, this acts to steal fuel from the next primary combustion stage. One result is inefficient combustion, with unburned hydrocarbons then being emitted into the atmosphere through the exhaust pipe. These fuel hydrocarbons are recognized by the U.S. EPA and the various states as Volatile Organic Compounds (VOC's), which can then act indirectly to create more ozone in the air.
As is well documented, troposphere ozone is an extremely reactive and dangerous air contaminant, condemned by the National Academy of Science and other experts, and now regulated to a limit of 0.08 part-per-million in air as an official interpretation of the Clean Air Act Amendments of 1999. At this time most states are in non-attainment, and are straining their resources to be compliant, as evident from their State Implementation Plans (SIPs), submitted periodically to the U.S. EPA. Given this background, it will be seen that the minimization of unburned fuel (VOCs) is a very important element in tropospheric ozone reduction. It will be welcomed by both regulators and environmentalists as one of the many that will ultimately lead to cleaner air.
Carbonaceous build-ups on valve seats (valve tulips) cause loss of compression and an interference with optimum air-to-fuel ratios. Deposits in combustion chambers act to reduce the tension in compression rings. In turn, this reduces compressions, as well as engine power. Because of unbalanced piston compressions, engine vibrations will increase, causing excessive engine wear and reduced fuel mileage, plus even more emissions of unburned hydrocarbon fuel. Deposits on spark plugs also interfere with optimum fuel burn, due to the changing of their dynamic kilovoltage (KV) and millisecond pulse width. Carbonaceous deposits in the EGR valve are the cause of engine surging, rough engine syndrome and giving a check engine light. Similarly, these deposits on the oxygen sensor unit will cause a slow response to necessary air-fuel adjustments, making the ECM unit adjust the air-fuel mixture to ratios richer than the stoichiometric or optimum proportions. Without sufficient oxygen to burn the excess of fuel, the mileage-per-gallon will decrease and the unused fuel will be emitted into the atmosphere via the tail pipe. Finally, a build up of carbonaceous deposits on the catalytic converter screen will act to reduce the rate of heat transfer, ultimately causing the screen to disintegrate. When fragments are blown into the converter, permanent damage will result. The vehicle operator will generally be oblivious to the circumstance, often driving many thousands of miles with little or no remediation of the raw exhaust fumes before the next converter check-up.
Numerous studies have demonstrated that carbonaceous engine deposits can reduce fuel mileage by as much as 10%, and even as high as 15%, after 15,000 to 20,000 miles of driving, especially under city driving (stop-and-go) conditions. The physico-chemical action of my invention, when properly used as a preventative maintenance program—typically after 15,000 miles of city driving, or about 20,000 miles of rural driving—will act to increase fuel efficiency by an average of 15%. In today's world of high fuel prices, concerns about air quality and fears of global warming effects this improvement in fuel efficiency can be viewed as quite significant and welcome.
Laboratory test have been developed as early as 1985 to detect, develop and then maximized the synergistic chemistry of carbonaceous sludge removal. In particular, the Cold Spark Plug Immersion Test (CSPIT) was developed to access the ability of various solvent mixtures to disperse baked-on carbonaceous engine deposits. The preferred test is fully described in U.S. Pat. No. 4,992,187. Spark plug deposits were given a descriptive rating of A, B, C and D, in terms of their relative thickness and density. For example, soil type C represents a fairly serious deposit representative of about 10% of all spark plug deposits. Type D is the most serious, described as “a dense, dark, carbonized baked-on deposit” and this affects the majority of spark plugs. It is very similar to the deposits found on upper internal combustion engine surfaces.
In the interest of convenience the detail of the current test procedure are presented here as follows:
Our invention can be employed to provide a series of synergistic liquid mixtures, each capable of dispersing and dissolving modern baked-on carbonaceous deposits from the surface of the upper cylinder area of internal combustion engines, including the spark plugs and all the other component surfaces in this enclosure. Maintaining surface cleanliness is a major element in sustaining maximum operating efficiency of these engines. We have found that polar protic and dipolar aprotic solvents, either independently or in blends having a dielectric constant above 25 or more, can be synergized by raising the pH value to 11 or above (at 25 deg. C.). (See
As the dielectric constant increases beyond 30, cleaning efficacy also increases. Methyl Formamide, with a uniquely high dielectric constant in excess of 200, is unusually effective. We have, in fact, found two single compounds able to clean modern upper cylinder carbonaceous deposits without the usual need to be synergized. These are Hydrazine (and certain close derivatives), with a dielectric constant of about 53 and a pH valve of over 13 (at 25 deg. C.), as well as concentrated aqueous Ammonium Hydroxide Solutions (typically with 28.6% ammonia content), and having a dielectric constant of about 61 and a pH valve of over 13 (25 deg. C.).
Our invention provides three distinct techniques for cleaning the component of the upper cylinder area of internal combustion engines. These are:
In the marketing of products that take advantage of this invention, aerosols with the desired synergistic composition and pre-determined delivery rate would be made available, together with the appropriate connector of plastic tubing and adapters. Each aerosol dispenser could be sized to provide maintenance for a multiplicity of internal combustion engines.
In the drawings:
1.
2.
3.
4.
Our invention provides specific compositions of matter ideal for dispersing and dissolving dense layers of heavy, baked-on carbonaceous deposits that form on surfaces within the upper internal combustion engine chambers; wherein a polar protic or dipolar aprotic solvent is synergized with a primary, secondary or tertiary amine, up to a pH valve of a least 11 (at 25 deg. C.). As notation alkali metal hydroxides cannot be used as synergists because of their ability to chemically attack aluminum engine components, etching the metal and producing solid aluminate salts that are potentially more damaging to the engine than the carbonaceous deposits.
We have found that high dielectric constant formulations with pH valves ten (10) or less display little or no ability to disperse and dissolve carbonaceous deposits. (See
Test results from actual cleaning of upper engine areas show that, ideally, the synergistic cleaning compositions should have a pH of 13 (at 25 deg. C.) or higher, and a dielectric constant of 35 or higher. This high level of cleaning efficiency is required because of limits imposed on engine cleaning time by OE shops, which is usually in the range of 5 to 10 minutes. (See
To conduct the spark plug cleaning test, the plug must be lowered very slowly into the very cold liquid. This will cause some boiling, but will avoid an excessive boil-out and loss of some liquid. Use a stopwatch or other timer and wait for two (2) minutes; then lift out the plug. The test solution is then slowly poured into the standard 250 ml cylinder and brought to 250 ml with De-ionized Water, taking care not to have an excessive final boil-off of propellant. Stir until uniform. Transfer some of this solution into the Orbeco-Hellige glass tube and insert into the colorimetric test unit. Under these very cold conditions the scale reading will typically show 3.4, indicating that about 35% of the baked-on carbonaceous deposit has been dispersed and dissolved. If the same experiment is performed, but now at 70 deg. F. (21 deg. C.) the scale reading will be about 5.0. At 100 deg. F. (38 deg. C.) the reading is about 6.2, and at 130 deg. F. (54 deg. C.) it is 8.5. (These data are displayed on
On a fully warmed engine the lower area of the plenum temperature will average about 150 deg. F. (62 deg. C.), and this increases to about 220 deg. F. (105 deg. C.) on the surfaces of the intake valves. Engine test have shown that the optimum time for the synergistic composition to contact the carbonaceous deposits in these areas to be between four (4) to six (6) minutes.
The optimized formula for preventative maintenance, as illustrated in
A preferred use of this product is to attach the over-cap actuator onto the aerosol valve stem and mounting cup, and then position the other end of the eductor tube, protruding through the variable diameter plenum adapter, into the upper engine plenum. Then slowly depress the actuator pad until a mechanical feature locks the valve in an “open” position. The aerosol unit will then spray until it is empty. The discharge rate is normally four (4) to seven (7) minutes depending on the size of the capillary I.D. selected. Since there is no operator present, in the event that the engine should stall, the aerosol will continue to spray until empty. This controlled spray mist will not cause any harm to the stalled engine, because this capillary adapter prevents the possibility of discharging the synergistic mixture as a heavy wet spray or liquid stream that would tend to run down the plenum wall to the closest intake runner. It would then accumulate behind a single intake valve, or if that valve was open, it would then leak down upon the top of the piston. If these things happen, when the operator attempts to start the engine, there will be the risk of hydraulically locking it, cracking the top of the piston or bending a piston rod, thus severely damaging or even destroying the engine.
The optimized Diesel mist formula (
The mechanic will then let the engine “soak” for ten (10) to fifteen (15) minutes. Then he should crank the engine very slowly until it has made one complete revolution, after which regular cranking can be initiated until the engine starts. The engine is brought to about 3000 rpm, then snapped to about 5000 rpm briefly, to blow out any loose carbonaceous fragments. Finally, the vehicle should be driven for 3 to 5 miles, to fully exhaust the combustion chambers and catalytic converter.
Over 300 tests have been conducted, to fully refine and demonstrate the superior upper engine cleaning activity, resulting from the use of this high dielectric constant formulation, when synergized by the inclusion of high pH valve ingredients, and when applied to older vehicles and some relative new vehicles, Formula 525 can be effectively used to “soak” cylinders, to clean entire combustion chambers, cylinder domes, piston heads and to release compression rings that have been frozen into place by hard carbonaceous depositions. This cleaning technique requires the use of a unique adapter 360 degree tip (illustrated in
See