The present invention relates to an upper of a shoe, and more particularly to an upper of a shoe having a lace fitting structure.
A shoelace fits an upper to a foot. The upper fitted to the foot supports the foot. In view of this, a flexible member covering the instep is often provided with a reinforcement member.
However, the foot substantially changes its shape when dorsiflexed at the MP joint, and gaps are likely to occur between the shoe and the foot during movement.
As the posture changes, the shape substantially changes over an area from the MP joint to the middle foot section of the foot. If the upper, which is fitted to the foot when standing still, fails to follow changes of the shape of the foot, the fit between the upper and the foot significantly deteriorates during movement. Particularly, the reinforcement member has a greater rigidity than the flexible member, and is therefore less likely to follow changes than the flexible member.
First Patent Document: WO2007/002068A1 (FIGS. 1 to 3)
Second Patent Document: Japanese Utility Model Publication for Opposition No. 33-3132 (FIG. 2)
Third Patent Document: JP2001-54409A (front page)
Fourth Patent Document: JP03-55710Y (
Fifth Patent Document: WO2013/136514A1 (front page)
Sixth Patent Document: USD701,0315 (front page)
It is an object of the present invention to provide an upper of which a flexible member and a reinforcement member better fit to the foot when the foot is dorsiflexed, for example.
The present invention is directed to an upper for fitting, to an instep of a foot, a flexible member covering at least a portion of the instep, the upper including:
a medial side portion 31 covering a medial side surface of the instep;
a lateral side portion 32 covering a lateral side surface of the instep;
a flexible member 3F, which is flexible, covering at least a portion of the instep in the medial side portion 31 and/or the lateral side portion 32;
at least one reinforcement member 3L having a greater rigidity than the flexible member 3F, at least a lower half portion 39 of the reinforcement member 3L attached to a surface of the flexible member 3F in the medial side portion 31 and/or the lateral side portion 32, wherein the at least one reinforcement member 3L includes a plurality of upper end portions 4 spaced apart (separated) from one another in a longitudinal direction Y of the foot, and a through hole H passing through (piercing, running through) the reinforcement member 3L is defined in each of the upper end portions 4 in a direction normal to a surface of the reinforcement member 3L;
a cord 1 provided along a central edge portion 33 of the medial side portion 31 and/or the lateral side portion 32, the cord 1 inserted (running) through the through holes H of the medial side portion 31 and/or the lateral side portion 32 and placed along the longitudinal direction Y, wherein portions of the cord 1 include exposed areas 10 which are placed exposed; and
a shoelace 2 for engaging with the cord 1 in the exposed areas 10 in a transverse direction X of the foot so as to bring the medial side portion 31 and the lateral side portion 32 closer to each other,
wherein each of the upper end portions 4 of the at least one reinforcement member 3L is attached to the flexible member 3F in one of a fore (front) portion 4F and a rear portion 4R, and is set to be un-attached (non-attached, without attached) to the flexible member 3F in another (the other) one of the fore portion 4F and the rear portion 4R.
In the present invention, “each of the upper end portions 4 of the at least one reinforcement member 3L is attached to the flexible member 3F in one of a fore portion 4F and a rear portion 4R, and is set to be un-attached to the flexible member 3F in the other one of the fore portion 4F and the rear portion 4R” means to include at least the following three cases:
Case 1: all upper end portions 4 are attached to the flexible member 3F only along the fore portions 4F.
Case 2: all upper end portions 4 are attached to the flexible member 3F only along the rear portions 4R.
Case 3: there are upper end portions 4 attached to the flexible member 3F only along the fore portions 4F and other upper end portions 4 attached to the flexible member 3F only along the rear portions 4R.
Herein, the term “cord” means one or more strings (laces, strand) that can be used as a shoelace, and the cord may be knitted natural yarn (threads) or knitted polymer synthetic yarn (threads), or may be one or more strings of a natural leather, a synthetic resin wire or a synthetic leather, and may include a metal wire or a resin wire therein. In the present invention, the cord preferably includes a metal wire therein.
According to the present invention, the exposed areas of the cord form lacing apertures, through which the shoelace passes, and the exposed areas are placed over the instep of the foot anterior to the wearing opening (opening for wearing), so that the medial side portion and the lateral side portion of the upper better fit to the foot in an area anterior to the wearing opening.
The medial side portion and the lateral side portion are pulled toward the center (of the instep) by the shoelace in the central-side edge portion of each side portion, so that the medial side portion and the lateral side portion of the upper better fit to the foot.
The reinforcement member 3L is attached to the flexible member 3F in the lower half portion 39 of the reinforcement member 3L, and the upper end portion 4 of the reinforcement member 3L is attached to the flexible member 3F in one of the fore portion 4F and the rear portion 4R, and is set to be un-attached to the flexible member 3F in the other one of the fore portion 4F and the rear portion 4R. Since the reinforcement member 3L is attached to the flexible member 3F over a wide area as described above, it will be possible to prevent the reinforcement member 3L from being inadvertently shifted from the flexible member 3F.
Herein, if both of the fore portion 4F and the rear portion 4R of the upper end portion 4 of the reinforcement member 3L are attached to the flexible member 3F, it will be difficult to pass the cord 1 through the through hole H of the upper end portion 4. On the other hand, if both of the fore portion 4F and the rear portion 4R of the upper end portion 4 are un-attached (not attached) to the flexible member 3F, the upper end portion 4 of the reinforcement member 3L will easily be displaced or deformed inadvertently with respect to the flexible member 3F during the movement of dorsiflexion described above.
In contrast, according to the present invention, the upper end portion 4 is attached to the flexible member 3F in only one of the fore portion 4F and the rear portion 4R of the upper end portion 4. Therefore, the cord 1 can be inserted through the through hole H of the upper end portion 4.
Particularly, the attachment to the flexible member 3F is made in one of the fore portion 4F and the rear portion 4R of the upper end portion 4, and therefore, the upper end portion 4 will move together with the flexible member 3F during the movement of dorsiflexion described above.
Moreover, since the other one of the fore portion 4F and the rear portion 4R of the upper end portion 4 is un-attached (not attached, without attached) to the flexible member 3F, the area of the flexible member 3F, which is flexible, covered by the upper end portion 4 will be deformable. Therefore, the flexible member 3F can deform in conformity with the substantial deformation of the foot when dorsiflexed, for example, thereby allowing for such displacement that upper end portions 4 that are adjacent to each other come close to each other or overlap with each other, as seen from the side, when dorsiflexed, for example.
Thus, this upper will better fit to the foot and will better support the foot in a stationary standing position and during movement such as when dorsiflexed.
Preferably, each of the upper end portions 4 of the at least one reinforcement member 3L is attached to the flexible member 3F in only one of the fore portion 4F and the rear portion 4R among the fore portion 4F, the rear portion 4R, and a top (distal) edge 40 of each of the upper end portions 4 that is on a top (distal) side with respect to the through hole H.
In such a case, the top edge 40 of the upper end portion 4 is un-attached (not attached) to the flexible member 3F, thereby allowing the upper end portion 4 to be easily displaced or deformed. Moreover, it is possible to easily insert the cord 1 through the through hole H of the upper end portion 4.
Preferably, one of the following (a) and (b) is set:
(a) each of the upper end portions 4 of the at least one reinforcement member 3L is attached to the flexible member 3F in the fore portion 4F, and is set to be un-attached to the flexible member 3F in the rear portion 4R,
(b) each of the upper end portions 4 of the at least one reinforcement member 3L is attached to the flexible member 3F in the rear portion 4R, and is set to be un-attached to the flexible member 3F in the fore portion 4F.
In such a case, only the fore portion 4F or the rear portion 4R of the upper end portion 4 of each reinforcement member 3L is attached to the flexible member 3F, and the attached portions of the reinforcement members 3L that are adjacent to each other can be placed at a predetermined interval. As a result, one can expect deformation of the flexible member 3F between the reinforcement members 3L.
Preferably, each of the upper end portions 4 is set to be un-attached to the flexible member 3F in a top (distal) edge 40 of each of the upper end portions 4 that is on a top (distal) side with respect to the through hole H.
In such a case, the top edge 40 of the upper end portion 4 is un-attached (not attached) to the flexible member 3F, thereby allowing the upper end portion 4 to be easily displaced or deformed. Moreover, it is possible to easily insert the cord 1 through the through hole H of the upper end portion 4.
Preferably, between two of the through holes H that are adjacent to each other in the longitudinal direction Y, the cord 1 is placed on a back (inner) side 4b of one of the upper end portions 4 and on a front (outer) side 4s of another (the other) one of the upper end portions 4, thereby forming, between the cord 1 and the flexible member 3F, a space S, through which the shoelace 2 passes.
With such an arrangement of the cord 1, it will be easy to ensure sufficient lengths of the exposed areas 10. Therefore, a predetermined degree of the aforementioned displacement or deformation can be expected.
Moreover, it will be easy to ensure a sufficient size of the space S through which the shoelace 2 passes. Therefore, it will be easy to pass the shoelace 2 engaging with the exposed area 10.
Preferably, between two of the plurality of through holes H that are adjacent to each other in the longitudinal direction Y, the cord 1 is placed on a back (inner) side 4b of one of the upper end portions 4 and on a front (outer) side 4s of another (the other) one of the upper end portions 4,
whereby, of the two (i.e., the one and the other) upper end portions 4 that are adjacent to each other, the back side 4b of the one of the upper end portions 4 and the front side 4s of the other one of the upper end portions 4 are placed at least partially facing each other.
Herein, “of the two upper end portions 4 that are adjacent to each other, the back side 4b of one of the upper end portions 4 and the front side 4s of the other one of the upper end portions 4 are placed at least partially facing each other” means that two upper end portions 4 and 4 that are adjacent to each other are not placed on a single virtual plane, and when the front (outer) side of one upper end portion 4 is seen from the normal direction thereto, at least a portion of the front side 4s of the other upper end portion 4 is hidden and not visible.
In the case of this preferred embodiment, two upper end portions 4 and 4 that are adjacent to each other will likely be placed on a pair of planes that are generally parallel to each other, with the shoelace 2 removed. Therefore, it will be easy to ensure the exposed area 10 of the cord 1, and it will therefore be easy to insert the cord 1 through the space S between the exposed area 10 and the flexible member 3F.
Preferably, between two of the plurality of through holes H that are adjacent to each other in the longitudinal direction Y, the cord 1 is placed on a back (inner) side 4b of one of the upper end portions 4 and on a front (outer) side 4s of another (the other) one of the upper end portions 4, whereby:
a space S, through which the shoelace 2 passes, is formed between the cord 1 and the flexible member 3F; and
of the two upper end portions 4 that are adjacent to each other, the back side 4b of the one of the upper end portions 4 and the front side 4s of the other one of the upper end portions 4 are placed at least partially facing each other.
In such a case, one can expect advantageous effects as described above.
Preferably, a tensile rigidity of the cord 1 is greater than a tensile rigidity of the shoelace 2.
If the tensile rigidity of the cord 1 is small, the cord 1 may substantially (considerably) stretch or bend when the foot is dorsiflexed, and the fastening force of the shoelace 2 may not easily be transferred to the reinforcement members 3L. In contrast, if the tensile rigidity of the cord 1 is greater than that of the shoelace 2, the fastening force of the shoelace 2 will easily be transferred to the reinforcement members 3L.
Preferably, two of the upper end portions 4 that are adjacent to each other in the longitudinal direction Y partially overlap with each other as seen from the side.
In such a case, since upper end portions 4 that are adjacent to each other overlap with each other, as seen from the side, the size of the upper end portions 4 can be increased in the direction in which the cord 1 extends. Therefore, it is easy to form the through holes H, and it is easy to ensure the space S between the cord 1 and the flexible member 3F.
Preferably, the at least one reinforcement member 3L includes a strip (band, strap) portion 37 having a strip (strip-like, band) shape extending from each of the upper end portions 4 toward a sole 8; and
each of the upper end portions 4, which is an upper end of the strip portion 37, includes a protruding portion 41 protruding forward and/or rearward.
In such a case, the strip portion 37 and the strip portion 37 adjacent to each other can easily be placed while being spaced apart from each other in the longitudinal direction. The protruding portion 41 also makes it easy to form the through hole H, and it is easy to ensure the space S between the cord 1 and the flexible member 3F.
Preferably, the at least one reinforcement member 3L includes a strip portion 37 having a strip (strip-like) shape and extending from each of the upper end portions 4 toward a sole 8;
each of the upper end portions 4, which is an upper end of the strip portion 37, includes a protruding portion 41 protruding forward and/or rearward; and
two of the upper end portions 4 that are adjacent to each other in the longitudinal direction Y overlap with each other via the protruding portion 41 as seen from the side.
In such a case, one can expect advantageous effects as described above.
Preferably, the at least one reinforcement member 3L includes a plurality of strip portions 37 each having a strip (strip-like) shape and extending in a downward direction or in a diagonally downward direction from the upper end portions 4 along the medial side surface or the lateral side surface; and
the upper further comprises a flexible portion 35 where the flexible member 3F is exposed between two of the plurality of strip portions 37 that are adjacent to each other in the longitudinal direction Y.
In such a case, the flexible portion 35 between two strip portions 37 adjacent to each other will be allowed to freely deform forward/rearward and upward/downward when the pair of strip portions 37 are displaced.
Therefore, the strip portion 37 will easily be displaced in accordance with the deformation of the foot during movement of the foot, e.g., dorsiflexion. That is, the strip portion 37 is likely to follow the movement of the foot, and one can expect a good fitting property.
Preferably, an area of the flexible portion 35 in a dorsiflexed state of a shoe is smaller than an area of the flexible portion 35 in a standstill (stationary standing) position.
In such a case, when the shoe is dorsiflexed, the upper edge (the edge portion 33) of an upper 3 opposite from the sole is bent and shrunk in the longitudinal direction in an area corresponding to the instep, and one can expect an even better fitting property.
Preferably, each of the upper end portions 4 is placed in a forwardly-tilting (-leaning) orientation, extending in a diagonally rearward direction from each of the upper end portions 4 toward a sole 8; and
a posterior one (ones) of the upper end portions 4 tilts (leans) more forward than an anterior one (ones) of the upper end portions 4.
The slope of the ridge of the instep gradually increases rearward of the MP joint, and moreover, the hallucal extensor tendon (the extensor hallucis longus tendon) rises upward in the middle foot portion. In view of such a structure of the instep, a plurality of upper end portions 4 will make the flexible member 3F better fit to the instep if a posterior one of the upper end portions 4 is in a more forwardly-leaning orientation than an anterior one of the upper end portions 4.
Preferably, the at least one reinforcement member 3L includes a plurality of strip portions 37 each having a strip (strip-like) shape and extending from the upper end portions 4 in a downward direction or a diagonally downward direction along the medial side surface or the lateral side surface; and
two of the strip portions 37 that are adjacent to each other in the longitudinal direction Y have their lower end portions 38, opposite from the upper end portions 4, lying continuous with each other in the longitudinal direction or a diagonally longitudinal direction in the lower end portions 38.
In such a case, on the medial side surface, the lower end portions 38 continuous with each other will be able to cover and support the ball of the big toe from the side, whereas on the lateral side surface, they will be able to cover and support the ball of the little toe from the side. Therefore, the support of the foot is likely to be stable.
The present invention will be understood more clearly from the following description of preferred embodiments taken in conjunction with the accompanying drawings. Note however that the embodiments and the drawings are merely illustrative and should not be taken to define the scope of the present invention. The scope of the present invention shall be defined only by the appended claims. In the accompanying drawings, like reference numerals denote like components throughout the plurality of figures.
Embodiments of the present invention will now be described with reference to
An upper for the left foot will be illustrated in the following description. In the following figures, the arrow OUT represents the lateral side direction of the foot, and the arrow IN represents the medial side direction of the foot.
A shoe having the lace fitting structure shown in
The sole 8 is placed under the upper 3, and comes into contact with the road surface. The upper 3 includes a flexible member 3F and a tongue 6 covering at least a portion of the instep of the foot. The cord 1 and the shoelace 2 are provided for fitting the flexible member 3F to the instep of the foot.
Herein, the instep of the foot refers to an area including the upper surface and the side surface of the foot that is posterior to the metatarsophalangeal joint MP of
Note that the shoelace 2 is placed on the upper surface of the instep.
In
As shown in
In
In
In
The other reinforcement member 30 is attached, by being sewn, to the surface of the stretchable member 3S at the toe, for example. Note that the same material as the flexible member 3F, for example, is used for the heel portion, etc., and the other reinforcement member 30 is sewn and attached to these areas.
As can be seen from
The reinforcement members 3L and 30 are formed by a material whose rigidity is greater than the flexible member 3F. That is, it is preferred that the reinforcement members 3L and 30 are less stretchable and have a greater flexural rigidity (bending rigidity) than the flexible member 3F. The material of the reinforcement member 3L may be any of various materials, such as TPU, resin and rubber, as well as artificial leather. On the other hand, the flexible member 3F is formed by a material whose rigidity is smaller than the reinforcement member 3L, and may be more stretchable or have a smaller flexural rigidity than the reinforcement member 3L.
It is preferred that the stretchable member 3S is a meshed member, for example, that stretches/shrinks in the longitudinal direction Y and the transverse direction X (
Each reinforcement member 3L having the through hole H shown in
For example, the upper 3 includes a plurality of flexible portions 35 separated from each other in the longitudinal direction by the reinforcement members 3L. Each flexible portion 35 is a portion where the flexible member 3F is not covered by the reinforcement member 3L between adjacent reinforcement members 3L and 3L, and the flexible member 3F is thus exposed.
Note that as shown in
The medial side portion 31 of
On the other hand, the lateral side portion 32 of
That is, the reinforcement member 3L and the other reinforcement member 30 are defined based on the area of the foot to be covered thereby.
Each reinforcement member 3L may extend in a downward direction or a diagonally downward direction along the medial side surface or the lateral side surface. As will be described below, the area of each flexible portion 35 in a state of
Each reinforcement member 3L having the through hole H of
In
Each reinforcement member 3L includes a strip portion having a rectangular strip-like shape extending in a diagonally rearward direction from the upper end portion 4 toward the sole 8. The strip portions 37 are spaced apart from each other in the longitudinal direction Y or a diagonally longitudinal direction, with the flexible portion 35 exposed between adjacent strip portions 37. The upper end portion 4, which is the upper end of the strip portion 37, includes a protruding portion 41 protruding forward, for example. In the present embodiment, as shown in the side views of
The upper end portion 4 of each reinforcement member 3L of
Next, the attached state and the un-attached state of the reinforcement member 3L will be described in detail. Note that the medial side portion 31 and the lateral side portion 32 are similar in structure to each other, and only the lateral side portion 32 will be discussed representatively in the following description.
Broken lines in
The upper end portions 4 partially overlap with each other as seen from the normal direction perpendicular to the surface thereof while being spaced apart from each other in the normal direction.
In the present embodiment, the upper end portion 4 of each reinforcement member 3L of
Each reinforcement member 3L is sewn to the flexible member 3F by a second thread F2 along the front (fore) edge of each reinforcement member 3L (including the front edge of the upper end portion 4), near the lower end boundary 42 of the upper end portion 4 and along the lower end portion 38 (
In the present invention, the term “attached” may be replaced by the word “secured (fixed)”, and it conceptually means that objects are joined together in such a manner that they cannot be removed easily. Specifically, “attached” means that objects are joined together by means of bonding, welding or sewing, or by a combination of two or more of these means.
In the present invention, the term “un-attached (not attached, without attached) state” refers to a free state in which the fore portion 4F or the rear portion 4R is not attached to the flexible member 3F. The fore portion 4F or the rear portion 4R in the un-attached state is not restrained by the flexible member 3F, and may be capable of displacement or deformation, such as twisting or rotation, about the attached portion as the center. On the other hand, portions of the flexible member 3F to which the fore portion 4F or the rear portion 4R is not attached may be capable of such a deformation that wrinkles are produced (three-dimensional deformation) and such a deformation that virtual square shapes turn into diamond shapes (shear deformation) in accordance with deformation of the foot or the upper.
As shown in
Note that in the present embodiment, a pair of loops R for the cord is provided at the front end of the tongue 6, and the cord 1 is placed in a U-shaped pattern, for example.
Thus, a portion of the cord 1 extends continuously over a plurality of exposed areas 10 spaced apart from each other, while being inserted through the through holes H, along the longitudinal direction Y.
The cord 1 of
In
In an area on the medial side IN of the foot and anterior to the wearing opening 7 of
In the present embodiment, the cord 1 is formed by a single string (strand) arranged in a U-shaped pattern, including a third portion 1X extending in the transverse direction X and connecting together the first portion 1M and the second portion 1L.
Thus, the cord 1 of
In the present embodiment, the cord 1 is formed by a single round string and a metal or resin wire inserted through the round string. On the other hand, the shoelace 2 is formed by a single string (strand, lace) of knitted natural yarn (threads) and/or artificial threads.
Now, the upper end portion 4 of each reinforcement member 3L of
Two of the reinforcement members 3L that are adjacent to each other in the longitudinal direction Y do not have to partially overlap with each other as seen from the side.
Next, the behavior of this upper will be described. That is, the behavior of this upper during the transition from the stationary standing position of
Now, when the shoe of
On the other hand, the flexible member 3F of
On the other hand, as can be seen from a comparison between
As can be seen from a comparison between
Herein, the upper end portion 4 of the reinforcement member 3L is attached to the flexible member 3F in only one of the fore portion 4F and the rear portion 4R. Therefore, the rotation of the upper end portion 4 is unlikely to be hindered. Therefore, one can expect a good fitting property when dorsiflexed.
Next, an alternative example will be described.
The reinforcement members 3L and the flexible portions 35 may be provided only in one of the medial side portion 31 and the lateral side portion 32.
The reinforcement members 3L and the flexible portions 35 do not need to be provided over the entire length of the instep, and they may be provided in the forefoot portion or the middle foot portion of the foot (e.g., they may be provided over one of the first half and the second half of the entire area where the shoelace 2 is placed).
Moreover, the reinforcement member 3L and the flexible portion 35 may be in an asymmetric arrangement between the medial side and the lateral side, e.g., they may be provided in the middle foot portion on the medial side of the foot and provided in the forefoot portion on the lateral side of the foot.
At least one reinforcement member 3L may be a plurality of sheets separately formed with one another and each having one upper end portion 4 and one strip portion 37, which sheets are attached to the flexible member 3F. Alternatively, it may be a single sheet of the reinforcement member 3L with a plurality of upper end portions 4 and a plurality of strip portions integrally (unitary) continuous with the reinforcement member 3L. The through hole H may be formed by a so-called “D-ring” or a synthetic resin C-ring. That is, a member having a through hole therein, such as a D-ring or a C-ring, may be provided at the upper edge of each upper end portion 4, and the cord 1 may be inserted through the D-rings, or the like.
While preferred embodiments have been described above with reference to the drawings, various obvious changes and modifications will readily occur to those skilled in the art upon reading the present specification.
For example, the protruding portion 41 may protrude rearward of the upper end portion 4. The upper end portion 4 does not need to have the protruding portion 41.
The tensile rigidity of the cord 1 may be smaller than that of the shoelace 2 or may be generally equal to that of the shoelace 2.
The sole placed under the upper may include only the so-called “outsole”.
The upper may be of a high-cut type, not a low-cut type.
The tongue in the central portion of the upper may be absent.
Thus, such changes and modifications are deemed to fall within the scope of the present invention, which is defined by the appended claims.
The present invention is applicable to shoes having a lace fitting structure using a shoelace.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/060485 | 4/11/2014 | WO | 00 |