Not applicable
Not applicable
The present invention generally relates to the field of aquatic floatation and transportation systems. More particularly, the invention relates to a foot-wearable human floatation apparatus used primarily for water-walking or water-skating, and a propulsion mechanism therefor.
Walking on water, like flying, has been considered an interesting mode of transportation for centuries, if not millennia. Prior attempts at creating a foot-worn floatation/propulsion system have yet to produce a water-walking apparatus that enables a human to take near-normal walking steps with confidence.
The act of walking, on land or on water, can be broken down into a sequence of coordinated basic movement pairs (each pair comprising a left leg movement and a right leg movement). There are four basic movements: Forward, an actual forward movement of the first leg and foot; Backwards, the backwards push against the resistance of the ground during which the second foot does not actually move; Up, the lifting the first leg off the ground or un-weighting of the leg during skating; and Down, applying one's weight on the first leg. The act of walking naturally requires the smooth transition from one action to the next, and from one leg to the next. Any water-walking apparatus should allow for all four movements in the normal sequence and with the natural timing a human has learned when walking on land. A key consideration in walking on any medium is to emulate the assumed “100%” friction typically found when applying the Backwards movement on land. Humans slip and fall when friction is reduced during that portion of the walking cycle. In addition, a water-walking apparatus should allow a user to “step around” a turn as a way to change directions while providing the user a feeling of stability at least somewhat similar to the stability found on solid ground. Thus, a successful water-walking apparatus should limit pitch, roll, and side-to-side motions transmitted from the float to the user without constraining the natural walking up-down, front-back, and yawing motions transmitted from the user to the float.
Skating is different than walking in several ways. Skating is a series of movements optimized for low foot-to-support medium friction situations (ice, roller blades, water), where sliding a foot across the support medium will not completely halt forward progress. Because of the low friction, the Up movement doesn't necessarily imply lifting the foot—a simple easing of the pressure to reduce the (normal force generated) frictional resistance, as in Nordic skiing, is often adequate. Second, skating typically involves a gliding movement; weight is carried on the forward leg while the back leg “pushes off”. The person using a skating apparatus lifts the foot that has just finished the Backwards, power movement and lets himself be carried forward by momentum, weight on the forward leg. Depending on the desired speed, the user either continues the one leg glide, brings the rearward foot parallel with the gliding foot and performs a two footed glide, or brings the rearward foot to the forward position in anticipation of the next pushing movement. Note that the skater can alternate the roles of the left and right legs (the normal skating action) or repeatedly use only one leg as the pushing leg (as in powering a scooter).
A typical prior water walking apparatus comprises two elongated floats and some sort of variable resistance propulsion mechanism, typically comprising a multitude of either small rotatable flaps or fixed, rearward facing cups, pouches, or scoops. The typical prior float is generally flat bottomed and straight sided and the typical prior propulsion mechanism does not provide maximum resistance against the water at the point in the walking cycle when it is needed; specifically, the maximum resistance is needed at the beginning of the Backwards (power) movement. Prior propulsion systems either require the user to wait to take each step or allow backwards slippage. For example, U.S. Pat. No. 4,698,039 teaches an apparatus having a pair of symmetric floats, these floats being generally rectangular in cross-section and having a flat bottom over most of their length. Additionally, the '039 patent teaches the use of a series of rotatable flaps with vertical axes spaced along either side of a central keel. The flaps move into their high resistance position only by the rearward slippage at the beginning of each step. Further, each flap is “shadowed” by the flap next in line, greatly reducing their propulsive power. Another attempt to provide a propulsion system with rotatable flaps with vertical axes is described in U.S. Pat. Nos. 4,261,069 and 4,117,562, both by Schaumann. In the '069 patent there are two flaps in series in a tunnel like chamber, completely obviating the functionality of the front flap for pushing backwards against the water. The overall float shape in both these patents is again generally an elongated rectangle. The '069 patent is notable in use of a resilient stop that both prevents the flap from opening beyond the desired point and provides a small push back toward the closed condition. However, the resilient stop only provides an initial push, the energy of which is quickly absorbed by the resistance of the water. Two examples of “horizontal” (viz., having a horizontal axis) flaps or pouches are provided by U.S. Pat. Nos. 5,593,334 and 5,697,822. Again, the linear series of small pouches or flaps are too small to be effective and are self-obviating because of shadowing, and again the float shape is generally conducive to instability.
Some prior devices include a tethering mechanism to keep the floats from separating. Many of these mechanisms are overly constraining—that is, rather than just preventing excessive transverse separation, they instead prevent the user's feet from moving in at least some of the degrees of freedom possible on land. Typically, the tether mechanism, if present, either inhibits a full and natural stride (i.e., the length of a step), introduces friction into what is normally a frictionless forward leg movement, prevents the redirection of a forward stride (yaw) (as is needed for turning), or inhibits the required Up and Down leg movements. For example, the '069 patent includes an intertwined cable tether whose claimed function is explicitly to eliminate virtually all sideways motions, to limit the length of the stride, and to ensure the engagement of a tongue-and-groove mechanism for eliminating up-down motions. Another example of an overly constraining tethering mechanism is shown in U.S. Pat. No. 3,121,892 in which the two floats (actually “skis” in that each float is a thin, flat board similar to conventional water skis) are joined by what amounts to either a single or a double linear bearing that constrains the relative motion between the skis.
It is therefore an object of this invention to provide a water-walking apparatus in which the maximum resistance to the water is achieved at the beginning of, and maintained throughout, the Backward pushing movement. Other objectives can include providing an apparatus in which the user achieves a near land-like stability, which allows the user to transition from deep to shallow water and thence to solid surfaces (land, ice, etc.) while walking, and/or an apparatus with a foot attachment method that allows the user all normal walking motions while providing a quick release for safety. These and other objectives are met through the various embodiments discussed below.
In one embodiment, there is provided a water walking apparatus for use by a user for moving in a direction. This apparatus includes a first buoyant float for the user's left foot and a second buoyant float for the user's right foot. Each buoyant float includes a flap having a leading edge and trailing edge, said flap being articulated to the buoyant float by an articulation, said articulation having an axis of rotation located within the first 25% of the distance between said leading edge and said trailing edge of said flap, said articulation allowing said flap to rotate between a high resistance orientation, in which the flap is approximately perpendicular to the direction and said trailing edge is above said leading edge, and a low resistance orientation, in which the flap is approximately parallel to the direction and in which the trailing edge is lower than in the high resistance orientation. In some embodiments, the flap has a positive buoyant moment, wherein said buoyancy moment of said flap exerts a torque on said flap so as to rotate said flap toward the high resistance orientation. Preferably, the flap is buoyant. In some embodiments, the flap's mass density is generally a gradient, said gradient decreasing in magnitude from said leading edge to said trailing edge.
In some embodiments, the apparatus further includes a torque generating mechanism comprising an elastic material that is associated with said flap, said material being least stressed when said flap is in said high resistance orientation, said material further exerting torque on said flap, said torque directed so as to rotate said flap toward the high resistance orientation.
In yet other embodiments, the apparatus includes a rotation limiting mechanism for preventing the flap from rotating beyond a limit position that is approximately perpendicular to said direction. This limit position is preferably the high resistance orientation. In yet another embodiment, the apparatus includes a rotation limiting mechanism for preventing the flap from rotating beyond a downward limit position in which said trailing edge is at or below its position when said flap is in the low resistance orientation, said downward limit position limiting the flap from rotating beyond a position approximately perpendicular to said direction in which the leading edge is below the trailing edge.
In some embodiments, the flap has an axis of rotation that is both within 45 degrees of horizontal and substantially perpendicular to said direction and said flap is movable in a space behind said axis, said space being away from the direction of travel.
In yet embodiment, a human powered apparatus for use by a user for the purpose of floatation and transportation on water in a direction is provided. This apparatus includes a first buoyant float and a second buoyant float. Each of the first buoyant float and said second buoyant float have a center of buoyancy, a bow, and a stern. Each of the floats further includes (a) a substantially straight and generally flat side running from said bow to said stern, (b) a substantially convex side running from said bow to said stern, (c) a bottom side in watertight connection with said substantially straight side and said substantially convex outward side, (d) a top surface, and (e) a foot well for housing said user's foot and ankle, said foot well disposed through said top surface of said buoyant float and extending toward said bottom side, said foot well further located to position said user's ankle substantially in vertical alignment with the center of buoyancy, and said foot well further having a bottom surface that is below said center of buoyancy. The bottom surface of the foot well may be the bottom side of the float, or may be another surface. In some embodiments, the substantially convex side comprises a top edge and a bottom edge, and said substantially convex side is farther from said substantially straight and generally flat side at said top edge than at said bottom edge. Preferably, the center of buoyancy of each buoyant float is at least as high as the predicted height of said user's ankle in said foot well. Each buoyant float may further include a foot well cover hingedly attached to said top surface of said first buoyant float, said foot well cover being adapted to hold said user's foot in said foot well when said foot well cover is closed. Each foot well further may include a foot interface comprising a first surface connected to said foot well cover, and a second surface adapted to surround the upper surface of said user's foot and the anterior surface of said user's ankle in said foot well. A tether connecting the first buoyant float to said second buoyant float may be provided in some aspects of the invention. The first buoyant float may further include (a) a track disposed parallel to the water on said substantially straight and generally flat side, and (b) an attachment rider adapted for traversing said track and for accepting said tether, wherein said rider traverses said track when pulled by said tether. In some embodiments, the tether restricts movement between said first float and said second float in only one degree of freedom, said degree of freedom being substantially in the direction perpendicular to both the direction of travel and the vertical direction, wherein said restriction is furthermore only a limit on the maximum separation allowed in said direction. Such a tether may include (a) a first cable having two ends, said two ends attached to said substantially straight and generally flat side of said first buoyant float at two locations at the approximate predicted height of the user's ankle in said foot well, and (b) a second cable intertwined at least once through said first cable, said second cable further comprising two ends attached to said substantially straight and generally flat side of said second float at two locations at the approximate predicted height of the user's ankle in said foot well. A friction reducing agent may be coated on said first cable and/or said second cable. In another embodiment, the tether may further include an adjustable attachment device, said adjustable attachment device connecting at least one of said two ends of said tether to said first buoyant float, wherein said adjustable attachment device can be used by a user to adjust the separation between said first float and said second float.
In some embodiments, the said bottom side of each float is convex. Its convexity faces away from the direction of the top surface. The bottom side may further include a flat platform extending under the bottom surface of said foot well, said flat platform being generally parallel to the plane of said water.
As discussed above, the apparatus includes two buoyant floats. An articulation interface may be located at said stern of one or both floats. The articulation interface is adapted for attaching to the buoyant float a flap with a forward edge that is perpendicular to said direction of travel. One or more accessory attachment interface adaptations may be associated with one or both floats. The accessory is preferably one or more generally pointed protuberances adapted for increasing traction on ice in contact with said one or more protuberances. Most preferably, the accessory is a propulsion mechanism retraction interface located at the stern of said first buoyant float and adapted to facilitate the retractable attachment to said float of a propulsion mechanism that is operational when it is at least partially immersed in the water and not operational when it is substantially retracted from the water. Such a retraction interface includes (a) a pivot bracket attached to said first buoyant float and adapted to pivotally connect to said propulsion mechanism, (b) a fixed anchor point attached to said first buoyant float, and (c) a retention spring adapted for connection between said propulsion mechanism and said fixed anchor point, wherein when a propulsion mechanism is attached to said pivot bracket and said retention spring, said retention spring is stressed, and said stressed retention spring generates a force on said propulsion mechanism directed to keep said propulsion mechanism at least partially immersed in water, wherein said propulsion mechanism can pivot between being at least partially immersed in water and substantially retracted from water in response to torque.
One or both buoyant floats may be made of two or more modular members shaped to fit together to form the buoyant float.
In another embodiment, each buoyant float further includes a flap having a leading edge and a forward edge. The flap is articulated to said buoyant float by an articulation, said articulation having an axis of rotation located within the first 25% of the distance between said leading edge and said trailing edge of said flap. The articulation allows said flap to rotate between a high resistance orientation, in which the flap is substantially perpendicular to the direction and said trailing edge is above said leading edge, and a low resistance orientation, in which the flap is approximately parallel to the direction and in which the trailing edge is lower than in the high resistance orientation.
In one embodiment, the flap of each buoyant float has a positive buoyant moment, wherein said buoyancy moment of said flap exerts a torque on said flap toward the high resistance orientation. Preferably, the flap is buoyant. In some embodiments, the flap's mass density is generally a gradient, said gradient decreasing in magnitude from said leading edge to said trailing edge.
In some embodiments, one or both buoyant floats include a torque generating mechanism comprising a elastic material that is associated with said flap, said material being least stressed when said flap is in said high resistance orientation, said material further exerting torque on said flap, said torque directed so as to rotate said flap toward the high resistance orientation.
In some embodiments, one or both floats include a rotation limiting mechanism for preventing the flap from rotating beyond a limit position approximately perpendicular to said direction, said limit position being the high resistance orientation. In yet another embodiment, one or both buoyant floats include a rotation limiting mechanism for preventing the flap from rotating beyond a downward limit position in which said trailing edge is at or below its position when said flap is in the low resistance orientation. The downward limit position limits the flap from rotating beyond a position approximately perpendicular to said direction in which the leading edge is below the trailing edge.
Preferably, the flap has an axis of rotation that is both within 45 degrees of horizontal and substantially perpendicular to said direction and said flap is movable in a space behind said axis, said space being away from the direction of travel.
In yet another embodiment, each buoyant float further includes a torque generating mechanism associated with said flap. The mechanism includes a stressed material exerting torque on said flap, said torque directed so as to rotate said flap toward the high resistance orientation.
The invention further provides a kit for producing a buoyant float. The kit includes at least two modular members sized to fit together to form the buoyant float.
A further understanding of the nature and advantages of the inventions herein may be realized by reference to the remaining portions of the specification and the attached drawings.
The foregoing and other objects, features and advantages of the invention will become apparent from the following description in conjunction with the accompanying drawings, in which reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale; emphasis has instead been placed upon illustrating the principles of the invention. Of the drawings:
Many aquatic activities can be enjoyed by a person in an upright, standing position, for example, fishing, water skiing, surfboarding, and windsurfing. Other upright activities, such as Nordic and alpine skiing, could also be enjoyed on water if proper equipment were available. As shown in
Typically, two floats are used in most aquatic activities. In one embodiment, each float has a top surface, and a foot well, and, optionally, may include accessory attachment interface adaptations, fixtures and accommodations for various accessory devices. Preferably, the accessory attachment interface adaptations are located on the outside surface of float 100. For example, ice walking accessories may be added to the bottom and/or bow of each float 100. The ice walking accessories typically comprise one or more pointed protuberances or, preferably, afterward facing sawteeth. On solid ice the protuberances supplement the tips of the propulsion mechanism to provide the grip to the ice needed to walk forward. On thin ice the invention breaks through to water and operates normally. In the transition from water to ice, the protuberances at the bow provide extra grip to pull the float 100 up out of the water. In another embodiment, the float 100 comprises an articulation interface located at said stern and adapted for attaching a flap with a forward edge that is perpendicular to said direction of travel.
In other embodiments, the invention provides for one or more articulation interfaces attached at the bottom or one of the side surfaces of the float.
The top view of one of said two floats is shown in
Typically, each float 100 is sized to support the total weight of the intended user, with an added margin of approximately 5–40%, preferably 5–20%, most preferably 10%. Thus, the volume V of displaced water for each float may be calculated using the density of (fresh) water according the formula:
V=(1.1U+m)/Dw (1)
where U is the mass of the user, m is the mass of the float and Dw is the density of water. While this volume could be distributed in any shape to provide the required buoyancy, the inventor has determined that a float whose length approximates the height, H, of the user and has a width on the order of about 20–30 cm, and preferably about 25 cm provides a reasonable compromise between stability and maneuverability for many applications. It should be noted, however, that specific applications will require specific hull parameters; a long, thin hull for speed, for example, or a short, deep hull for extra stability when wading for fishing. The volume of said compromise float, which is calculated according to equation (1), is achieved by setting the depth of the float to V/0.25H. For example, a float for a 1.8 meter tall user with a mass of 90 kg might have the general dimensions of 1.8 meters×0.25 meters×0.28 meters (L×W×D), where the indicated depth (0.28 meters) is actually greater than required for buoyancy, the extra depth being the height of the float above the waterline. Said extra depth maintains the top surface 104 well clear of the water and helps keep the user dry. Additionally, the extra depth provides reserve buoyancy.
As a matter of definition, the centroid of the displaced water (i.e., the centroid of the hull below the waterline) is the Center of Buoyancy (CoB) and is the point through which the buoyant force appears to operate (in analogy to the center of gravity).
Float Shape
The inventor has observed that when two parallel floats move through the water, a region of lower pressure is created in the channel formed by the parallel floats, said lower pressure tending to draw the two floats together and cause instability and bumping interference. Therefore, as shown in
Addressing the hull shape more specifically, as is well known in the design of other aquatic floatation apparatuses such as kayaks and sailboats, no one preferred hull design exists. Instead, hull design parameters are determined in a give and take trade off to match the expected requirements of different applications and water conditions, various user preferences, various user body mass, muscle power, and morphologies, and so on. With this understanding, the following description of the preferred hull design should be understood as illustrative of the design principles involved rather than definitive hull design, and is not intended to limit the scope of the invention.
Float 100 has a substantially straight and generally flat inwardly facing side 102 and a substantially convex outwardly facing side 103, where the substantially straight and generally flat side 102 is the side facing the second float 100 on the user's feet used in apparatus 10. Side 102 is substantially straight, running from a bow 140 to a stern 150, while substantially convex side 103 is generally convex, also running from bow 140 to stern 150. Substantially convex outward side 103 has convexity, a top edge, and a bottom edge, said substantially convex outward side and said convexity running from the bow 140 to the stern 150 and said convexity being away from the direction of said substantially straight and generally flat inward side, said substantially convex side additionally being farther from said substantially straight and generally inward side at said top edge than at said bottom edge. As used herein, the term “convexity” refers to the quality of something that is convex, and is not meant to imply an extra limitation or structure other than the convexity already present in the convex side or other convex member. Float 100 is said to be “generally wing shaped” insofar as the bow-to-stern distance along substantially convex side 103 is longer than the bow-to-stern length of substantially straight and generally flat side 102 and is convex, thereby producing an outward force in the same manner as a wing generates lift. The sides 102 and 103 are tapered as they approach both bow 140 and stern 150 to form a smooth and continuous curve without rapidly changing bends that would disrupt hydrodynamic streamlining. Additionally, float 100 has a bottom side 105 in watertight connection with said substantially straight and generally flat side 102 and said substantially convex side 103, said bottom side 105 being smoothly blended into sides 102 and 103 so as to form a preferred unified sculpted hull.
As shown in
As will be described in more detail later, the generally rectangular platform or portion of bottom side 105 that lies directly beneath foot well 410 is substantially flat.
In this preferred embodiment, the lowest point along keel line 107 lies directly beneath foot well 410 and, as described above, this generally rectangular portion of bottom side 105 is substantially flat. In a more preferred embodiment, the portion of bottom side 105 that is directly under the foot well 410 is flat while some or all of the remainder of the bottom side 105 slants upwards from the flat portion to the bow 140 and/or stern 150. Thus, in some embodiments, bottom side 105 has convexity that is away from the direction of top surface 104.
In another embodiment, the accessory comprises a propulsion mechanism retraction interface located at stern 150 of float 100 and adapted to facilitate the retractable attachment of a propulsion mechanism to said float that is operational when it is at least partially immersed in the water and not operational when it is substantially retracted from the water.
A modular preferred embodiment of float 100 is illustrated schematically in
Preferably both the substantially straight and generally flat inwardly-facing side 102 and the substantially convex outward facing side 103 of module 120 are straight in all sectioning planes parallel to the surface of the water, said shape facilitating smooth and continuous matching with various bow and stern modules.
Bow module 110 and stern module 130 are designed with interface surfaces that correspond to the respective fore and aft ends of module 120. The other surfaces of modules 110 and 130 conform to the design used for the respective portions of float 100, including accommodations for tethering mechanism 300 and any accessory attachment fixtures that may be desired.
Foot Well
As shown in
Returning to
Foot well 410 is generally sized and generally shaped to match a user's foot. Additionally, the location of foot well 410 in relationship to the rest of the float is defined where the user's foot should be located. A user's mass is supported by his or her legs, with the feet serving as interfaces with the ground. We define the mass support point, MSP, to be the point at which an extension of the tibia intersects the horizontal plane on which the foot is resting (the MSP is generally just forward of the heel). Since the MSP is preferably located directly below the CoB to eliminate any tilt or roll inducing torque, the user's foot is preferably to be located to effect this alignment. Since the foot well 410 is shaped to accommodate the user's foot, its position locates the foot to its preferred location.
The inventor has realized as a result of design trade offs among several requirements that foot well 410 is preferably positioned closer to side 102 than to side 103. It is preferable that the MSP be no farther from substantially straight and generally flat 102 than one-half of the user's natural stance. Further, foot well 410 is wide enough to comfortably accept a user's foot. Further, the center line of foot well 410 (viz., the line containing the MSP) is preferably coincident with the transverse position of the CoB (requires equal displaced volume to the inside and outside). The float 100 is preferably wing-shaped, forcing substantially convex side 103 to have a convex, or outward bow and another constraint is that the required buoyancy (viz., volume of displaced water) should be achieved with a reasonable length float, leading to a specific minimum float width (additionally, stability requirements do not allow a narrow, foot-width float). The inventor has constructed one embodiment of the float having each of these preferred features, in which the center line of the foot well is approximately 11.4 cm from substantially straight and generally flat side 102 and 14 cm from substantially convex side 103, as measured on top surface 104.
In some embodiments each float 100 further includes a foot well cover 420 pivotally attached to top surface 104 by a foot well cover hinge 435. It may further comprise a foot interface 430, having a first surface 440 connected to said foot well cover, and a second surface 441 adapted to surround the upper surface of said user's foot and the anterior surface of said user's ankle in said foot well.
Thus, foot well 410 defines the location into which a user places his foot. The foot well cover 420, in cooperation with foot interface 430, forms a lid that holds the foot snugly but comfortably in place at the bottom of foot well 410. Foot interface 430 is preferably an exchangeable, generally concave-shaped component that is adapted to different foot sizes and foot coverings. It is designed to fit over the top of the front of the foot, encasing the foot from the toes to generally the arch and from the proximal side to the distal side. The interface 430 is generally fabricated from a compliant material, for example, high density foam. The interface can be designed for a bare foot, as might be required for river water skiing or for a footwear shod foot, as might be required for ice-rescue wherein a warm, waterproof boot is likely to be worn.
Foot interface 430 may be removably attached to the bottom surface 105 of foot well cover 420. Foot well cover 420 in cooperation with interface 430, holds the user's foot in foot well 410 during use. Foot well cover 420 is removed from its functional position to allow insertion or extraction of the foot from well 410. Preferably, foot well cover 420 is removed by rotating said foot well cover upwards about the foot well cover hinge 435. Many alternative hinge designs and approaches may be used to perform this function. Typically, foot well cover 420 is fabricated with the same technology as is used for float 100.
Foot well cover 420 should be held in the closed position with enough force to keep the foot in place during normal use. However, for safety reasons, foot well cover 420 should preferably also be able to release the foot quickly, for example, if the user falls sideways into the water. Any of a number of quick release mechanisms such as weak springs or detent-type mechanisms may be utilized. The inventor has determined that a close fit between foot well cover 420 and the sides of foot well 410 provides adequate frictional force to hold the foot in place whilst allowing the cover to open with large impulse of a quick kicking motion.
Tethering Mechanism
Float 100 also comprises the tethering mechanism 300. Tethering mechanism 300 preferably constrains the two floats 100 from spreading apart in the y-direction by more than a pre-determined distance. Preferably tethering mechanism 300 operates only in the aforesaid y-direction and does not constrain the floats in any other of the remaining 5 mechanical degrees of freedom. Furthermore, mechanism 300 preferably operates only to limit the separation between the floats 100 to the predetermined distance, said distance being preferably equal to the user's normal standing foot separation, while allowing floats 100 to come together without constraint.
The two cables are intertwined by threading one cable through the loop formed by the second cable, said intertwining preferably comprising preferably one or more overlaps. In the preferred embodiment illustrated in
Emerging from tunnel 110, cable 310 is attached to float 100 at an adjustable attachment device, such as an adjustable attachment clamp 320. Preferably clamp 320 operates without tools to hold or release cable 310, allowing the effective length of cable 310 to be adjusted to match the preferred stance of each user. Clamp 320 may be located on the outwardly facing substantially convex side 103, as illustrated, so that it does not interfere with the adjacent float. Although not illustrated, stowage capability (a compartment or tie down) for the excess cable (the cable beyond clamp 320) may be optionally included on float 100. Although clamp 320 is illustrated on side 103, with the cable passing through tunnel 110, as an example, it should be understood that alternative clamp locations and cable routing schemes may equally well be used.
In another preferred embodiment, tunnel 110 is replaced with an interior clamp mechanism, as shown in
Returning to the embodiment of
Fixed attachment points 335 and 345 may advantageously be designed to permit tool free detachment of cable 310, said detachment being more convenient for separating said floats during transport and/or storage than using adjustable clamp 320 and threading cable 310 through tunnel 110.
Another embodiment of a tether mechanism is illustrated in cross section in
It will be understood by the skilled artisan that the goals of this invention may be also be accomplished by using three or more attachments points for one or more cables, the additional cables being at the aforesaid ankle height or at different heights.
Float Kits
The inventor has realized that consumers or retailers may wish to buy unassembled floats that can be easily assembled. The advantage is that the consumer or retailers can assemble the floats to have a desired length or other characteristic based on the parts that are used for assembling the floats. Thus, the invention provides a kit for producing a float for floatation and transportation on water for a user. The kit may comprise two or more modular members sized to fit together to form a buoyant float. Preferably the modular members can be attached without tools, such as mating Velcro strips located on two mating modular members, or through a snap mechanism that can hold the modular members together. Preferably, the modular members will be assembled into a float having a sculpted hull 100 and covered by a top surface 104, as described above. More preferably, the kit will contain modular members to assemble two floats 100, one for the right foot, and one for the left foot of a user. Preferably, the kit further comprises an attachment point for a tether at the approximate predicted height of the user's ankle in the float.
Propulsion Mechanism
Although two floats 100 may be used by themselves for activities such as river skiing or float water skiing, more typically a propulsion mechanism is attached to allow the user to move without external assistance. Preferably, the propulsive mechanism is adapted for water walking or skating.
Flap 210 rotates between a low resistance orientation (LRO) and a high resistance orientation (HRO) during the short duration between ending a Forward step and starting a Backward step. Additionally, the flap 210 should be in the high resistance orientation whenever the user is not moving so that there is no slippage at the beginning of the user's first step.
Flap 210 is a generally flat, rectangular solid wherein one dimension (the thickness) is substantially smaller than either of the other two dimensions and wherein the other two dimensions are preferably equal (that is, the effective shape is a square). Preferably, as illustrated in
The high resistance orientation occurs when the trailing edge 218 of flap 210 is above the leading edge 217 of flap 210, said positioning creating a rotation angle between a line connecting said leading and trailing edges and a line parallel to the direction of travel, When the flap 210 is in the HRO it inhibits the float 100 from sliding in the water. In one embodiment, the flap 210 is in the HRO when said rotation angle is between 30 and 120 degrees. In another embodiment, the high resistance position is defined by a rotation angle of between 40 and 90 degrees. Preferably, the HRO rotation angle is about 90 degrees.
Similarly, the low resistance orientation is defined by having the trailing edge 218 between positive (trailing edge above leading edge) 40 degrees and negative (trailing edge below leading edge) 40 degrees. Preferably the LRO rotation angle is about 0 degrees. In any specific embodiment the HRO and LRO rotation angles do not overlap and, in general, differ by more than 30 degrees.
Typically, flap 210 is fabricated from a lightweight and strong material, said material being compatible with the expected aquatic and solar ultraviolet environment. Wood, fiberglass, aluminum and some plastics are suitable materials. The flap may be unitary (e.g., solid), a filled shell (e.g., foam filled plastic shell), or a hollow shell. Flap 210 preferably has a positive buoyant moment. The inventor has determined that said positive buoyant moment need only be large enough to maintain flap 210 in the high resistance orientation in fresh water in the absence of any lateral forces. Further, the inventor has determined that it is preferred to achieve said positive buoyant moment with a buoyant flap.
The size of flap 210 is determined by the required propulsive force. In terrestrial walking, the frictional force between the foot and the floor provides the reaction force needed to propel the walker forward; during water walking it is the resistance of flap 210, when in the HRO, to movement through the water that provides the reaction force. To permit a user to walk naturally on water, the propulsion mechanism should provide nearly 100% resistance to backward foot motion (simulating the no-slip behavior of terrestrial friction). Since the resistance of a flap moving through water is equal to the product of the applied force times the flap's fluid dynamic cross-section, said cross-section being a function of the effective shape of the flap and a factor to account for the flow of water around the edges of the flap, it is possible to estimate the flap area required to push a user of a certain mass forward through the water at a given speed and on any given float hull (the more streamlined the hull, the easier it is to move forward). Although said estimate could be made analytically for any given application, the inventor has determined experimentally that a total flap area of 90 square inches is typically adequate for many recreational activities for a 200 pound adult. Again, it should be noted that specialized activities may require larger or smaller flap areas to optimize performance and that such specialization is anticipated by the inventor
Flap 210 is connected to float 100 through an articulation. The articulation 205 may be the direct interface between flap 210 and the float 100, or the articulation may be attached to an intermediary structure between the float 100 and flap 210, such as a support member which is further described below. The articulation 205 is preferably located near leading edge 217. Most preferably, the articulation 205 is located within the first 25% of the width of the flap, as measured from the leading edge 217 to the trailing edge 218. In this configuration the flap 210 sweeps out a generally semi-cylindrical volume behind the flap support structure (that is, with a rotation angle between −90 and +90 degrees). In one preferred embodiment a mechanical rotation limiting mechanism is added that limits the flap 210 from rotating significantly beyond the low resistance orientation; with this addition, the flap sweeps out only the approximate quarter-cylindrical volume behind the flap support structure (viz., between the LRO and HRO).
In each embodiment, flap 210 has an articulation rotation axis that is perpendicular to the direction of travel, and preferably oriented within 45 degrees of the horizontal. More preferably, the articulation rotation axis is within 30 degrees of the horizontal, more preferably within 20 degrees of the horizontal, and most preferably within 10 degrees of the horizontal.
The flap 210 preferably has a positive buoyant moment so, in the absence of other forces, it rotates about the articulation rotation axis, floating upward toward the HRO, until it is preferably restrained by a rotation limiting mechanism or otherwise cannot rotate further. The articulation rotation axis and the rotation limiting mechanism are arranged such that the flap 210 can only rotate towards the aft of the float; that is, when a lateral force is applied from the bow of the float to the (vertical) flap in the HRO, as is the case when the float 100 is moved forward through water, the flap 210 rotates about the articulation rotation axis into LRO, but when a lateral force is applied to the same (vertical) flap from the stern of the float 100, as is the case when the user pushes the float 100 backwards during walking, the flap 210 is simply pressed more tightly against the stop, creating significant resistance to any water trying to flow past it.
In one embodiment, as show, for example, in
In the preferred embodiment of flap 210, the density of the material and its distribution relative to the articulation rotation axis create a positive buoyant moment, said moment providing a torque that operates to rotate trailing edge 218 upwards into the high resistance position. The buoyant moment of an object is calculated in analogy to other moments (such as the moment of inertia); that is, the buoyant force from each incremental element in the flap is calculated and its position relative to the articulation axis is used to calculate its contribution to the torque. In mathematical terms we can define the buoyant moment, B, as
where ρ is the density at a particular point in the object, ρw is the density of water, r is the (signed) distance from the articulation axis to the point in the object, Θ is the angle above or below the horizontal formed by the line between the point and the axis, and dV is the increment of volume. The integral is taken over the entire volume of the object. The definition of positive buoyant moment and of positive r is arbitrary, so, for this invention, we select the definitions such that the preferred embodiment of the flap has a positive buoyant moment when said moment generates a torque that rotates the flap into the HRO.
In non-mathematical terms the buoyant moment just describes how each little piece of the flap contributes to its rotation; if a little piece of the flap is less dense than water and to the right of the axis, it makes the flap rotate counterclockwise, whereas if the same little piece is to the left of the axis, it makes the flap rotate clockwise. Similarly, a piece of the flap to the left of the axis that is more dense than water contributes to counterclockwise rotation. Thus it will be recognized by those of ordinary skill in the art that one can achieve a positive buoyant moment (viz., rotation in the preferred direction) with an object that is not buoyant (viz., does not float) through the proper placement of mass within the object.
The above equation applies to systems where the articulation axis is in the horizontal plane and where the object has a constant cross-section everywhere along the articulation axis (that is, the object could be formed as an extrusion). The equation can easily be generalized to arbitrary shapes and non-horizontal articulation axes by describing the distance from the object to the axis, the axis itself, and the density as vector quantities and replacing the multiplication inside the integral with a vector triple product. Such generalization is not required for understanding the preferred embodiment.
Preferably, as illustrated in
In other embodiments, more than one flap may be used; each flap attached by its own articulation with enough of an offset to not significantly overlap (“shadow”) any other flap. The flaps may be directly articulated to float 100, as in
The articulation 205 can be implemented in a variety of well know ways. For example, as shown in
In one embodiment, support structure 230 comprises one or more support elements 250 which form the interface between the object being propelled (not illustrated) and the one or more flaps 210. Support structure 230 is thus preferably adapted for attachment to a water craft or other object that is being propelled. Preferably support element 250 is a generally elongated bar. That is, support element 250 has three dimensions, that is, a length, a width, and a thickness, wherein the length preferably runs generally vertically, the width is the dimension parallel to the direction of travel, and the thickness is the remaining dimension. The length of the support elements is selected to maintain all of said attached flaps below water when the flaps are in their high resistance orientation. Since support element 250 should transmit the full reaction force between the flaps 210 and the item being propelled, the element's width to thickness ratio is somewhat greater than unity in keeping with good engineering practice to ensure adequate bending strength. In some embodiments the element's width is increased, turning the support element into a fin-like attachment. Additionally, the support thickness is minimized and its cross-section in the horizontal plane is preferably streamlined to minimize fluid dynamic drag as the propulsion mechanism moves through the water.
Preferably, support element 250 has a support toe 232 that provides two functions. First, when support element 250 is generally vertical and the propulsion system is in shallow water or in the presence of underwater obstacles, toe 232 provides a contact point with the ground or obstacle, thereby protecting flap 210 from damage and providing a point against which the user may continue to push. Second, said toe acts as a downside stop for flap 210, preventing it from rotating beyond the horizontal position.
Alternately, in any of the embodiments shown herein, the float 100 (as shown in
In order to generate power during the Backwards step, the propulsion mechanism 200 is designed to prevent flap 210 from rotating substantially beyond the high resistance orientation. During the Backwards step the flap is preferably substantially perpendicular to the direction of propulsion to provide high resistance to motion through the water. Preferably, propulsion mechanism 200 includes a rotation limiting mechanism such as a flap rotation stop 240 against which flap 210 presses during the Backward step. In the example embodiment illustrated in
A second embodiment of support structure 230, illustrated in
In the embodiment of
In some embodiments, the propulsion mechanism 200 also includes a torque generation mechanism to rotate flap 210 into the high resistance orientation. Generally, said torque generation mechanism includes force generated by a mechanical spring or resilient material, said spring or material being loaded when flap 210 is in the low resistance orientation and relaxed when flap 210 is in the high resistance orientation. In one embodiment, illustrated in
In another embodiment,
As is well know in the mechanical design art, there are many alternative embodiments of a resilient or spring-like restoring torque. Referring to the propulsion mechanism of
In yet other embodiments the attachment location of propulsion mechanism 200 may be on the bottom or to the side(s) of the float 100, more than one propulsion mechanism may be attached to each float, or the flaps may be incorporated inside a channel or tunnel running the length of each float.
Propulsion Mechanism Retraction Interface
As illustrated in
In one embodiment the retraction interface 502 comprises a pivot bracket 510 that can be attached to the float or water craft and into which the support element 250 is assembled, a fixed anchor point 530 mountable on the top surface 104 of the float or water craft, and a retention spring 520 connected between the fixed anchor and the support element 250. Support element 250 is nominally free to rotate about a pivot axis 515 on pivot bracket 510, the range of said rotation being approximately 90 degrees. The support element can rotate from the generally vertical operational orientation wherein flap 210 is at least partially immersed in the water to the generally horizontal, not operational, orientation when it is substantially retracted from the water.
Retention spring 520 is attached at one end at an attachment point 522 provided for that purpose on support element 250 and at the other end to anchor point 530, the relaxed length of the spring being slightly less than the minimum separation of said two points. Point 522 is located on support element 250 between pivot point 515 and toe 232 such that the tension of spring 520 operates to rotate support element 230 into the operational orientation with flap 210 at least partially under water. The support rotates until it makes contact with float 100 at the bottom of a generally “U” or “V” shaped positioning guide 570 installed at the stern 150 of float 100, said guide keeping support element 250 from becoming misaligned in a side-to-side direction. Preferably pivot point 515 is forward of the bottom of guide 570 such that the operating orientation of support element 250 is actually tilted slightly forward, said tilt being generally in the range of 5 to 10 degrees off of vertical. Said forward tilt ensures that a purely vertical force on toe 232, as occurs when weight is applied to float 100 in shallow water and the propulsion mechanism is pressed into the bottom, is converted into a torque about pivot 515, said torque acting to rotate the propulsion mechanism upwards without damage.
Interface 502 is also manually operable by applying a forward and downward force on the upper end of support element 250, said force rotating the propulsion mechanism into the horizontal, storage orientation. Generally interface 502 is provided with a latching mechanism to hold the propulsion mechanism in the storage orientation.
Foot Powered Oar
As has been described, the propulsion mechanism 200 and the float 100 may be adapted for many different aquatic applications. For example, a single float with a foot power adaptation of the propulsion mechanism can be used as a water scooter. In riding a scooter the user maintains his weight substantially on one foot, said foot riding on the low-friction scooter, while repeatedly pushing backwards against the ground on the other foot. In riding the water scooter the user maintains his weight substantially on one foot on the one float while repeatedly propelling himself by operating a foot-powered paddling mechanism, or oar, said oar being an adaptation of the propulsion mechanism of
As illustrated in the schematic side view of
The pivot support bracket 810 is typically located at one edge of float 100, slightly aft of the center line. The pivot axis 815 is perpendicular to the direction of propulsion and parallel to the surface of the water. Support structure 250b is typically asymmetric, holding flap 210 under the float even though structure 250b should pass around the edge of the float to reach pivot axis 815. Pedal crank 820 and support structure 250b are joined at pivot axis 815, said join being made at an angle “α”. Angle “α” is selected so, with support structure 250b at its forward most point, pedal 830, at the opposite end of crank 820 from pivot axis 815, is raised above the top surface 104 of float 100 and crank 820 is rotated forward of vertical about pivot axis 815. The aforesaid forward rotation should be between 10 and 90 degrees, preferably between 20 and 70 degrees, more preferably 30 degrees.
Typically, the user's foot is engaged a foot bracket 840 on pedal 830. By stepping downward on pedal 830, the user rotates support structure 250b rearward for a power stroke. By removing the pressure on pedal 830, the user allows a pedal return spring (not illustrated) to rotate support structure 250b back to the forward, starting position during a recovery stroke.
Functioning in a manner described previously, flap 210 rotates between a high resistance and a low resistance orientation as the support structure alternates between rearward and forward rotations.
Typically, a water scooter will also include a supporting handlebar 850 to provide the user with something to hold while stepping on pedal 830. This handlebar can advantageously be connected through float 100 to a rudder mechanism (not illustrated) by which steering can be effected. Further, a water scooter typically will have a fixed, direction stabilizing fin located under the stern.
Other embodiments of the foot-powered oar 800 are possible. For example, a ratcheted and/or gearing mechanism can be implemented between crank 820 and structure 250b, said mechanism reducing the angular motion of pedal 800 required to drive structure 250b through its full range and/or allowing different rates of return for the pedal and the structure. In another embodiment structure 250b can be made straight, rather than offset, with the attachment end of support structure 250b passing through a slot in float 100. In yet another adaptation, oars 800 can be used in matched pairs, left and right handed, thus appearing like a pair of duck feet underneath float 100. Said paired usage allows steering by differential propulsion. A final alternative adaptation changes the angle “α” so that the useful arc of pedal 830 is adapted for a user sitting in a recumbent cycling position.
Preferably, the invention further comprises a rotation limiting mechanism situated on one of said support structure or said flap for preventing the flap from rotating beyond a position substantially perpendicular to said direction of movement.
While this invention has been described in conjunction with the specific embodiments outlined above, many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, the preferred embodiments of the invention as set forth above are intended to be illustrative, and not limiting. Various changes may be made without departing from the spirit and scope of the invention as defined in the following claims.
This non-provisional application is a continuation-in-part of patent application Ser. No. 10/201,066, filed on Jul. 22, 2002, entitled “Upright Human Flotation Apparatus and Propulsion Mechanism Therefor”, now U.S. Pat. No. 6,764,363 which claims the benefit of U.S. Provisional Patent Applications Ser. Nos. 60/307,258; 60/307,259; 60/307,260; 60/307,270; and 60/307,277, all filed Jul. 23, 2001. Each of the patent applications listed in this paragraph is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
22457 | Rowlands | Dec 1858 | A |
216234 | Soule | Jun 1879 | A |
579695 | Carmina-Morreale | Mar 1897 | A |
1006118 | Napier | Oct 1911 | A |
1384354 | Sheldon | Jul 1921 | A |
1443133 | Kelly | Jan 1923 | A |
1475031 | Sheldon | Nov 1923 | A |
1487368 | Charles | Mar 1924 | A |
1586458 | Newby | Aug 1926 | A |
1692055 | Sheldon | Nov 1928 | A |
1719059 | Krupka et al. | Jul 1929 | A |
2153939 | Schaupp | Apr 1939 | A |
2577917 | Root | Dec 1951 | A |
2694209 | Lipincott | Nov 1954 | A |
3084356 | Wheat | Apr 1963 | A |
3087455 | Collier | Apr 1963 | A |
3112504 | Carlton | Dec 1963 | A |
3121892 | Plumlee | Feb 1964 | A |
3194206 | Anderson | Jul 1965 | A |
3256850 | Bramson | Jun 1966 | A |
3369517 | Rosenthal | Feb 1968 | A |
3605676 | Spangenberg | Sep 1971 | A |
3609782 | Mabuchi | Oct 1971 | A |
3621500 | Senghas | Nov 1971 | A |
3714921 | Gibson | Feb 1973 | A |
3716881 | Tilings | Feb 1973 | A |
3757729 | Golden | Sep 1973 | A |
3790977 | Bombardier | Feb 1974 | A |
3874319 | Martin | Apr 1975 | A |
3970031 | Vrana | Jul 1976 | A |
4034430 | Joyce | Jul 1977 | A |
4060866 | Robinson | Dec 1977 | A |
4117562 | Schaumann | Oct 1978 | A |
4129912 | Robinson | Dec 1978 | A |
4157597 | Trebnick | Jun 1979 | A |
4261069 | Schaumann | Apr 1981 | A |
4295236 | Upchurch | Oct 1981 | A |
4318700 | Price | Mar 1982 | A |
4353703 | d'Elloy | Oct 1982 | A |
4365570 | Jamieson | Dec 1982 | A |
4496325 | Tweg | Jan 1985 | A |
4591343 | Schaumann | May 1986 | A |
4621587 | Pool | Nov 1986 | A |
4624209 | Loffler | Nov 1986 | A |
4698039 | Watson | Oct 1987 | A |
4952184 | Graziano | Aug 1990 | A |
5080621 | Nayes | Jan 1992 | A |
5120249 | Fonda | Jun 1992 | A |
5127855 | Heywood | Jul 1992 | A |
5189974 | Masters | Mar 1993 | A |
5192237 | Pegoraro | Mar 1993 | A |
5236381 | Keogh | Aug 1993 | A |
5417179 | Niemier et al. | May 1995 | A |
5421759 | Morin | Jun 1995 | A |
5462466 | Hull | Oct 1995 | A |
5529008 | Craig | Jun 1996 | A |
5593334 | Thayer | Jan 1997 | A |
5649498 | Zigurs | Jul 1997 | A |
5657713 | Rowlett | Aug 1997 | A |
5697822 | Souter | Dec 1997 | A |
D401546 | Boris et al. | Nov 1998 | S |
5860378 | Schaller | Jan 1999 | A |
5860841 | Welz | Jan 1999 | A |
5896825 | Trefethen | Apr 1999 | A |
6095073 | Burkett | Aug 2000 | A |
6112692 | Lekhtman | Sep 2000 | A |
6138602 | Cary | Oct 2000 | A |
6289838 | Dust | Sep 2001 | B1 |
6468118 | Chen | Oct 2002 | B1 |
6526903 | Robinson | Mar 2003 | B1 |
6764363 | Rosen | Jul 2004 | B1 |
6871608 | Rosen | Mar 2005 | B1 |
20010031588 | Young | Oct 2001 | A1 |
Number | Date | Country |
---|---|---|
2249316 | Apr 1974 | DE |
3331049 | Apr 1985 | DE |
3431659 | Mar 1986 | DE |
3441589 | May 1986 | DE |
8907360 | Aug 1989 | DE |
3902367 | Aug 1990 | DE |
4402607 | Jul 1995 | DE |
2212467 | Jul 1989 | GB |
2001010586 | Jan 2001 | JP |
8401176 | Nov 1985 | NL |
Number | Date | Country | |
---|---|---|---|
20040166748 A1 | Aug 2004 | US |
Number | Date | Country | |
---|---|---|---|
60307258 | Jul 2001 | US | |
60307259 | Jul 2001 | US | |
60307260 | Jul 2001 | US | |
60307270 | Jul 2001 | US | |
60307277 | Jul 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10201066 | Jul 2002 | US |
Child | 10754474 | US |