The present invention relates to a modular assault-type shotgun, and more particularly, to an upper receiver for a modular assault-type shotgun configured to be used with a lower receiver of an automatic or semi-automatic assault-type rifle. Specifically, the present invention relates to a modified military specification (mil-spec) upper receiver configured for use with a mil-spec lower receiver of an M-16/AR-15 firearm to create a modular assault-type shotgun.
There are a number of available automatic and semi-automatic firearms for use by military personnel and civilians. While fully automatic firearms are generally illegal for use by the civilian population, many of the components which constitute an automatic firearm are the same as those found within legal semi-automatic models. Arguably the most popular semi-automatic assault-type firearm used by civilians, particularly within the United States, is the AR-15. The AR-15 is the semi-automatic variant of the fully automatic M16 firearm used by United States military personnel. While AR-15 is a registered trademark of Colt Industries, a number of additional manufacturers manufacture clones of the AR-15 and market these clones under separate trademarks. While used throughout the specification, it is to be understood that the term AR-15 is meant to include not only those firearms manufactured by Colt Industries, but also those additional clones and any variants thereof.
The AR-15 and M16 are designed as modular rifles generally comprising a buttstock, lower receiver, upper receiver and barrel assembly configured to fire .223 Remington or 5.56×45 mm NATO military ammunition. Each component is separable from one another and affords firearm owners the opportunity to customize the firearm with after-market components such as barrels of differing lengths, upper receivers designed to handle different calibers of rifle ammunition, flashlights, hand guards, grenade or flare launchers, flash or sound suppressors, grips, and front or rear sights. To operate, the lower receiver is configured to include a trigger wherein activation of the trigger causes a rifle cartridge housed within the chamber of the upper receiver to be fired out the barrel of the firearm by action of a reciprocating bolt carrier group. Internal mechanisms of the upper receiver expel the shell casing of the fired rifle cartridge from the chamber while components engaged with the magazine housed within the magazine well of the lower receiver feed a new rifle cartridge into the now-empty chamber. The buttstock mounts to the lower receiver and includes a buffer assembly and action (or recoil) spring in communication with the bolt carrier group where the spring pushes the bolt carrier group back toward the chamber in preparation of firing another rifle cartridge.
To date, most automatic and semi-automatic firearms, like the AR-15, have been configured to fire rifle cartridges only. Attempts to modify these firearms, and particularly the AR-15, to fire shotgun shells have run into a number of problems. For instance, AR-15s have been modified to accommodate .410 bore shells but these modifications require lower receivers which no longer satisfy military specifications (mil-spec). Other modifications continue to result in jamming or binding of the shotgun shell cartridges when a cartridge has been fired, its shell is being ejected, or a new cartridge is being extracted from the magazine and loaded within the chamber. To that end, Applicant has produced a shotgun shell magazine configured to feed shells from the magazine into a mil-spec AR-15/M16 lower receiver (see commonly owned U.S. Pat. No. 9,664,469 (the '469 Patent) issued May 30, 2017, the entirety of which is incorporated by reference herein). Nevertheless, the direct impingement mechanism used within many assault-type rifles (including the M16/AR-15) may hinder or prevent proper ejection of the fired shotgun shell, or may fail to properly cycle the bolt carrier assembly during ejection and extraction.
As such, there is a need for an upper receiver and barrel assembly which is configured to mount to a lower receiver, wherein fired shotgun shells may be efficiently ejected after firing while also properly extracting the next successive shotgun shell from the magazine upon proper cycling of the bolt carrier assembly. There is a further need for a modified M16/AR-15 upper receiver configured to mount to a mil-spec M16/AR-15 lower receiver and automatically or semi-automatically fire .410 bore shotgun shells. The present invention addresses these and other needs.
In general, an embodiment the present invention is directed to an upper receiver and barrel assembly configured to mount to a lower receiver and receive and fire a shotgun shell. The upper receiver and barrel assembly comprises an upper receiver, a barrel assembly and a gas piston assembly. The upper receiver comprises an upper receiver housing defining a chamber configured to receive the shotgun shell therein and a bolt carrier group. The bolt carrier group includes a bolt carrier slidably received within the upper receiver housing, wherein the bolt carrier travels from a forward position to a rearward position upon firing of the shotgun shell; a bolt received within the bolt carrier; a firing pin configured to strike a primer end of the shotgun shell when the bolt carrier is in the forward position; and an ejector assembly including an ejector pin and ejector hook, wherein the ejector assembly is configured to expel the fired shotgun shell from the chamber when the bolt carrier travels to the rearward position. The barrel assembly comprises a barrel having a receiver end and a muzzle end and a tubular sidewall defining an open bore; a barrel extension coupling the receiver end of the barrel to the upper receiver housing; and a barrel nut adapted to releasably secure the barrel and barrel extension to the upper receiver housing. The gas piston assembly comprises a piston body having a first end and a second end, wherein the first end of the piston body includes a tab slidably received within a corresponding slot defined by the barrel extension; a piston end cap coupled to the second end of the piston body; a piston bonnet having a bonnet end wall and a sidewall configured to slidably receive the piston end cap therein, wherein the piston bonnet is secured to the barrel an intermediate distance between the receiver end and the muzzle end of the barrel, wherein a piston gap is defined between the piston end cap and the bonnet end wall, and wherein the barrel sidewall defines a gas port fluidly connecting the open bore of the barrel with the piston gap; and a biasing member urging the piston body and piston end cap toward the bonnet end wall.
Additional objects, advantages and novel features of the present invention will be set forth in part in the description which follows, and will in part become apparent to those in the practice of the invention, when considered with the attached figures.
The accompanying drawings form a part of this specification and are to be read in conjunction therewith, wherein like reference numerals are employed to indicate like parts in the various views, and wherein:
Referring to the drawings in detail, and specifically to
Most assault-type firearms are configured to be operated as rifles and include a rifled barrel and are chambered to receiver and fire rifle cartridges. By way of example, the most ubiquitous civilian assault weapon, the AR-15, is generally chambered for standardized rounds such as the Remington .223 cartridge or the 5.56×45 mm NATO military cartridge. The major components of the AR-15 have been standardized, with such standardization being generally referred to as meeting United States Military Standards or, more commonly as being “mil-spec”. Specifically, as used herein, the terms “mil-spec” and “mil-spec M16/AR-15” shall refer to the structural specificities defined by the United States Department of Defense as of Jan. 23, 2018 the date of filing of U.S. provisional patent application Ser. No. 62/620,439.
Assault weapons, such as the AR-15, have also been modified to chamber and fire .410 bore shotgun shells. However, these firearms suffer from a number of drawbacks. For instance, 2.5 inch long shotgun shells tend to bind within the chamber and/or magazine thus leading to performance failures. In an attempt to alleviate these binding issues, firearms have been modified such that the magazine well of the lower receiver is slightly larger than the standard AR-15 magazine well such that the larger magazine well can receive a larger magazine such that the shotgun shells can be more repeatably extracted from the magazine and chambered within the upper receiver. This modification, however, renders the lower receiver assembly no longer mil-spec and also leads to difficulties when mating the upper and lower receivers. While the magazine which is the subject of the '469 Patent addresses these issues by providing a magazine which may be mounted within a mil-spec AR-15 lower receiver, efficient ejection of fired shotgun shells and proper cycling of the bolt carrier assembly may be enhanced by a modified mil-spec AR-15 upper receiver and barrel assembly as described below.
To that end and with reference to
Upper receiver body 208 may originate as a mil-spec AR-15 upper receiver but may be modified so as to define a chamber 210 that has been proportioned to accommodate 2.5 inch long .410 bore shotgun shell cartridges. Ejection port 212 may also be enlarged in relation to a mil-spec AR-15 upper receiver configured to fire rifle cartridges so as to provide additional clearance for ejection of the longer 2.5 inch .410 bore shotgun cartridge casings when compared to the shorter 1.76 inch long .223 Remington (5.56×45 mm NATO) rifle cartridge casings. In a further aspect of the present invention, upper receiver body 208 may be further modified to include provision of ejector hook 214 configured to engage an ejector pin 216 carried by bolt carrier group 221 as will be discussed in greater detail below. Upper receiver body 208 may also include a notched portion 207 configured to receive a charging handle assembly, such as charging handle assembly 107 described above with reference to
With additional reference to
With further reference to
Coupled to upper receiver 202 is barrel assembly 204. Barrel assembly 204 may include barrel 226, barrel extension 228 and barrel nut 230. Barrel 226 comprises a generally tubular sidewall 232 defining an open bore 234 extending the length of barrel 226 from receiver end 236 to muzzle end 238. Barrel extension 228 comprises a separate tubular member having a stepped outer wall thereby delineating barrel extension 228 into a barrel receiving portion 240 and bolt receiving portion 242. Bolt receiving portion 242 includes an external annular ring 244 proximate step 246. Receiver end 236 of barrel 226 may include male threads configured to engage corresponding female threads defined within inner wall surface 248 of barrel receiving portion 244 of barrel extension 228 so as to form a unitary barrel member 229. Bolt receiver portion 242 of barrel extension 228 may then slide within the forward barrel receiving end 250 of upper receiver body 208 to mount barrel member 229 to upper receiver body 208. As shown most clearly in
With reference to
Gas piston assembly 206 is configured to coaxially mount about barrel member 229 and includes a piston 279 generally comprised of a piston body 280 and piston head 292. First end 282 of piston body 280 includes one or more tabs 284 wherein each tab 284 is configured to be slidingly received within a respective slot 266 define within barrel extension 228. As will be discussed in greater detail below, terminal ends 286 of each tab 284 are configured to engage respective tangs 288 on bolt carrier 218 upon firing of the shotgun cartridge (see
Second end 290 of piston body 280 fixedly receives piston head 292. Piston head 292 generally includes a piston end cap 294 coupled to a piston bushing 296 at a first end 295, such as through a threaded connection. One or more small gas rings 298 may be interposed between flange 297 of piston end cap 294 and piston bushing 296 so as to form a gas-tight seal therebetween. Small gas rings 298 also form a gas-tight seal between piston head 292 and barrel 226. First end 295 of piston end cap 294 (and piston bushing 296) may then be secured within a first end 300 of a piston coupling 302, such as through a threaded connection. One or more large gas rings 304 may be interposed between flange 297 of piston end cap 294 and piston coupling 302 so as to form a gas-tight seal therebetween. Second end 306 of piston coupling 302 may then be secured to second end 290 of piston body 280, such as through a threaded connection. In this manner, piston body 280 and piston head 292 may form a unitary body, i.e. piston 279.
To provide for reciprocal travel of piston 279, as will discussed in greater detail below, gas piston assembly 206 further includes a bonnet 308, retaining ring 310 and bonnet cap 312. Bonnet 308 includes a stepped sidewall 314 generally delineating a piston receiving portion 316 and bonnet cap receiving portion 318. Piston receiving portion 316 is configured to slidingly encircle first end 300 of a piston coupling 302, piston end cap 294 and large gas rings 304. Large gas rings 304 are proportioned so as to form a gas-tight seal between bonnet 308 and piston head 292. Bonnet cap receiving portion 318 includes a stepped internal face 320 configured to receive retaining ring 310 and a threaded external face 322 configured to threadably receive bonnet cap 312 thereon. A set screw 313 may releasably lock bonnet cap 312 on bonnet 308. Retaining ring 310 is configured to reside within an annular recess 324 defined by recess walls 326 along barrel 226 (see
As can be seen in
Lateral travel of bonnet 308 toward receiver end 236 is prevented by the threaded engagement of bonnet cap 312 to bonnet 308 and the interference of retaining ring 310 against internal face 338 of bonnet cap 312. However, piston 279 is free to slidably translate along barrel 226 toward receiver end 236 as will be discussed in greater detail below. To that end, a biasing member, such as piston spring 340, may urge piston 279 toward the inner surface 342 of bonnet end wall 334. For instance, first end 344 of piston spring 340 may rest upon end face 346 of barrel nut 230 while second end 350 may rest against end face 352 of piston coupling 302.
Turning now to
With reference to
As shown in
While piston 279 is reset as described above, bolt carrier group 221 may unlock from barrel extension 228 (
Travel of bolt carrier group 221 in direction F against a buffer spring housed within the buttstock assembly (see e.g.,
Simultaneously, cartridge guide 233 and extractor 235 are driven against the rimmed end of the new, live shotgun shell cartridge such that the rimmed edge travels down the ramped face of hooks 233a, 235a until the rimmed edge slides past the hooks and rests within rim gap 245a, 245b. Again, extractor 235 may pivot about extractor pin 237, thereby compressing extractor spring 239 and opening rim gap 245a so as to assist seating of the new, live shotgun shell cartridge within rim gap 245a, 245b. Once the shell has been seated in the gap, the potential energy within the compressed extractor spring may be released, thereby returning extractor 235 to its original position whereby extractor hook 235a captures the rimmed edge. Should bolt 220 fail to reseat properly within barrel extension 228, the user may use forward assist 224 to manually push bolt 220 in direction R until proper seating is achieved. The firearm is then ready to fire the newly loaded shotgun shell cartridge so as to repeat the above progression.
In accordance with an aspect of the present invention, to facilitate cleaning of the firearm, including upper receiver 202 and bolt carrier group 221, ejector hook 214 may be pivotally mounted in upper receiver 202 such that ejector flange 213 may be pivotally withdrawn from bolt carrier 218 so that bolt carrier group 221 may be slidably removed from upper receiver 202 without requiring removal of ejector hook 214. Upper receiver 202 and bolt carrier group 221 may then be cleaned and maintained in accordance with the art.
In view of the above, it should be further recognized that specifications of the various components must be tightly controlled to ensure proper operation of the firearm, such as and without limitation thereto, the weight, density, surface contact/friction, gap dimension and location, and spring constants.
For instance, as described above, to ensure proper cycling of piston 279 and bolt carrier group 221, gas port 336 must be dimensioned, located and oriented such that sufficient gas volume and pressure is delivered to piston 279 to impart the needed kinetic energy to bolt carrier group 221. Piston head 292 must also be properly sealed within bonnet 308 to minimize, and preferably prevent, leakage of gas portion 356 prior to the complete travel of piston 279 and venting of gas portion 356 as described above. Accordingly, the length of piston receiver portion 318 of bonnet 308 and the length of gap 260 must be proportioned such that piston 279 may sufficiently impart enough kinetic energy to bolt carrier group 221 while also allowing piston 279 to be reset within bonnet 308 prior to firing of the next successive shotgun shell cartridge. By way of example, if either the length of piston receiver portion 318 or gap 260 is too short, piston 279 will not provide sufficient kinetic energy to bolt carrier group 221 to permit ejection of the fired shotgun shell and extraction of the next successive cartridge from the magazine. However, should the length of gap 260 be too long, piston head 292 may travel too far in direction F such that it may not sufficiently reset within bonnet 308 prior to firing of the next shotgun shell cartridge. As a result, the gas portion introduced upon firing of the next shotgun shell cartridge would not provide sufficient volume and/or pressure of gas to piston 279, which in turn would lead to insufficient cycling of bolt carrier group 221. Conversely, if the length of piston receiver portion 318 is too long, piston head 292 will never clear terminal end 330 of bonnet 308 such that gas portion 356 will not vent to atmosphere. As a result, piston 279 will be prevented from resetting within bonnet 308, thereby rendering the firearm unusable.
Similarly, as described above, the spring constant for each of the buffer spring and piston spring 340 must be selected to enable proper cycling of bolt carrier group 221 and piston 279. That is, the size and spring constant of the buffer spring must be such that the spring constant is low enough that bolt carrier group 221 may travel sufficiently in direction F so as to eject the fired shotgun shell, but be high enough to recycle bolt carrier group 221 in direction R to extract the next successive shotgun shell cartridge and reseat bolt 220 in barrel extension 228 while also preventing bolt carrier group 221 from violently striking the buttstock. The size and spring constant of piston spring 340 must be such that the spring constant is low enough that piston 279 may travel sufficiently in direction F so as to impart the needed kinetic energy to bolt carrier group 221 while also being high enough to reset piston head 292 within bonnet 308 as described above.
Although the present invention has been described in considerable detail with reference to certain aspects thereof, other versions are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the aspects contained herein.
All features disclosed in the specification, including the claims, abstract, and drawings, and all the steps in any method or process disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. Each feature disclosed in the specification, including the claims, abstract, and drawings, can be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
Number | Name | Date | Kind |
---|---|---|---|
2252754 | Browning | Aug 1941 | A |
2494889 | Maillard | Jan 1950 | A |
3619926 | Alday | Nov 1971 | A |
3961436 | Hagen | Jun 1976 | A |
4389920 | Dufour, Sr. | Jun 1983 | A |
4930399 | Trevor, Jr. | Jun 1990 | A |
9261314 | Jackson | Feb 2016 | B1 |
9664469 | Dichario | May 2017 | B2 |
Number | Date | Country |
---|---|---|
2912894 | May 2017 | CA |
300987 | Aug 1954 | CH |
2783181 | Sep 2017 | EP |
WO-2013136112 | Sep 2013 | WO |
Number | Date | Country | |
---|---|---|---|
20190226776 A1 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
62620439 | Jan 2018 | US |