Upright vacuum cleaner with cyclonic air path

Information

  • Patent Grant
  • 7334290
  • Patent Number
    7,334,290
  • Date Filed
    Wednesday, June 6, 2007
    17 years ago
  • Date Issued
    Tuesday, February 26, 2008
    16 years ago
Abstract
An upright suction cleaner having a base, a body pivotally mounted on the base, a suction device, and a dirt separation system. The dirt separation system has a first and second dirt separators. the first of which may include an air-pervious shroud having a plate extending from it. An airflow path extends from the base, through the separation system, and into the suction device. A dirt collecting system is mountable to the body, and includes a first chamber to receive dirt separated by the first dirt separator, and a second chamber to receive dirt separated by the second dirt separator. The chambers are adjacent one another when mounted to the body. A tube forming part of the airflow path between the dirt separation system and the suction device is selectively mountable adjacent the dirt collecting system. An elevator assembly is provided to attach the dirt collecting system to the body.
Description
FIELD OF THE INVENTION

This invention relates to an improved upright vacuum cleaner having a cyclonic air path. More particularly, this invention relates to such a vacuum cleaner as provides the operator with improved performance features such as a visual indication of the condition of a removable filter to allow for more timely cleaning of such filter, an improved filter insertion and removal arrangement that allows for easy maintenance, as well as other improvements as will be described below.


BACKGROUND OF THE INVENTION

In selecting a vacuum cleaner for home use, consumers today have many choices including a choice between an upright and a canister style vacuum cleaner, a choice between a bagged or a bag less dirt collection, and, a choice between a cyclonic versus a non-cyclonic cleaning action. Typically, two very important factors in the consumer's decision regarding the purchase of a vacuum cleaner are the ease of use of the vacuum cleaner and its cleaning effectiveness. Based on these factors, the bag less style of upright vacuum cleaner has become popular recently because it no longer requires the unpleasant task of periodically changing vacuum cleaner bags. Instead, the consumer merely removes the dust cup or container and empties it over a trash receptacle. Occasionally, the consumer must also clean out a removable filter within the dust cup that traps smaller particles of dirt. One of the problems associated with the task of emptying the dust cup is that the top of the dust cup is typically open to the air thus allowing that dust previously vacuumed, can be released back into the air during the process of transporting the dust cup to the trash receptacle.


Another feature of today's bagless vacuum cleaners is that the dust cup or container is typically made of clear plastic so that the operator can observe the cleaning action of the vacuum cleaner. This visual effect lets the operator monitor the effectiveness of the cleaning action and determine when the container should be emptied or the filter cleaned. Examples of such bagless upright vacuum cleaners can be found in U.S. Pat. Nos. 6,146,434; 6,070,291; and, 5,558,697. The problem with relying on this visual assessment of the cleaning action is that most consumers may not realize when the cleaning effectiveness has deteriorated by simply viewing the cleaning action. In fact, the cleaning effectiveness is also dependent upon the condition of any filtering devices disposed in the airflow path and if such filter is clogged or dirty, the cleaning effectiveness of the vacuum cleaner can be compromised without the operator being able to visually detect such condition. Accordingly, it would be beneficial if a bagless upright vacuum cleaner provided some additional means for determining the cleaning effectiveness particularly with respect to any filter devices that may be included with the bagless vacuum cleaner.


Of further importance in the operation of such bagless vacuum cleaners is the actual task of removing and reinstalling the dirt-collecting chamber so that the dirt can be emptied into a trash receptacle. Often times the operator has to make several attempts to align the dirt-collecting chamber properly for continued operation. It would be advantageous if the bagless vacuum cleaner included a simple and easy to use arrangement for aligning and reinstalling the dirt collecting chamber following a routine exercise of emptying the chamber.


SUMMARY OF THE INVENTION

One exemplary aspect of the present invention provides an upright suction cleaner having a floor engaging base unit, a body unit pivotally mounted on the base unit, a suction generating device disposed on the body unit, and a dirt separation system disposed on the body unit above the suction generating device. The dirt separation system has a first dirt separator and a second dirt separator, and the first dirt separator includes an air-pervious shroud having a plate that extends radially from the shroud. A working airflow path extends from the base unit, through the dirt separation system and into the suction generating device. A dirt collecting system is selectively mountable to the body unit, and includes a first chamber adapted to receive a first amount of dirt separated from the working airflow path by the first dirt separator and a second chamber adapted to receive a second amount of dirt separated from the working airflow path by the second dirt separator. The first and second chambers are located adjacent one another when mounted to the body unit. A tube forms part of the airflow path between the dirt separation system and the suction generating device. The tube is selectively mountable to the body unit adjacent the dirt collecting system. An elevator assembly is located below the dirt collecting system and includes a movable lever. The elevator assembly is adapted to raise to attach the dirt collecting system to the body unit when the movable lever is placed in a first position, and to lower to release the dirt collecting system from the body unit when the movable lever is placed in a second position. The first chamber, second chamber and tube are simultaneously visible to an operator when mounted to the body unit.


Another exemplary aspect of the present invention provides an upright suction cleaner having a floor engaging base unit, a body unit pivotally mounted on the base unit, a suction generating device disposed on the body unit, and a dirt separation system disposed on the body unit above the suction generating device. The dirt separation system has a first dirt separator and a second dirt separator. A working airflow path extends from the base unit, through the dirt separation system, and into the suction generating device. A dirt collecting system is selectively mountable to the body unit, and includes a first chamber adapted to receive a first amount of dirt separated from the working airflow path by the first dirt separator, and a second chamber adapted to receive a second amount of dirt separated from the working airflow path by the second dirt separator. The first and second chambers are located adjacent one another when mounted to the body unit. A tube forms part of the working airflow path between the dirt separation system and the suction generating device, and is selectively mountable to the body unit. An elevator assembly is located below the dirt collecting system and adapted to raise to attach the dirt collecting system to the body unit and lower to release the dirt collecting system from the body unit.


Another exemplary aspect of the present invention provides an upright suction cleaner having a floor engaging base unit, a body unit pivotally mounted on the base unit, a suction generating device disposed on the base unit or the body unit, and a dirt separation system disposed on the body unit. The dirt separation system has a first dirt separator and a second dirt separator. A working airflow path extends from the base unit, through the dirt separation system. and into the suction generating device. A dirt collecting system is selectively mountable to the body unit, and includes a first chamber adapted to receive a first amount of dirt separated from the working airflow path by the first dirt separator and a second chamber adapted to receive a second amount of dirt separated from the working airflow path by the second dirt separator. The first and second chambers are located adjacent one another when mounted to the body unit. A tube forms part of the working airflow path between the dirt separation system and the suction generating device. The tube is selectively mountable to the body unit adjacent the dirt collecting system. The first chamber, second chamber and tube are simultaneously visible to an operator when mounted to the body unit.


Another exemplary aspect of the present invention provides an upright suction cleaner having a floor engaging base unit, a body unit pivotally mounted on the base unit, a suction generating device disposed on the base unit or the body unit, and a dirt separation system disposed on the body unit. The dirt separation system has a first dirt separator and a second dirt separator. A working airflow path extends from the base unit, through the dirt separation system, and into the suction generating device. A dirt collecting system is selectively mountable to the body unit, and includes a first chamber adapted to receive a first amount of dirt separated from the working airflow path by the first cyclonic dirt separator, and a second chamber adapted to receive a second amount of dirt separated from the working airflow path by the second dirt separator. An elevator assembly is located below the dirt collecting system and adapted to raise to attach the dirt collecting system to the body unit and lower to release the dirt collecting system from the body unit.


Another exemplary aspect of the present invention provides an upright suction cleaner having a floor engaging base unit, a body unit pivotally mounted on the base unit, a suction generating device disposed on the body unit, and a dirt separation system disposed on the body unit above the suction generating device. The dirt separation system has a first cyclone separator. A working airflow path extends from the base unit, through the dirt separation system, and into the suction generating device. A dirt collecting system is selectively mountable to the body unit, and includes a first chamber adapted to receive a first amount of dirt separated from the working airflow path by the first cyclonic dirt separator. An elevator assembly is located below the dirt collecting system and has a movable lever. The elevator assembly is adapted to raise to attach the dirt collecting system to the body unit when the movable lever is placed in a first position, and to lower to release the dirt collecting system from the body unit when the movable lever is placed in a second position.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be more fully described with reference to the accompanying drawings in which:



FIG. 1 is a perspective view of a front of the vacuum cleaner constructed in accordance with the present invention.



FIG. 2 is a perspective view of a rear of the vacuum cleaner constructed in accordance with the present invention.



FIG. 3 is an exploded perspective view of the vacuum cleaner according to the present invention.



FIG. 4 is a front elevational view of a front of a vacuum cleaner showing dirt and filter condition indicators.



FIG. 5 is a perspective view of the dirt collecting enclosure portion of the present invention.



FIG. 6 is a perspective view of the filter element portion of the present invention.



FIG. 7 is a perspective view of the end cap portion of the cyclone body of the present invention.



FIG. 8 is a perspective view of the cyclone body of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed toward an improved upright vacuum cleaner that has a plurality of cyclone filtration chambers and other mechanical filter means. The present invention uses progressive filtration wherein larger particles are removed first and then progressively smaller particles are removed from the air stream until, finally, very small particles are removed. As seen in FIG. 1, the vacuum cleaner of the present invention has a base 12, a rear housing 14 and an upstanding handle (see FIG. 3). The handle can be packaged separate and apart from the rear housing 14 and can be easily assembled by the user. The handle 10 includes a yoke or laterally split attachment arms that are inserted into accommodating recesses in the rear housing 14.


The base 12 includes a brush roll (not shown) that is selectively rotated by a drive belt (not shown), such brush roll and drive belt being constructed according to well known techniques. The drive belt is driven by a shaft 80a off of motor/fan assembly 80 as shown in FIG. 3. The motor can be disposed in a bottom portion of the rear housing 14, which is rotatably connected to the base 12. Additionally, the motor/fan assembly 80 can be disposed in a plenum chamber created by the air duct and rear housing/motor cover seal 86. The drive belt may be engaged/disengaged from the brush roll by operation of a pulley via a slide lever 16 to thereby disengage the brush roll as is desired when cleaning hard floor surfaces. As seen more clearly in FIG. 2, a tube 20 extends from the base 12 and communicates air and dirt upwardly from the base 12 to a hose 22. The hose 22 extends upwardly from the tube connection around a hose hook of a top rear portion of the rear housing 14 and down to the base of the rear housing 14 and under a hose retention member 26. The free end of the hose 22 connects to a first end of a conduit 28. The second end of the conduit 28 is connected to a dirt sensor housing 29.


The dirt sensor housing 29 extends from the conduit 28 to a rear portion of a dirt collecting enclosure 30 and acts as an input port so as to be sealingly engaged to the rear of the dirt collecting enclosure 30. The dirt sensor housing 29 can have gaskets molded or installed therein. Additionally, the dirt sensor housing 29 is formed having a bend therein so as to extend from a downwardly facing inlet to a laterally or horizontally facing outlet that is then connected to the rear portion of the dirt collecting enclosure 30. It would also be possible to achieve the benefits of the present invention if the inlet to the dirt sensor housing 29 were disposed in a horizontally; that is, oriented in the same manner as the horizontally facing outlet.


As seen in FIG. 5, the dirt collecting enclosure 30 has a first large chamber 32 and a smaller chamber 34. Air and dirt are introduced into the first large chamber 32 in a tangential manner to thereby achieve a cyclonic airflow. Each of the first and second chambers 32, 34 has an open upper end and a closed bottom side. The dirt sensor housing 29 sealingly engages a side of the large chamber 32 at a top end thereof and surrounds an input opening 36 to the large chamber 32. The input opening 36 is a notched opening at the top end of the first large chamber 32. Of course, the input opening to the first large chamber 32 can be disposed in the side of the large chamber 32 thereby allowing that the upper edge of the first large chamber is continuous about its circumference. An upper edge of the dirt collecting enclosure 30 at the first large chamber 32 includes a rim or ledge. A filter element 40 is disposed in the first large chamber 32 and is laterally adjacent the input opening 36.


As seen in FIG. 6, the filter element 40 includes an upper ring-shaped circular portion 42, a central frustoconical portion 44, and a lower ring-shaped portion 46. The upper ring-shaped portion 42 rests or is seated on the ring or ledge of the large first chamber 32 so that the body of filter 40 extends into the large first chamber 32. It should be noted that the upper ring-shaped portion 42 of filter 40 is effective for essentially closing off the large first chamber 32. This is particularly effective during the process of emptying the dirt collecting enclosure 30 in that the seating of the filter 40 of the upper opening of the first chamber 32 substantially reduces the occurrence of dirt escaping the dirt collecting enclosure 30 when the user is emptying the dirt collecting enclosure 30 into a trash receptacle. In this manner, the filter 42 acts as both a filter and a seal.


The frustoconical portion 44 is perforated and serves as a filter surface. The lower ring shaped portion 46, which includes a downwardly extending peripheral flange, serves as a baffle plate and separator for larger particles that precipitate into the bottom of the first large chamber 32. Air from the first large chamber 32 flows through the filter member 40 and upwardly into a second cyclone 50 (see FIG. 3). The second cyclone is disposed relatively above the dirt collecting enclosure 30 and is operable to deposit or direct smaller dirt particles into the second chamber 34 of the dirt collecting enclosure 30. More specifically, relatively clean air from the first chamber 32 tangentially enters the second cyclone 50 and the cyclone chamber provided thereby via an inlet defined by the union of the cyclone body 52 and the cyclone end cap 54 (see FIGS. 7 and 8).


The cyclone body 52 includes a circular first body portion that merges into a downwardly extending tube portion 52a. The end of the tube portion 52a includes a flange and a neck, the neck extending into and sealing the second chamber 34 with the flange abutting the end face of the second chamber 34. Air is introduced tangentially into the second cyclone 50 and spirals around the neck and downwardly into the bottom of the second chamber 34 so as to carry the smaller particles of debris therewith. The clean air from the second chamber 34 exits via the outlet tube 56 provided by the cyclone end cap 54 and flows laterally across the vacuum cleaner body and into the top end of filter tube 60. The filter tube 60 is disposed substantially symmetrically on the opposite side of the first chamber 32 as the second chamber 34. More specifically, the air that enters a cylindrical filter member 62 disposed within filter tube 60, flows through the filter element 62 and exits via an outlet at the bottom of the filter tube 60. Air is communicated from the outlet of the filter tube 60 to the motor/fan assembly 80 and then to atmosphere via a HEPA filter 82.


As seen in FIG. 3, the vacuum cleaner includes an elevator assembly 70 that permits easy installation and sealing engagement of the dirt collecting enclosure 30 and filter tube 60 with the rear housing 14. The elevator assembly 70 is mounted to the rear housing 14 relatively beneath the dirt collecting enclosure 30 and filter tube 60 and includes a handle 72 that is laterally shifted or pivoted. Of course, other actuation mechanisms can be utilized as well and still achieve the benefits of the present invention. For instance, a rotatable knob can achieve the same actuation effect as the lever or handle 72. Movement of the handle 72 causes an elevator platform 74 to be moved up or down thereby either pushing the dirt collecting enclosure 30 and filter tube 60 up into sealing engagement with associated upper seals, or, permits the dirt collecting enclosure 30 and filter tube 60 to be dropped down and out of sealing engagement with the seals. Typically, the elevator assembly 70 will be moved to a lower position to permit removal of the dirt collecting enclosure 30 from the rear housing 14 for emptying, and will be moved to the upper position after the dirt collecting enclosure 30 and filter tube 60 are reinstalled to seal the assembly in position and permit further cleaning operations. A cam plate can also be provided as part of the elevator assembly 70 to achieve the raising and lowering functions. Of course, the cam operation need not be provided by a separate element but can be achieved by providing a camming surface on either the elevator platform 74 or the lever member 72. Additionally, though the present embodiment describes a mechanical arrangement for actuating the elevator, it is contemplated herein that the elevator arrangement could also be achieved by use of an electrical or pneumatic form of actuation.


The cyclone body 52 and cyclone end cap 54 cooperate to filter dirt from air and to transport clean air to another location of further processing. In this regard, it is important to note that the cyclone body 52 and the cyclone end cap 54 do not require a replaceable and removable filter element. The cyclone chamber defined by the cyclone body 52 is angled with respect to vertical, and extends downwardly and laterally from the upper end to the lower end. The lower end of the cyclone chamber bends still further downwardly such that the exit of the tube is essentially vertically oriented and therefore matches the orientation of the second chamber 34 and smoothly merges therewith.


The cyclone body 52 has a first edge adjacent its upper end that is engaged and sealed by the cyclone end cap 54. The cyclone end cap 54 preferably has a peripheral groove into which the first edge is inserted to form a labyrinth type seal. Naturally, additional sealing gaskets or seals may also be used. The connection between the cyclone end cap 54 and the cyclone body 52 also defines the inlet air passageway from the first chamber 32/filter element 40 to the second cyclone as noted hereinbefore. The end cap 52 and body 54 are also attached by cooperation of tabs and mechanical fasteners (not shown) about the first edge and the peripheral groove to ensure a sealing connection. The inlet passageway is generally tangential to the inner wall surface of the cyclone body 52, as illustrated.


As seen in FIG. 4, adjacent the on-off switch, a series of indicators 100 are provided. The indicators can be LEDs that are illuminated to indicate the occurrence of a differential pressure across one or more of the filter elements, which is indicative of a clogged or dirty filter. The filter elements being sensed are preferably the HEPA filter and/or the tube filter element 62 downstream of the cyclone filter units. A circuit board 102 (see FIG. 3) with sensors extending therefrom into the airflow path, can perform the necessary detection and indication functions according to known techniques.


Although the hereinabove described embodiment of the invention constitutes the preferred embodiment; it should be understood that modifications could be made thereto without departing from the scope of the invention as set forth in the appended claims.

Claims
  • 1. An upright suction cleaner comprising: a floor engaging base unit;a body unit pivotally mounted on the base unit;a suction generating device disposed on the body unit;a dirt separation system disposed on the body unit above the suction generating device, the dirt separation system comprising a first dirt separator and a second dirt separator, wherein the first dirt separator comprises an air-pervious shroud having a plate that extends radially from the shroud;a working airflow path extending from the base unit, through the dirt separation system, and into the suction generating device;a dirt collecting system selectively mountable to the body unit, the dirt collecting system comprising a first chamber adapted to receive a first amount of dirt separated from the working airflow path by the first dirt separator, and a second chamber adapted to receive a second amount of dirt separated from the working airflow path by the second dirt separator, the first and second chamber being located adjacent one another when mounted to the body unit;a tube forming part of the working airflow path between the dirt separation system and the suction generating device, the tube being selectively mountable to the body unit adjacent the dirt collecting system; andan elevator assembly located below the dirt collecting system and comprising a movable lever, the elevator assembly being adapted to raise to attach the dirt collecting system to the body unit when the movable lever is placed in a first position, and to lower to release the dirt collecting system from the body unit when the movable lever is placed in a second position;wherein the first chamber, the second chamber and the tube are simultaneously visible to an operator when mounted to the body unit.
  • 2. An upright suction cleaner comprising: a floor engaging base unit;a body unit pivotally mounted on the base unit;a suction generating device disposed on the body unit;a dirt separation system disposed on the body unit above the suction generating device, the dirt separation system comprising a first dirt separator and a second dirt separator;a working airflow path extending from the base unit, through the dirt separation system, and into the suction generating device;a dirt collecting system selectively mountable to the body unit, the dirt collecting system comprising a first chamber adapted to receive a first amount of dirt separated from the working airflow path by the first dirt separator, and a second chamber adapted to receive a second amount of dirt separated from the working airflow path by the second dirt separator, the first and second chamber being located adjacent one another when mounted to the body unit;a tube forming part of the working airflow path between the dirt separation system and the suction generating device, the tube being selectively mountable to the body unit; andan elevator assembly located below the dirt collecting system and adapted to raise to attach the dirt collecting system to the body unit and lower to release the dirt collecting system from the body unit.
  • 3. The upright suction cleaner of claim 2, wherein the elevator assembly is further adapted to raise to attach the tube to the body unit and lower to release the tube from the body unit.
  • 4. The upright suction cleaner of claim 2, wherein at least one of the first dirt separator and the second dirt separator comprises a cyclone separator.
  • 5. The upright suction cleaner of claim 2, wherein the first chamber, the second chamber and the tube are simultaneously visible to an operator when mounted to the body unit.
  • 6. An upright suction cleaner comprising: a floor engaging base unit;a body unit pivotally mounted on the base unit;a suction generating device disposed on one of the base unit and the body unit;a dirt separation system disposed on the body unit and comprising a first dirt separator and a second dirt separator;a working airflow path extending from the base unit, through the dirt separation system, and into the suction generating device;a dirt collecting system selectively mountable to the body unit, the dirt collecting system comprising a first chamber adapted to receive a first amount of dirt separated from the working airflow path by the first dirt separator, and a second chamber adapted to receive a second amount of dirt separated from the working airflow path by the second dirt separator, the first and second chamber being located adjacent one another when mounted to the body unit; anda tube forming part of the working airflow path between the dirt separation system and the suction generating device, the tube being selectively mountable to the body unit adjacent the dirt collecting system;wherein the first chamber, the second chamber and the tube are simultaneously visible to an operator when mounted to the body unit.
  • 7. The upright suction cleaner of claim 6, further comprising a single mechanism to simultaneously attach the dirt collecting system and the tube to the body unit.
  • 8. The upright suction cleaner of claim 7, wherein the single mechanism comprises an elevator assembly located below the dirt collecting system and adapted to raise to attach the dirt collecting system to the body unit and lower to release the dirt collecting system from the body unit.
  • 9. The upright suction cleaner of claim 6, wherein the tube is removable from the body unit separately from the dirt collecting system.
  • 10. The upright suction cleaner of claim 6, wherein the second dirt separator receives the working airflow after it passes through the first dirt separator.
  • 11. The upright suction cleaner of claim 6, wherein at least one of the first dirt separator and the second dirt separator comprises a filter element having an air-pervious shroud and a plate that extends radially from the air-pervious shroud.
  • 12. The upright suction cleaner of claim 6, wherein the first dirt separator separates the first amount of dirt from the working airflow path by cyclonic separation, and the second dirt separator separates the second amount of dirt from the working airflow path by cyclonic separation.
  • 13. The upright suction cleaner of claim 6, wherein the first chamber and the second chamber are joined to each other.
  • 14. An upright suction cleaner comprising: a floor engaging base unit;a body unit pivotally mounted on the base unit;a suction generating device disposed on one of the base unit and the body unit;a dirt separation system disposed on the body unit and comprising a first dirt separator and a second dirt separator;a working airflow path extending from the base unit, through the dirt separation system, and into the suction generating device;a dirt collecting system selectively mountable to the body unit, the dirt collecting system comprising a first chamber adapted to receive a first amount of dirt separated from the working airflow path by the first dirt separator, and a second chamber adapted to receive a second amount of dirt separated from the working airflow path by the second dirt separator; andan elevator assembly located below the dirt collecting system and adapted to raise to attach the dirt collecting system to the body unit and lower to release the dirt collecting system from the body unit.
  • 15. The upright suction cleaner of claim 14, wherein the elevator assembly comprises a cam plate, and the elevator assembly is mounted to the body unit.
  • 16. The upright suction cleaner of claim 14, wherein the elevator assembly comprises a movable lever, the elevator assembly being raised when the movable lever is placed in a first position, and lowered when the movable lever is placed in a second position.
  • 17. The upright suction cleaner of claim 14, wherein the second dirt separator is arranged to receive the working airflow after it passes through the first dirt separator.
  • 18. The upright suction cleaner of claim 14, wherein at least one of the first dirt separator and the second dirt separator comprises a filter element having an air-pervious shroud and a plate that extends radially from the air-pervious shroud.
  • 19. The upright suction cleaner of claim 14, wherein at least one of the first dirt separator and the second dirt separator comprises a frustoconical member that reduces in diameter at its lower end and a plate that extends radially from the frustoconical member.
  • 20. The upright suction cleaner of claim 19, wherein the frustoconical member is air pervious.
  • 21. The upright suction cleaner of claim 14, wherein the first chamber and the second chamber are located adjacent one another when mounted to the body unit.
  • 22. An upright suction cleaner comprising: a floor engaging base unit;a body unit pivotally mounted on the base unit;a suction generating device disposed on the body unit;a dirt separation system disposed on the body unit above the suction generating device, the dirt separation system comprising a first cyclone separator;a working airflow path extending from the base unit, through the dirt separation system, and into the suction generating device;a dirt collecting system selectively mountable to the body unit, the dirt collecting system comprising a first chamber adapted to receive a first amount of dirt separated from the working airflow path by the first cyclone separator; andan elevator assembly located below the dirt collecting system and comprising a movable lever, the elevator assembly being adapted to raise to attach the dirt collecting system to the body unit when the movable lever is placed in a first position, and to lower to release the dirt collecting system from the body unit when the movable lever is placed in a second position.
  • 23. The upright suction cleaner of claim 22, wherein the elevator assembly comprises an elevator platform.
  • 24. The upright suction cleaner of claim 23, wherein the elevator assembly further comprises a cam plate adapted to raise and lower the elevator platform in response to movement of the movable lever.
  • 25. The upright suction cleaner of claim 22, further comprising: a tube forming part of the working airflow path between the dirt separation system and the suction generating device, the tube being selectively mountable to the body unit and having a filter located therein.
Parent Case Info

This application is a continuation of U.S. application Ser. No. 11/281,796, filed Nov. 18, 2005, now U.S. Pat. No. 7,228,592, which is a continuation of U.S. application Ser. No. 10/430,603, filed May 6, 2003, abandoned, which is a continuation of U.S. application Ser. No. 09/759,391, filed Jan. 12, 2001, now U.S. Pat. No. 6,910,245, which claims the benefit of U.S. Provisional Application Ser. No. 60/176,374, filed Jan. 14, 2000, the entire contents of which are incorporated herein by reference in their entirety.

US Referenced Citations (36)
Number Name Date Kind
3320727 Farley et al. May 1967 A
4199838 Simonsson Apr 1980 A
4373228 Dyson Feb 1983 A
4733430 Westergren Mar 1988 A
4733431 Martin Mar 1988 A
5023973 Tsuchida et al. Jun 1991 A
5230722 Yonkers Jul 1993 A
5542146 Hoekstra et al. Aug 1996 A
6026539 Mouw et al. Feb 2000 A
6026540 Wright et al. Feb 2000 A
6375696 Wegelin et al. Apr 2002 B2
6385810 Lang May 2002 B1
6408481 Dyson Jun 2002 B1
6589309 Oh et al. Jul 2003 B2
6640385 Oh et al. Nov 2003 B2
6732406 Oh May 2004 B2
6735816 Oh et al. May 2004 B2
6735818 Hamada et al. May 2004 B2
6757933 Oh et al. Jul 2004 B2
6782584 Choi Aug 2004 B2
6836931 Bone Jan 2005 B2
6910245 Hawkins et al. Jun 2005 B2
6922868 Jeong Aug 2005 B1
6991667 Yang et al. Jan 2006 B2
7055211 Tucker Jun 2006 B2
7152274 Alford et al. Dec 2006 B2
7155772 Lee Jan 2007 B2
7191490 Lee et al. Mar 2007 B2
7228592 Hawkins et al. Jun 2007 B2
20040261216 Choi et al. Dec 2004 A1
20050138760 Park et al. Jun 2005 A1
20050138761 Park et al. Jun 2005 A1
20050138763 Tanner et al. Jun 2005 A1
20060117520 Choi Jun 2006 A1
20060123589 Kim Jun 2006 A1
20070011842 Moon et al. Jan 2007 A1
Foreign Referenced Citations (1)
Number Date Country
58-54255 Apr 1983 JP
Related Publications (1)
Number Date Country
20070226951 A1 Oct 2007 US
Provisional Applications (1)
Number Date Country
60176374 Jan 2000 US
Continuations (3)
Number Date Country
Parent 11281796 Nov 2005 US
Child 11758824 US
Parent 10430603 May 2003 US
Child 11281796 US
Parent 09759391 Jan 2001 US
Child 10430603 US