At least one embodiment pertains to processing resources used to perform and facilitate artificial intelligence. For example, at least one embodiment pertains to processors or computing systems used to train neural networks according to various novel techniques described herein.
Image and video content is increasingly being generated and displayed at higher resolutions and on higher quality displays. Approaches to generating this content at these higher resolutions often are very resource intensive, particularly for modern frame rates, which can be problematic for devices with limited resource capacity. Often, the quality of the resulting content is constrained by these and other limitations. Upscaling can be used to generate higher resolutions from lower-resolution content, but such content frequently suffers from artifacts or is otherwise not of a desired quality. At least some of this lack in quality is due to limitations of the hardware used to train models to perform this upscaling.
Various embodiments in accordance with the present disclosure will be described with reference to the drawings, in which:
In at least one embodiment, content such as video game content or animation can be generated using a renderer 102, rendering engine, or other such content generator. In at least one embodiment, renderer 102 can receive input for one or more frames of a sequence, and can generate images or frames of video using stored content 104 (e.g., maps and graphical assets) modified based at least in part upon that input. In at least one embodiment, this renderer 102 may be part of a rendering pipeline, such as may utilize rendering software such as Unreal Engine 4 from Epic Games, Inc., that can provide functionality such as deferred shading, global illumination, lit translucency, post-processing, and graphics processing unit (GPU) particle simulation using vector fields. In at least one embodiment, an amount of processing necessary for this complicated rendering of full, high-resolution images can make it difficult to render these video frames to meet current frame rates, such as at least sixty frames per second (fps). In at least one embodiment, a renderer 102 can instead be used to generate a rendered image 106 at a resolution that lower than one or more final output resolutions, in order to meet timing requirements and reduce processing resource requirements. In at least one embodiment, this low-resolution rendered image 106 can be processed using an upscaler 108 to generate an upscaled image 110 that represents content of low resolution rendered image 106 at a resolution that equals (or is at least closer to) a target output resolution.
In at least one embodiment, an upscaler system 108 (which can take a form of a service, system, module, or device) can be used to upscale individual frames of a video or animation sequence. In at least one embodiment, an amount of upscaling to be performed can depend upon an initial resolution of a rendered image and a target resolution of display, such as going from 1080p to 4k resolution. In at least one embodiment, additional processing can be performed as part of an upsampling process, as may include anti-aliasing and temporal smoothing. In at least one embodiment, an appropriate reconstruction filter can be utilized, such as may involve a Gaussian filter. In at least one embodiment, an upsampling process can take into account a sub-pixel jitter that can be applied on a per-frame basis.
In at least one embodiment, deep learning can be used to infer these upsampled, video frames of a sequence. In at least one embodiment, temporal reconstruction can be used to provide anti-aliasing and super resolution in a combined fashion. In at least one embodiment, information from a corresponding sequence of video frames can be used to infer a higher quality upsampled image. In at least one embodiment, one or more heuristics can be used that are based on prior knowledge of a rendering pipeline that does not require learning from data. In at least one embodiment, this can include jitter-aware upsampling and accumulating samples at an upsampled resolution. In at least one embodiment, this prior process data can be provided, along with a current input video frame and a prior inferred frame, as input to an upscaler 108 including at least one neural network in order to infer a higher quality upsampled image 110 than would be produced by an upsampling algorithm alone. In at least one embodiment, this upsampling essentially shifts jitter and per-frame samples so that they are aligned with a history buffer that may be at a higher resolution.
In at least one embodiment, this upscaled image 110 can be provided as input to a neural network 112 to determine one or more blending factors or blending weights. In at least one embodiment, this neural network can also determine at least some filtering to be applied when reconstructing or blending a current image with a prior image. In at least one embodiment, this information can then be provided with this upscaled image 110 to a blending component 114 be blended with at least one prior image of this sequence. In at least one embodiment, this blending of a current image with a prior (or historical) image of a sequence can help with temporal convergence to a nice, sharp, high-resolution output image 116, which can then be provided for presentation via a display 120 or other such presentation mechanism. In at least one embodiment, a copy of this high resolution output image 116 can also be stored to a history buffer 118, or other such storage location, for blending with a subsequently generated image in this sequence. In at least one embodiment, such a process can leverage deep learning to reconstruct images for real-time rendering at a resolution that is a number of times (e.g., 2×, 4×, or 8×) higher than an actual rendered resolution, with reconstructed image quality that is at least comparable to native resolution rendering, in terms of details, temporal stability, and lack of general artifacts such as ghosting or lag. In at least one embodiment, reconstruction speed can be accelerated with tensor cores, and using an approach as presented herein can make this rendering process much more sample efficient, leading to tremendously increased frames per second for various applications.
In at least one embodiment, such a deep learning-based approach can be used to reconstruct images for real-time rendering at a resolution (e.g., a super resolution) that is higher than an actual rendered resolution produced by a rendering engine. In at least one embodiment, a resulting reconstructed image quality can be comparable to, or even exceed, that of native resolution rendering, at least in terms of detail, temporal stability, and lack of general artifacts such as ghosting or lag. In at least one embodiment, this reconstruction speed can be accelerated with tensor cores. In at least one embodiment, such an approach can make a rendering process much more sample-efficient, leading to tremendously increased possible frame rates for various applications.
In at least one embodiment, a neural network such as network 112 can be trained using a set of training data. In at least one embodiment, a training module 206 can utilize this training data 202 to train a selected neural network 208, as illustrated in system overview 200 of
In at least one embodiment, as calculation of this gradient proceeds backwards through this network, partial computations of a gradient from one layer are reused in computation of a gradient for a previous layer. In at least one embodiment, retaining this information for each image frame in a sequence can require a substantial amount of memory, and can limit a number of frames that can be processed in a sequence due to physical limitations in, for example, GPU memory. In at least one embodiment, utilizing shorter sequences of images for training can allow an entire sequence to be processed in memory, but may result in undesired bias being introduced into this network.
In at least one embodiment, longer sequences of images (e.g., 32 or 64 image frames instead of 8) can be used to train network 208, in order to increase an ability of this network to reuse information across multiple frames. In at least one embodiment, this can enable this network to improve temporal consistency of image reconstruction by better understanding temporal behavior over an entire sequence. In at least one embodiment, backpropagation can be performed over an entire, long sequence in order to allow this neural network to take advantage of all frames in this sequence to reconstruct each image. In at least one embodiment, this backpropagation may be performed over an entire sequence, but is not performed for each image frame of that sequence. In at least one embodiment, backpropagation can instead be performed for only a subset of frames of a sequence. In at least one embodiment, a number, percentage, or fraction of frames for backpropagation in a sequence can be a factor of an amount of available memory and a size of images being analyzed. In at least one embodiment, this can include performing backpropagation for every fourth or eighth frame, without limitation, received over a sequence. In at least one embodiment, backpropagation may not occur for an initial few frames, where little historical data has been accumulated. In at least one embodiment, backpropagation can still occur, but with a lower scaled loss or weighting. In at least one embodiment, setting this loss to zero can effectively cause backpropagation to not occur for these initial frames. In at least one embodiment, state information is retained for all image frames of a sequence, but backpropagation will only be performed for a subset of frames of that sequence. In at least one embodiment, this enables a network to be trained using long sequences without consuming all available memory. In at least one embodiment, a subset of frames for backpropagation should not be too small, as this can lead to inefficiencies in this training process.
In at least one embodiment, a neural network is to be trained for a type of data that will be input when running inference on live data in real time. In at least one embodiment, these sequences, such as for image sequences for a game session, may have hundreds of frames in history, and in at least some instances may have no limit in length. In at least one embodiment, an ability to train on longer sequences will prevent unintended biasing of this network, and can enable this network to be trained using data that is more like data that will actually be received at inference time, which can improve a quality of inference-time results. In at least one embodiment, this can be even more important for data where images will represent a significant amount of motion, and a chance of being able to use historical data may be significantly lower.
In at least one embodiment, a process 250 for training a network can be performed as illustrated in
In at least one embodiment, memory can additionally, or alternatively, be conserved by utilizing only a portion of each image in a sequence, which can also allow for training using longer sequences. In at least one embodiment, this can involve cropping each image of a sequence to a smaller size that requires less memory for storage. In at least one embodiment, it can be desirable to minimize an amount of image data to be stored for each image in order to allow for longer sequences. In at least one embodiment, an amount of cropping to be performed can be balanced with a need for enough data to be retained to provide sufficient training data, and prevent pixels from being projected out of this training crop. In at least one embodiment, sequences can represent both dynamic object and camera motion, such that small cropped regions may cause many pixels from prior frames in a sequence to be outside this crop region after warping. In at least one embodiment, a cropping approach can therefore attempt to provide a sufficient amount of data in cropped regions to allow as much historical data to be reused as possible, while still allowing for training using longer image sequences.
In at least one embodiment, a crop size can be determined for an image sequence that will retain a sufficient amount of data between frames. In at least one embodiment, a location for this crop region in this sequence can be selected, such as at random or according to a determined selection algorithm. In at least one embodiment, a size of a crop region can be determined based at least in part upon an average amount of movement in a sequence, where an average amount of movement may be on an order of around 20 to 30 pixels. In at least one embodiment, a crop region can be selected that is at least hundreds of pixels in dimension, such that pixels will be unlikely to move out of a crop region over a small number of frames in that sequence. In at least one embodiment, a size of this crop region can be determined dynamically or empirically, and may be configurable by a user or application. In at least one embodiment, an amount of cropping to be performed can also depend at least in part upon a size of backpropagation to be performed, which can impact available memory.
In at least one embodiment, a process 300 for training a network can be performed as illustrated in
In at least one embodiment, a loss function used to train such a network can include multiple terms, as may include as both a spatial loss term and a temporal loss term. In at least one embodiment, a spatial loss is calculated by comparing an output image to a reference image based on only that frame, while a temporal loss takes into account historical image data accumulated over a sequence. In at least one embodiment, these terms can be weighted in order to balance an impact of each of these terms on an overall loss value. In at least one embodiment, changes such as disocclusion and shading changes can be calculated from a set of reference images used for training. In at least one embodiment, these changes can then be used to scale these temporal and spatial loss terms differently in those regions during training. In at least one embodiment, regions with disocclusion or shading changes may have a much smaller temporal loss and a much higher spatial loss according to a determined scaling factor or weighting. In at least one embodiment, this can improve factors such as temporal stability and presence of ghosting. In at least one embodiment, this weighting can comprise a per-pixel weighting of these temporal and spatial components. In at least one embodiment, these weightings can be computed using one or more heuristics, as may relate to a number of frames of a sequence that have been processed. In at least one embodiment, a heuristic can be used to identify regions to be trusted in each frame, which can help to identify regions where a temporal component should be trusted more than a spatial component, and vice versa. In at least one embodiment, this weighting can help to improve overall stability versus a non-weighted loss function. In at least one embodiment, these regions can be identified using a variance mask, where that mask can be determined using a process such as variance clamping.
In at least one embodiment, a process 400 for training a network can be performed as illustrated in
In at least one embodiment, weights can also be adjusted based on a location of a given image in a sequence. In at least one embodiment, this can include using small loss weights for an initial number of frames in a sequence. In at least one embodiment, small loss weights can be utilized for these initial frames where there has not been enough samples to accumulate high quality temporal image data, which can then further encourage this network to temporally accumulate additional data and focus on steady state information determined after this network has seen at least a minimum number (e.g., 8) of frames in a sequence. In at least one embodiment, a loss for an initial number of frames can then be significantly down-weighted so this training focuses more heavily on a steady state loss. In at least one embodiment, all initial frames may be down-weighted by a similar amount, while in at least one embodiment a weighting curve may be applied where a first frame is down-weighted more than a second frame, and so on.
In at least one embodiment, such approaches can help improve quality of a network trained for temporal reconstruction for real time rendering. In at least one embodiment, such a network can be utilized advantageously for super sampling or super resolution upsampling, and can assist with image denoising for ray tracing. In at least one embodiment, such a process can also help with interpolation between images of a sequence.
In at least one embodiment, a pre-trained neural network can be used to reconstruct high resolution images using low resolution image sequences as input. In at least one embodiment, multiple low resolution rendered images are temporally accumulated to reconstruct a high resolution image with full details that can rival native resolution rendering. In at least one embodiment, to obtain full details of a high resolution rendering, these low resolution samples are to be accumulated at correct locations. In at least one embodiment, a set of blending weights can be calculated to achieve correct accumulation at high resolution. In at least one embodiment, these weights can be based at least in part upon original sample locations in a lower resolution rendered image.
In at least one embodiment, a client device 502 can generate this content for a session, such as a gaming session or video viewing session, using components of a content application 504 on client device 502 and data stored locally on that client device. In at least one embodiment, a content application 524 (e.g., a gaming or streaming media application) executing on content server 520 may initiate a session associated with at least client device 502, as may utilize a session manager and user data stored in a user database 534, and can cause content 532 to be determined by a content manager 526 and rendered using a rendering engine 528, if needed for this type of content or platform, and transmitted to client device 502 using an appropriate transmission manager 522 to send by download, streaming, or another such transmission channel. In at least one embodiment, client device 502 receiving this content can provide this content to a corresponding content application 504, which may also or alternatively include a rendering engine 510 for rendering at least some of this content for presentation via client device 502, such as video content through a display 506 and audio, such as sounds and music, through at least one audio playback device 508, such as speakers or headphones. In at least one embodiment, at least some of this content may already be stored on, rendered on, or accessible to client device 502 such that transmission over network 540 is not required for at least that portion of content, such as where that content may have been previously downloaded or stored locally on a hard drive or optical disk. In at least one embodiment, a transmission mechanism such as data streaming can be used to transfer this content from server 520, or content database 534, to client device 502. In at least one embodiment, at least a portion of this content can be obtained or streamed from another source, such as a third party content service 550 that may also include a content application 552 for generating or providing content. In at least one embodiment, portions of this functionality can be performed using multiple computing devices, or multiple processors within one or more computing devices, such as may include a combination of CPUs and GPUs.
In at least one embodiment, content application 524 includes a content manager 526 that can determine or analyze content before this content is transmitted to client device 502. In at least one embodiment, content manager 526 can also include, or work with, other components that are able to generate, modify, or enhance content to be provided. In at least one embodiment, this can include a rendering engine 528 for rendering content, such as aliased content at a first resolution. In at least one embodiment, an upsampling or scaling component 530 can generate at least one additional version of this image at a different resolution, higher or lower, and can perform at least some processing such as anti-aliasing. In at least one embodiment, a blending component 532, as may include at least one neural network, can perform blending for one or more of those images with respect to one or more prior images, as discussed herein. In at least one embodiment, content manager 526 can then select an image or video frame of an appropriate resolution to send to client device 502. In at least one embodiment, a content application 504 on client device 502 may also include components such as a rendering engine 510, upsampling module 512, and blending module 514, such that any or all of this functionality can additionally, or alternatively, be performed on client device 502. In at least one embodiment, a content application 552 on a third party content service system 550 can also include such functionality. In at least one embodiment, locations where at least some of this functionality is performed may be configurable, or may depend upon factors such as a type of client device 502 or availability of a network connection with appropriate bandwidth, among other such factors. In at least one embodiment, an upsampling module 530 or blending module 532 may include one or more neural networks for performing or assisting in this functionality, where those neural networks (or at least network parameters for those networks) can be provided by content server 520 or third party system 550. In at least one embodiment, a system for content generation can include any appropriate combination of hardware and software in one or more locations. In at least one embodiment, generated image or video content of one or more resolutions can also be provided, or made available, to other client devices 560, such as for download or streaming from a media source storing a copy of that image or video content. In at least one embodiment, this may include transmitting images of game content for a multiplayer game, where different client devices may display that content at different resolutions, including one or more super-resolutions.
In at least one embodiment, inference and/or training logic 615 may include, without limitation, code and/or data storage 601 to store forward and/or output weight and/or input/output data, and/or other parameters to configure neurons or layers of a neural network trained and/or used for inferencing in aspects of one or more embodiments. In at least one embodiment, training logic 615 may include, or be coupled to code and/or data storage 601 to store graph code or other software to control timing and/or order, in which weight and/or other parameter information is to be loaded to configure, logic, including integer and/or floating point units (collectively, arithmetic logic units (ALUs). In at least one embodiment, code, such as graph code, loads weight or other parameter information into processor ALUs based on architecture of a neural network to which this code corresponds. In at least one embodiment, code and/or data storage 601 stores weight parameters and/or input/output data of each layer of a neural network trained or used in conjunction with one or more embodiments during forward propagation of input/output data and/or weight parameters during training and/or inferencing using aspects of one or more embodiments. In at least one embodiment, any portion of code and/or data storage 601 may be included with other on-chip or off-chip data storage, including a processor's L1, L2, or L3 cache or system memory.
In at least one embodiment, any portion of code and/or data storage 601 may be internal or external to one or more processors or other hardware logic devices or circuits. In at least one embodiment, code and/or data storage 601 may be cache memory, dynamic randomly addressable memory (“DRAM”), static randomly addressable memory (“SRAM”), non-volatile memory (e.g., Flash memory), or other storage. In at least one embodiment, choice of whether code and/or data storage 601 is internal or external to a processor, for example, or comprised of DRAM, SRAM, Flash or some other storage type may depend on available storage on-chip versus off-chip, latency requirements of training and/or inferencing functions being performed, batch size of data used in inferencing and/or training of a neural network, or some combination of these factors.
In at least one embodiment, inference and/or training logic 615 may include, without limitation, a code and/or data storage 605 to store backward and/or output weight and/or input/output data corresponding to neurons or layers of a neural network trained and/or used for inferencing in aspects of one or more embodiments. In at least one embodiment, code and/or data storage 605 stores weight parameters and/or input/output data of each layer of a neural network trained or used in conjunction with one or more embodiments during backward propagation of input/output data and/or weight parameters during training and/or inferencing using aspects of one or more embodiments. In at least one embodiment, training logic 615 may include, or be coupled to code and/or data storage 605 to store graph code or other software to control timing and/or order, in which weight and/or other parameter information is to be loaded to configure, logic, including integer and/or floating point units (collectively, arithmetic logic units (ALUs). In at least one embodiment, code, such as graph code, loads weight or other parameter information into processor ALUs based on an architecture of a neural network to which this code corresponds. In at least one embodiment, any portion of code and/or data storage 605 may be included with other on-chip or off-chip data storage, including a processor's L1, L2, or L3 cache or system memory. In at least one embodiment, any portion of code and/or data storage 605 may be internal or external to on one or more processors or other hardware logic devices or circuits. In at least one embodiment, code and/or data storage 605 may be cache memory, DRAM, SRAM, non-volatile memory (e.g., Flash memory), or other storage. In at least one embodiment, choice of whether code and/or data storage 605 is internal or external to a processor, for example, or comprised of DRAM, SRAM, Flash or some other storage type may depend on available storage on-chip versus off-chip, latency requirements of training and/or inferencing functions being performed, batch size of data used in inferencing and/or training of a neural network, or some combination of these factors.
In at least one embodiment, code and/or data storage 601 and code and/or data storage 605 may be separate storage structures. In at least one embodiment, code and/or data storage 601 and code and/or data storage 605 may be same storage structure. In at least one embodiment, code and/or data storage 601 and code and/or data storage 605 may be partially same storage structure and partially separate storage structures. In at least one embodiment, any portion of code and/or data storage 601 and code and/or data storage 605 may be included with other on-chip or off-chip data storage, including a processor's L1, L2, or L3 cache or system memory.
In at least one embodiment, inference and/or training logic 615 may include, without limitation, one or more arithmetic logic unit(s) (“ALU(s)”) 610, including integer and/or floating point units, to perform logical and/or mathematical operations based, at least in part on, or indicated by, training and/or inference code (e.g., graph code), a result of which may produce activations (e.g., output values from layers or neurons within a neural network) stored in an activation storage 620 that are functions of input/output and/or weight parameter data stored in code and/or data storage 601 and/or code and/or data storage 605. In at least one embodiment, activations stored in activation storage 620 are generated according to linear algebraic and or matrix-based mathematics performed by ALU(s) 610 in response to performing instructions or other code, wherein weight values stored in code and/or data storage 605 and/or code and/or data storage 601 are used as operands along with other values, such as bias values, gradient information, momentum values, or other parameters or hyperparameters, any or all of which may be stored in code and/or data storage 605 or code and/or data storage 601 or another storage on or off-chip.
In at least one embodiment, ALU(s) 610 are included within one or more processors or other hardware logic devices or circuits, whereas in another embodiment, ALU(s) 610 may be external to a processor or other hardware logic device or circuit that uses them (e.g., a co-processor). In at least one embodiment, ALUs 610 may be included within a processor's execution units or otherwise within a bank of ALUs accessible by a processor's execution units either within same processor or distributed between different processors of different types (e.g., central processing units, graphics processing units, fixed function units, etc.). In at least one embodiment, code and/or data storage 601, code and/or data storage 605, and activation storage 620 may be on same processor or other hardware logic device or circuit, whereas in another embodiment, they may be in different processors or other hardware logic devices or circuits, or some combination of same and different processors or other hardware logic devices or circuits. In at least one embodiment, any portion of activation storage 620 may be included with other on-chip or off-chip data storage, including a processor's L1, L2, or L3 cache or system memory. Furthermore, inferencing and/or training code may be stored with other code accessible to a processor or other hardware logic or circuit and fetched and/or processed using a processor's fetch, decode, scheduling, execution, retirement and/or other logical circuits.
In at least one embodiment, activation storage 620 may be cache memory, DRAM, SRAM, non-volatile memory (e.g., Flash memory), or other storage. In at least one embodiment, activation storage 620 may be completely or partially within or external to one or more processors or other logical circuits. In at least one embodiment, choice of whether activation storage 620 is internal or external to a processor, for example, or comprised of DRAM, SRAM, Flash or some other storage type may depend on available storage on-chip versus off-chip, latency requirements of training and/or inferencing functions being performed, batch size of data used in inferencing and/or training of a neural network, or some combination of these factors. In at least one embodiment, inference and/or training logic 615 illustrated in
In at least one embodiment, each of code and/or data storage 601 and 605 and corresponding computational hardware 602 and 606, respectively, correspond to different layers of a neural network, such that resulting activation from one “storage/computational pair 601/602” of code and/or data storage 601 and computational hardware 602 is provided as an input to “storage/computational pair 605/606” of code and/or data storage 605 and computational hardware 606, in order to mirror conceptual organization of a neural network. In at least one embodiment, each of storage/computational pairs 601/602 and 605/606 may correspond to more than one neural network layer. In at least one embodiment, additional storage/computation pairs (not shown) subsequent to or in parallel with storage computation pairs 601/602 and 605/606 may be included in inference and/or training logic 615.
In at least one embodiment, as shown in
In at least one embodiment, grouped computing resources 714 may include separate groupings of node C.R.s housed within one or more racks (not shown), or many racks housed in data centers at various geographical locations (also not shown). Separate groupings of node C.R.s within grouped computing resources 714 may include grouped compute, network, memory or storage resources that may be configured or allocated to support one or more workloads. In at least one embodiment, several node C.R.s including CPUs or processors may grouped within one or more racks to provide compute resources to support one or more workloads. In at least one embodiment, one or more racks may also include any number of power modules, cooling modules, and network switches, in any combination.
In at least one embodiment, resource orchestrator 712 may configure or otherwise control one or more node C.R.s 716(1)-716(N) and/or grouped computing resources 714. In at least one embodiment, resource orchestrator 712 may include a software design infrastructure (“SDI”) management entity for data center 700. In at least one embodiment, resource orchestrator may include hardware, software or some combination thereof.
In at least one embodiment, as shown in
In at least one embodiment, software 732 included in software layer 730 may include software used by at least portions of node C.R.s 716(1)-716(N), grouped computing resources 714, and/or distributed file system 728 of framework layer 720. one or more types of software may include, but are not limited to, Internet web page search software, e-mail virus scan software, database software, and streaming video content software.
In at least one embodiment, application(s) 742 included in application layer 740 may include one or more types of applications used by at least portions of node C.R.s 716(1)-716(N), grouped computing resources 714, and/or distributed file system 728 of framework layer 720. One or more types of applications may include, but are not limited to, any number of a genomics application, a cognitive compute, and a machine learning application, including training or inferencing software, machine learning framework software (e.g., PyTorch, TensorFlow, Caffe, etc.) or other machine learning applications used in conjunction with one or more embodiments.
In at least one embodiment, any of configuration manager 724, resource manager 726, and resource orchestrator 712 may implement any number and type of self-modifying actions based on any amount and type of data acquired in any technically feasible fashion. In at least one embodiment, self-modifying actions may relieve a data center operator of data center 700 from making possibly bad configuration decisions and possibly avoiding underutilized and/or poor performing portions of a data center.
In at least one embodiment, data center 700 may include tools, services, software or other resources to train one or more machine learning models or predict or infer information using one or more machine learning models according to one or more embodiments described herein. For example, in at least one embodiment, a machine learning model may be trained by calculating weight parameters according to a neural network architecture using software and computing resources described above with respect to data center 700. In at least one embodiment, trained machine learning models corresponding to one or more neural networks may be used to infer or predict information using resources described above with respect to data center 700 by using weight parameters calculated through one or more training techniques described herein.
In at least one embodiment, data center may use CPUs, application-specific integrated circuits (ASICs), GPUs, FPGAs, or other hardware to perform training and/or inferencing using above-described resources. Moreover, one or more software and/or hardware resources described above may be configured as a service to allow users to train or performing inferencing of information, such as image recognition, speech recognition, or other artificial intelligence services.
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. Details regarding inference and/or training logic 615 are provided below in conjunction with
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. In at least one embodiment, this logic can be used with components of these figures to train one or more neural networks using long image sequences, where backpropagation is performed only for a subset of image frames of those sequences.
Embodiments may be used in other devices such as handheld devices and embedded applications. Some examples of handheld devices include cellular phones, Internet Protocol devices, digital cameras, personal digital assistants (“PDAs”), and handheld PCs. In at least one embodiment, embedded applications may include a microcontroller, a digital signal processor (“DSP”), system on a chip, network computers (“NetPCs”), set-top boxes, network hubs, wide area network (“WAN”) switches, or any other system that may perform one or more instructions in accordance with at least one embodiment.
In at least one embodiment, computer system 800 may include, without limitation, processor 802 that may include, without limitation, one or more execution units 808 to perform machine learning model training and/or inferencing according to techniques described herein. In at least one embodiment, computer system 800 is a single processor desktop or server system, but in another embodiment computer system 800 may be a multiprocessor system. In at least one embodiment, processor 802 may include, without limitation, a complex instruction set computer (“CISC”) microprocessor, a reduced instruction set computing (“RISC”) microprocessor, a very long instruction word (“VLIW”) microprocessor, a processor implementing a combination of instruction sets, or any other processor device, such as a digital signal processor, for example. In at least one embodiment, processor 802 may be coupled to a processor bus 810 that may transmit data signals between processor 802 and other components in computer system 800.
In at least one embodiment, processor 802 may include, without limitation, a Level 1 (“L1”) internal cache memory (“cache”) 804. In at least one embodiment, processor 802 may have a single internal cache or multiple levels of internal cache. In at least one embodiment, cache memory may reside external to processor 802. Other embodiments may also include a combination of both internal and external caches depending on particular implementation and needs. In at least one embodiment, register file 806 may store different types of data in various registers including, without limitation, integer registers, floating point registers, status registers, and instruction pointer register.
In at least one embodiment, execution unit 808, including, without limitation, logic to perform integer and floating point operations, also resides in processor 802. In at least one embodiment, processor 802 may also include a microcode (“ucode”) read only memory (“ROM”) that stores microcode for certain macro instructions. In at least one embodiment, execution unit 808 may include logic to handle a packed instruction set 809. In at least one embodiment, by including packed instruction set 809 in an instruction set of a general-purpose processor 802, along with associated circuitry to execute instructions, operations used by many multimedia applications may be performed using packed data in a general-purpose processor 802. In one or more embodiments, many multimedia applications may be accelerated and executed more efficiently by using full width of a processor's data bus for performing operations on packed data, which may eliminate need to transfer smaller units of data across processor's data bus to perform one or more operations one data element at a time.
In at least one embodiment, execution unit 808 may also be used in microcontrollers, embedded processors, graphics devices, DSPs, and other types of logic circuits. In at least one embodiment, computer system 800 may include, without limitation, a memory 820. In at least one embodiment, memory 820 may be implemented as a Dynamic Random Access Memory (“DRAM”) device, a Static Random Access Memory (“SRAM”) device, flash memory device, or other memory device. In at least one embodiment, memory 820 may store instruction(s) 819 and/or data 821 represented by data signals that may be executed by processor 802.
In at least one embodiment, system logic chip may be coupled to processor bus 810 and memory 820. In at least one embodiment, system logic chip may include, without limitation, a memory controller hub (“MCH”) 816, and processor 802 may communicate with MCH 816 via processor bus 810. In at least one embodiment, MCH 816 may provide a high bandwidth memory path 818 to memory 820 for instruction and data storage and for storage of graphics commands, data and textures. In at least one embodiment, MCH 816 may direct data signals between processor 802, memory 820, and other components in computer system 800 and to bridge data signals between processor bus 810, memory 820, and a system I/O 822. In at least one embodiment, system logic chip may provide a graphics port for coupling to a graphics controller. In at least one embodiment, MCH 816 may be coupled to memory 820 through a high bandwidth memory path 818 and graphics/video card 812 may be coupled to MCH 816 through an Accelerated Graphics Port (“AGP”) interconnect 814.
In at least one embodiment, computer system 800 may use system I/O 822 that is a proprietary hub interface bus to couple MCH 816 to I/O controller hub (“ICH”) 830. In at least one embodiment, ICH 830 may provide direct connections to some I/O devices via a local I/O bus. In at least one embodiment, local I/O bus may include, without limitation, a high-speed I/O bus for connecting peripherals to memory 820, chipset, and processor 802. Examples may include, without limitation, an audio controller 829, a firmware hub (“flash BIOS”) 828, a wireless transceiver 826, a data storage 824, a legacy I/O controller 823 containing user input and keyboard interfaces 825, a serial expansion port 827, such as Universal Serial Bus (“USB”), and a network controller 834. data storage 824 may comprise a hard disk drive, a floppy disk drive, a CD-ROM device, a flash memory device, or other mass storage device.
In at least one embodiment,
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. Details regarding inference and/or training logic 615 are provided below in conjunction with
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. In at least one embodiment, this logic can be used with components of these figures to train one or more neural networks using long image sequences, where backpropagation is performed only for a subset of image frames of those sequences.
In at least one embodiment, system 900 may include, without limitation, processor 910 communicatively coupled to any suitable number or kind of components, peripherals, modules, or devices. In at least one embodiment, processor 910 coupled using a bus or interface, such as a 1° C. bus, a System Management Bus (“SMBus”), a Low Pin Count (LPC) bus, a Serial Peripheral Interface (“SPI”), a High Definition Audio (“HDA”) bus, a Serial Advance Technology Attachment (“SATA”) bus, a Universal Serial Bus (“USB”) (versions 1, 2, 3), or a Universal Asynchronous Receiver/Transmitter (“UART”) bus. In at least one embodiment,
In at least one embodiment,
In at least one embodiment, other components may be communicatively coupled to processor 910 through components discussed above. In at least one embodiment, an accelerometer 941, Ambient Light Sensor (“ALS”) 942, compass 943, and a gyroscope 944 may be communicatively coupled to sensor hub 940. In at least one embodiment, thermal sensor 939, a fan 937, a keyboard 946, and a touch pad 930 may be communicatively coupled to EC 935. In at least one embodiment, speaker 963, headphones 964, and microphone (“mic”) 965 may be communicatively coupled to an audio unit (“audio codec and class d amp”) 962, which may in turn be communicatively coupled to DSP 960. In at least one embodiment, audio unit 964 may include, for example and without limitation, an audio coder/decoder (“codec”) and a class D amplifier. In at least one embodiment, SIM card (“SIM”) 957 may be communicatively coupled to WWAN unit 956. In at least one embodiment, components such as WLAN unit 950 and Bluetooth unit 952, as well as WWAN unit 956 may be implemented in a Next Generation Form Factor (“NGFF”).
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. Details regarding inference and/or training logic 615 are provided below in conjunction with
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. In at least one embodiment, this logic can be used with components of these figures to train one or more neural networks using long image sequences, where backpropagation is performed only for a subset of image frames of those sequences.
In at least one embodiment, computer system 1000 comprises, without limitation, at least one central processing unit (“CPU”) 1002 that is connected to a communication bus 1010 implemented using any suitable protocol, such as PCI (“Peripheral Component Interconnect”), peripheral component interconnect express (“PCI-Express”), AGP (“Accelerated Graphics Port”), HyperTransport, or any other bus or point-to-point communication protocol(s). In at least one embodiment, computer system 1000 includes, without limitation, a main memory 1004 and control logic (e.g., implemented as hardware, software, or a combination thereof) and data are stored in main memory 1004 which may take form of random access memory (“RAM”). In at least one embodiment, a network interface subsystem (“network interface”) 1022 provides an interface to other computing devices and networks for receiving data from and transmitting data to other systems from computer system 1000.
In at least one embodiment, computer system 1000, in at least one embodiment, includes, without limitation, input devices 1008, parallel processing system 1012, and display devices 1006 which can be implemented using a conventional cathode ray tube (“CRT”), liquid crystal display (“LCD”), light emitting diode (“LED”), plasma display, or other suitable display technologies. In at least one embodiment, user input is received from input devices 1008 such as keyboard, mouse, touchpad, microphone, and more. In at least one embodiment, each of foregoing modules can be situated on a single semiconductor platform to form a processing system.
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. Details regarding inference and/or training logic 615 are provided below in conjunction with
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. In at least one embodiment, this logic can be used with components of these figures to train one or more neural networks using long image sequences, where backpropagation is performed only for a subset of image frames of those sequences.
In at least one embodiment, USB stick 1120 includes, without limitation, a processing unit 1130, a USB interface 1140, and USB interface logic 1150. In at least one embodiment, processing unit 1130 may be any instruction execution system, apparatus, or device capable of executing instructions. In at least one embodiment, processing unit 1130 may include, without limitation, any number and type of processing cores (not shown). In at least one embodiment, processing core 1130 comprises an application specific integrated circuit (“ASIC”) that is optimized to perform any amount and type of operations associated with machine learning. For instance, in at least one embodiment, processing core 1130 is a tensor processing unit (“TPC”) that is optimized to perform machine learning inference operations. In at least one embodiment, processing core 1130 is a vision processing unit (“VPU”) that is optimized to perform machine vision and machine learning inference operations.
In at least one embodiment, USB interface 1140 may be any type of USB connector or USB socket. For instance, in at least one embodiment, USB interface 1140 is a USB 3.0 Type-C socket for data and power. In at least one embodiment, USB interface 1140 is a USB 3.0 Type-A connector. In at least one embodiment, USB interface logic 1150 may include any amount and type of logic that enables processing unit 1130 to interface with or devices (e.g., computer 1110) via USB connector 1140.
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. Details regarding inference and/or training logic 615 are provided below in conjunction with
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. In at least one embodiment, this logic can be used with components of these figures to train one or more neural networks using long image sequences, where backpropagation is performed only for a subset of image frames of those sequences.
In addition, and in one embodiment, two or more of GPUs 1210-1213 are interconnected over high-speed links 1229-1230, which may be implemented using same or different protocols/links than those used for high-speed links 1240-1243. Similarly, two or more of multi-core processors 1205-1206 may be connected over high speed link 1228 which may be symmetric multi-processor (SMP) buses operating at 20 GB/s, 30 GB/s, 120 GB/s or higher. Alternatively, all communication between various system components shown in
In one embodiment, each multi-core processor 1205-1206 is communicatively coupled to a processor memory 1201-1202, via memory interconnects 1226-1227, respectively, and each GPU 1210-1213 is communicatively coupled to GPU memory 1220-1223 over GPU memory interconnects 1250-1253, respectively. Memory interconnects 1226-1227 and 1250-1253 may utilize same or different memory access technologies. By way of example, and not limitation, processor memories 1201-1202 and GPU memories 1220-1223 may be volatile memories such as dynamic random access memories (DRAMs) (including stacked DRAMs), Graphics DDR SDRAM (GDDR) (e.g., GDDR5, GDDR6), or High Bandwidth Memory (HBM) and/or may be non-volatile memories such as 3D XPoint or Nano-Ram. In one embodiment, some portion of processor memories 1201-1202 may be volatile memory and another portion may be non-volatile memory (e.g., using a two-level memory (2LM) hierarchy).
As described below, although various processors 1205-1206 and GPUs 1210-1213 may be physically coupled to a particular memory 1201-1202, 1220-1223, respectively, a unified memory architecture may be implemented in which a same virtual system address space (also referred to as “effective address” space) is distributed among various physical memories. For example, processor memories 1201-1202 may each comprise 64 GB of system memory address space and GPU memories 1220-1223 may each comprise 32 GB of system memory address space (resulting in a total of 256 GB addressable memory in this example).
In at least one embodiment, illustrated processor 1207 includes a plurality of cores 1260A-1260D, each with a translation lookaside buffer 1261A-1261D and one or more caches 1262A-1262D. In at least one embodiment, cores 1260A-1260D may include various other components for executing instructions and processing data which are not illustrated. Caches 1262A-1262D may comprise level 1 (L1) and level 2 (L2) caches. In addition, one or more shared caches 1256 may be included in caches 1262A-1262D and shared by sets of cores 1260A-1260D. For example, one embodiment of processor 1207 includes 24 cores, each with its own L1 cache, twelve shared L2 caches, and twelve shared L3 caches. In this embodiment, one or more L2 and L3 caches are shared by two adjacent cores. Processor 1207 and graphics acceleration module 1246 connect with system memory 1214, which may include processor memories 1201-1202 of
Coherency is maintained for data and instructions stored in various caches 1262A-1262D, 1256 and system memory 1214 via inter-core communication over a coherence bus 1264. For example, each cache may have cache coherency logic/circuitry associated therewith to communicate to over coherence bus 1264 in response to detected reads or writes to particular cache lines. In one implementation, a cache snooping protocol is implemented over coherence bus 1264 to snoop cache accesses.
In one embodiment, a proxy circuit 1225 communicatively couples graphics acceleration module 1246 to coherence bus 1264, allowing graphics acceleration module 1246 to participate in a cache coherence protocol as a peer of cores 1260A-1260D. In particular, an interface 1235 provides connectivity to proxy circuit 1225 over high-speed link 1240 (e.g., a PCIe bus, NVLink, etc.) and an interface 1237 connects graphics acceleration module 1246 to link 1240.
In one implementation, an accelerator integration circuit 1236 provides cache management, memory access, context management, and interrupt management services on behalf of a plurality of graphics processing engines 1231, 1232, N of graphics acceleration module 1246. Graphics processing engines 1231, 1232, N may each comprise a separate graphics processing unit (GPU). Alternatively, graphics processing engines 1231, 1232, N may comprise different types of graphics processing engines within a GPU such as graphics execution units, media processing engines (e.g., video encoders/decoders), samplers, and blit engines. In at least one embodiment, graphics acceleration module 1246 may be a GPU with a plurality of graphics processing engines 1231-1232, N or graphics processing engines 1231-1232, N may be individual GPUs integrated on a common package, line card, or chip.
In one embodiment, accelerator integration circuit 1236 includes a memory management unit (MMU) 1239 for performing various memory management functions such as virtual-to-physical memory translations (also referred to as effective-to-real memory translations) and memory access protocols for accessing system memory 1214. MMU 1239 may also include a translation lookaside buffer (TLB) (not shown) for caching virtual/effective to physical/real address translations. In one implementation, a cache 1238 stores commands and data for efficient access by graphics processing engines 1231-1232, N. In one embodiment, data stored in cache 1238 and graphics memories 1233-1234, M is kept coherent with core caches 1262A-1262D, 1256, and system memory 1214. As mentioned above, this may be accomplished via proxy circuit 1225 on behalf of cache 1238 and memories 1233-1234, M (e.g., sending updates to cache 1238 related to modifications/accesses of cache lines on processor caches 1262A-1262D, 1256, and receiving updates from cache 1238).
A set of registers 1245 store context data for threads executed by graphics processing engines 1231-1232, N and a context management circuit 1248 manages thread contexts. For example, context management circuit 1248 may perform save and restore operations to save and restore contexts of various threads during contexts switches (e.g., where a first thread is saved and a second thread is stored so that a second thread can be executed by a graphics processing engine). For example, on a context switch, context management circuit 1248 may store current register values to a designated region in memory (e.g., identified by a context pointer). It may then restore register values when returning to a context. In one embodiment, an interrupt management circuit 1247 receives and processes interrupts received from system devices.
In one implementation, virtual/effective addresses from a graphics processing engine 1231 are translated to real/physical addresses in system memory 1214 by MMU 1239. One embodiment of accelerator integration circuit 1236 supports multiple (e.g., 4, 8, 16) graphics accelerator modules 1246 and/or other accelerator devices. Graphics accelerator module 1246 may be dedicated to a single application executed on processor 1207 or may be shared between multiple applications. In one embodiment, a virtualized graphics execution environment is presented in which resources of graphics processing engines 1231-1232, N are shared with multiple applications or virtual machines (VMs). In at least one embodiment, resources may be subdivided into “slices” which are allocated to different VMs and/or applications based on processing requirements and priorities associated with VMs and/or applications.
In at least one embodiment, accelerator integration circuit 1236 performs as a bridge to a system for graphics acceleration module 1246 and provides address translation and system memory cache services. In addition, accelerator integration circuit 1236 may provide virtualization facilities for a host processor to manage virtualization of graphics processing engines 1231-1232, N, interrupts, and memory management.
Because hardware resources of graphics processing engines 1231-1232, N are mapped explicitly to a real address space seen by host processor 1207, any host processor can address these resources directly using an effective address value. One function of accelerator integration circuit 1236, in one embodiment, is physical separation of graphics processing engines 1231-1232, N so that they appear to a system as independent units.
In at least one embodiment, one or more graphics memories 1233-1234, M are coupled to each of graphics processing engines 1231-1232, N, respectively. Graphics memories 1233-1234, M store instructions and data being processed by each of graphics processing engines 1231-1232, N. Graphics memories 1233-1234, M may be volatile memories such as DRAMs (including stacked DRAMs), GDDR memory (e.g., GDDR5, GDDR6), or HBM, and/or may be non-volatile memories such as 3D XPoint or Nano-Ram.
In one embodiment, to reduce data traffic over link 1240, biasing techniques are used to ensure that data stored in graphics memories 1233-1234, M is data which will be used most frequently by graphics processing engines 1231-1232, N and preferably not used by cores 1260A-1260D (at least not frequently). Similarly, a biasing mechanism attempts to keep data needed by cores (and preferably not graphics processing engines 1231-1232, N) within caches 1262A-1262D, 1256 of cores and system memory 1214.
In at least one embodiment, graphics processing engines 1231-1232, N are dedicated to a single application or process under a single operating system. In at least one embodiment, a single application can funnel other application requests to graphics processing engines 1231-1232, N, providing virtualization within a VM/partition.
In at least one embodiment, graphics processing engines 1231-1232, N, may be shared by multiple VM/application partitions. In at least one embodiment, shared models may use a system hypervisor to virtualize graphics processing engines 1231-1232, N to allow access by each operating system. For single-partition systems without a hypervisor, graphics processing engines 1231-1232, N are owned by an operating system. In at least one embodiment, an operating system can virtualize graphics processing engines 1231-1232, N to provide access to each process or application.
In at least one embodiment, graphics acceleration module 1246 or an individual graphics processing engine 1231-1232, N selects a process element using a process handle. In at least one embodiment, process elements are stored in system memory 1214 and are addressable using an effective address to real address translation techniques described herein. In at least one embodiment, a process handle may be an implementation-specific value provided to a host process when registering its context with graphics processing engine 1231-1232, N (that is, calling system software to add a process element to a process element linked list). In at least one embodiment, a lower 16-bits of a process handle may be an offset of a process element within a process element linked list.
Graphics acceleration module 1246 and/or individual graphics processing engines 1231-1232, N can be shared by all or a subset of processes in a system. In at least one embodiment, an infrastructure for setting up process state and sending a WD 1284 to a graphics acceleration module 1246 to start a job in a virtualized environment may be included.
In at least one embodiment, a dedicated-process programming model is implementation-specific. In this model, a single process owns graphics acceleration module 1246 or an individual graphics processing engine 1231. Because graphics acceleration module 1246 is owned by a single process, a hypervisor initializes accelerator integration circuit 1236 for an owning partition and an operating system initializes accelerator integration circuit 1236 for an owning process when graphics acceleration module 1246 is assigned.
In operation, a WD fetch unit 1291 in accelerator integration slice 1290 fetches next WD 1284 which includes an indication of work to be done by one or more graphics processing engines of graphics acceleration module 1246. Data from WD 1284 may be stored in registers 1245 and used by MMU 1239, interrupt management circuit 1247, and/or context management circuit 1248 as illustrated. For example, one embodiment of MMU 1239 includes segment/page walk circuitry for accessing segment/page tables 1286 within OS virtual address space 1285. Interrupt management circuit 1247 may process interrupt events 1292 received from graphics acceleration module 1246. When performing graphics operations, an effective address 1293 generated by a graphics processing engine 1231-1232, N is translated to a real address by MMU 1239.
In one embodiment, a same set of registers 1245 are duplicated for each graphics processing engine 1231-1232, N and/or graphics acceleration module 1246 and may be initialized by a hypervisor or operating system. Each of these duplicated registers may be included in an accelerator integration slice 1290. Exemplary registers that may be initialized by a hypervisor are shown in Table 1.
Exemplary registers that may be initialized by an operating system are shown in Table 2.
In one embodiment, each WD 1284 is specific to a particular graphics acceleration module 1246 and/or graphics processing engines 1231-1232, N. It contains all information required by a graphics processing engine 1231-1232, N to do work or it can be a pointer to a memory location where an application has set up a command queue of work to be completed.
In at least one embodiment, shared programming models allow for all or a subset of processes from all or a subset of partitions in a system to use a graphics acceleration module 1246. There are two programming models where graphics acceleration module 1246 is shared by multiple processes and partitions: time-sliced shared and graphics-directed shared.
In this model, system hypervisor 1296 owns graphics acceleration module 1246 and makes its function available to all operating systems 1295. For a graphics acceleration module 1246 to support virtualization by system hypervisor 1296, graphics acceleration module 1246 may adhere to the following: 1) An application's job request must be autonomous (that is, state does not need to be maintained between jobs), or graphics acceleration module 1246 must provide a context save and restore mechanism. 2) An application's job request is guaranteed by graphics acceleration module 1246 to complete in a specified amount of time, including any translation faults, or graphics acceleration module 1246 provides an ability to preempt processing of a job. 3) Graphics acceleration module 1246 must be guaranteed fairness between processes when operating in a directed shared programming model.
In at least one embodiment, application 1280 is required to make an operating system 1295 system call with a graphics acceleration module 1246 type, a work descriptor (WD), an authority mask register (AMR) value, and a context save/restore area pointer (CSRP). In at least one embodiment, graphics acceleration module 1246 type describes a targeted acceleration function for a system call. In at least one embodiment, graphics acceleration module 1246 type may be a system-specific value. In at least one embodiment, WD is formatted specifically for graphics acceleration module 1246 and can be in a form of a graphics acceleration module 1246 command, an effective address pointer to a user-defined structure, an effective address pointer to a queue of commands, or any other data structure to describe work to be done by graphics acceleration module 1246. In one embodiment, an AMR value is an AMR state to use for a current process. In at least one embodiment, a value passed to an operating system is similar to an application setting an AMR. If accelerator integration circuit 1236 and graphics acceleration module 1246 implementations do not support a User Authority Mask Override Register (UAMOR), an operating system may apply a current UAMOR value to an AMR value before passing an AMR in a hypervisor call. Hypervisor 1296 may optionally apply a current Authority Mask Override Register (AMOR) value before placing an AMR into process element 1283. In at least one embodiment, CSRP is one of registers 1245 containing an effective address of an area in an application's effective address space 1282 for graphics acceleration module 1246 to save and restore context state. This pointer is optional if no state is required to be saved between jobs or when a job is preempted. In at least one embodiment, context save/restore area may be pinned system memory.
Upon receiving a system call, operating system 1295 may verify that application 1280 has registered and been given authority to use graphics acceleration module 1246. Operating system 1295 then calls hypervisor 1296 with information shown in Table 3.
Upon receiving a hypervisor call, hypervisor 1296 verifies that operating system 1295 has registered and been given authority to use graphics acceleration module 1246. Hypervisor 1296 then puts process element 1283 into a process element linked list for a corresponding graphics acceleration module 1246 type. A process element may include information shown in Table 4.
In at least one embodiment, hypervisor initializes a plurality of accelerator integration slice 1290 registers 1245.
As illustrated in
In one embodiment, bias/coherence management circuitry 1294A-1294E within one or more of MMUs 1239A-1239E ensures cache coherence between caches of one or more host processors (e.g., 1205) and GPUs 1210-1213 and implements biasing techniques indicating physical memories in which certain types of data should be stored. While multiple instances of bias/coherence management circuitry 1294A-1294E are illustrated in
One embodiment allows GPU-attached memory 1220-1223 to be mapped as part of system memory, and accessed using shared virtual memory (SVM) technology, but without suffering performance drawbacks associated with full system cache coherence. In at least one embodiment, an ability for GPU-attached memory 1220-1223 to be accessed as system memory without onerous cache coherence overhead provides a beneficial operating environment for GPU offload. This arrangement allows host processor 1205 software to setup operands and access computation results, without overhead of tradition I/O DMA data copies. Such traditional copies involve driver calls, interrupts and memory mapped I/O (MMIO) accesses that are all inefficient relative to simple memory accesses. In at least one embodiment, an ability to access GPU attached memory 1220-1223 without cache coherence overheads can be critical to execution time of an offloaded computation. In cases with substantial streaming write memory traffic, for example, cache coherence overhead can significantly reduce an effective write bandwidth seen by a GPU 1210-1213. In at least one embodiment, efficiency of operand setup, efficiency of results access, and efficiency of GPU computation may play a role in determining effectiveness of a GPU offload.
In at least one embodiment, selection of GPU bias and host processor bias is driven by a bias tracker data structure. A bias table may be used, for example, which may be a page-granular structure (i.e., controlled at a granularity of a memory page) that includes 1 or 2 bits per GPU-attached memory page. In at least one embodiment, a bias table may be implemented in a stolen memory range of one or more GPU-attached memories 1220-1223, with or without a bias cache in GPU 1210-1213 (e.g., to cache frequently/recently used entries of a bias table). Alternatively, an entire bias table may be maintained within a GPU.
In at least one embodiment, a bias table entry associated with each access to GPU-attached memory 1220-1223 is accessed prior to actual access to a GPU memory, causing the following operations. First, local requests from GPU 1210-1213 that find their page in GPU bias are forwarded directly to a corresponding GPU memory 1220-1223. Local requests from a GPU that find their page in host bias are forwarded to processor 1205 (e.g., over a high-speed link as discussed above). In one embodiment, requests from processor 1205 that find a requested page in host processor bias complete a request like a normal memory read. Alternatively, requests directed to a GPU-biased page may be forwarded to GPU 1210-1213. In at least one embodiment, a GPU may then transition a page to a host processor bias if it is not currently using a page. In at least one embodiment, bias state of a page can be changed either by a software-based mechanism, a hardware-assisted software-based mechanism, or, for a limited set of cases, a purely hardware-based mechanism.
One mechanism for changing bias state employs an API call (e.g., OpenCL), which, in turn, calls a GPU's device driver which, in turn, sends a message (or enqueues a command descriptor) to a GPU directing it to change a bias state and, for some transitions, perform a cache flushing operation in a host. In at least one embodiment, cache flushing operation is used for a transition from host processor 1205 bias to GPU bias, but is not for an opposite transition.
In one embodiment, cache coherency is maintained by temporarily rendering GPU-biased pages uncacheable by host processor 1205. To access these pages, processor 1205 may request access from GPU 1210 which may or may not grant access right away. Thus, to reduce communication between processor 1205 and GPU 1210 it is beneficial to ensure that GPU-biased pages are those which are required by a GPU but not host processor 1205 and vice versa.
Inference and/or training logic 615 are used to perform one or more embodiments. Details regarding the inference and/or training logic 615 are provided below in conjunction with
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. In at least one embodiment, this logic can be used with components of these figures to train one or more neural networks using long image sequences, where backpropagation is performed only for a subset of image frames of those sequences.
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. Details regarding inference and/or training logic 615 are provided below in conjunction with
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. In at least one embodiment, this logic can be used with components of these figures to train one or more neural networks using long image sequences, where backpropagation is performed only for a subset of image frames of those sequences.
In at least one embodiment, graphics processor 1410 includes a vertex processor 1405 and one or more fragment processor(s) 1415A-1415N (e.g., 1415A, 1415B, 1415C, 1415D, through 1415N-1, and 1415N). In at least one embodiment, graphics processor 1410 can execute different shader programs via separate logic, such that vertex processor 1405 is optimized to execute operations for vertex shader programs, while one or more fragment processor(s) 1415A-1415N execute fragment (e.g., pixel) shading operations for fragment or pixel shader programs. In at least one embodiment, vertex processor 1405 performs a vertex processing stage of a 3D graphics pipeline and generates primitives and vertex data. In at least one embodiment, fragment processor(s) 1415A-1415N use primitive and vertex data generated by vertex processor 1405 to produce a framebuffer that is displayed on a display device. In at least one embodiment, fragment processor(s) 1415A-1415N are optimized to execute fragment shader programs as provided for in an OpenGL API, which may be used to perform similar operations as a pixel shader program as provided for in a Direct 3D API
In at least one embodiment, graphics processor 1410 additionally includes one or more memory management units (MMUs) 1420A-1420B, cache(s) 1425A-1425B, and circuit interconnect(s) 1430A-1430B. In at least one embodiment, one or more MMU(s) 1420A-1420B provide for virtual to physical address mapping for graphics processor 1410, including for vertex processor 1405 and/or fragment processor(s) 1415A-1415N, which may reference vertex or image/texture data stored in memory, in addition to vertex or image/texture data stored in one or more cache(s) 1425A-1425B. In at least one embodiment, one or more MMU(s) 1420A-1420B may be synchronized with other MMUs within system, including one or more MMUs associated with one or more application processor(s) 1305, image processors 1315, and/or video processors 1320 of
In at least one embodiment, graphics processor 1440 includes one or more MMU(s) 1420A-1420B, cache(s) 1425A-1425B, and circuit interconnect(s) 1430A-1430B of graphics processor 1410 of
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. Details regarding inference and/or training logic 615 are provided below in conjunction with
In at least one embodiment, graphics core 1500 includes a shared instruction cache 1502, a texture unit 1518, and a cache/shared memory 1520 that are common to execution resources within graphics core 1500. In at least one embodiment, graphics core 1500 can include multiple slices 1501A-1501N or partition for each core, and a graphics processor can include multiple instances of graphics core 1500. Slices 1501A-1501N can include support logic including a local instruction cache 1504A-1504N, a thread scheduler 1506A-1506N, a thread dispatcher 1508A-1508N, and a set of registers 1510A-1510N. In at least one embodiment, slices 1501A-1501N can include a set of additional function units (AFUs 1512A-1512N), floating-point units (FPU 1514A-1514N), integer arithmetic logic units (ALUs 1516-1516N), address computational units (ACU 1513A-1513N), double-precision floating-point units (DPFPU 1515A-1515N), and matrix processing units (MPU 1517A-1517N).
In at least one embodiment, FPUs 1514A-1514N can perform single-precision (32-bit) and half-precision (16-bit) floating point operations, while DPFPUs 1515A-1515N perform double precision (64-bit) floating point operations. In at least one embodiment, ALUs 1516A-1516N can perform variable precision integer operations at 8-bit, 16-bit, and 32-bit precision, and can be configured for mixed precision operations. In at least one embodiment, MPUs 1517A-1517N can also be configured for mixed precision matrix operations, including half-precision floating point and 8-bit integer operations. In at least one embodiment, MPUs 1517A-1517N can perform a variety of matrix operations to accelerate machine learning application frameworks, including enabling support for accelerated general matrix to matrix multiplication (GEMM). In at least one embodiment, AFUs 1512A-1512N can perform additional logic operations not supported by floating-point or integer units, including trigonometric operations (e.g., Sine, Cosine, etc.).
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. Details regarding inference and/or training logic 615 are provided below in conjunction with
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. In at least one embodiment, this logic can be used with components of these figures to train one or more neural networks using long image sequences, where backpropagation is performed only for a subset of image frames of those sequences.
In at least one embodiment, GPGPU 1530 includes memory 1544A-1544B coupled with compute clusters 1536A-1536H via a set of memory controllers 1542A-1542B. In at least one embodiment, memory 1544A-1544B can include various types of memory devices including dynamic random access memory (DRAM) or graphics random access memory, such as synchronous graphics random access memory (SGRAM), including graphics double data rate (GDDR) memory.
In at least one embodiment, compute clusters 1536A-1536H each include a set of graphics cores, such as graphics core 1500 of
In at least one embodiment, multiple instances of GPGPU 1530 can be configured to operate as a compute cluster. In at least one embodiment, communication used by compute clusters 1536A-1536H for synchronization and data exchange varies across embodiments. In at least one embodiment, multiple instances of GPGPU 1530 communicate over host interface 1532. In at least one embodiment, GPGPU 1530 includes an I/O hub 1539 that couples GPGPU 1530 with a GPU link 1540 that enables a direct connection to other instances of GPGPU 1530. In at least one embodiment, GPU link 1540 is coupled to a dedicated GPU-to-GPU bridge that enables communication and synchronization between multiple instances of GPGPU 1530. In at least one embodiment, GPU link 1540 couples with a high speed interconnect to transmit and receive data to other GPGPUs or parallel processors. In at least one embodiment, multiple instances of GPGPU 1530 are located in separate data processing systems and communicate via a network device that is accessible via host interface 1532. In at least one embodiment GPU, link 1540 can be configured to enable a connection to a host processor in addition to or as an alternative to host interface 1532.
In at least one embodiment, GPGPU 1530 can be configured to train neural networks. In at least one embodiment, GPGPU 1530 can be used within a inferencing platform. In at least one embodiment, in which GPGPU 1530 is used for inferencing, GPGPU may include fewer compute clusters 1536A-1536H relative to when GPGPU is used for training a neural network. In at least one embodiment, memory technology associated with memory 1544A-1544B may differ between inferencing and training configurations, with higher bandwidth memory technologies devoted to training configurations. In at least one embodiment, inferencing configuration of GPGPU 1530 can support inferencing specific instructions. For example, in at least one embodiment, an inferencing configuration can provide support for one or more 8-bit integer dot product instructions, which may be used during inferencing operations for deployed neural networks.
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. Details regarding inference and/or training logic 615 are provided below in conjunction with
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. In at least one embodiment, this logic can be used with components of these figures to train one or more neural networks using long image sequences, where backpropagation is performed only for a subset of image frames of those sequences.
In at least one embodiment, processing subsystem 1601 includes one or more parallel processor(s) 1612 coupled to memory hub 1605 via a bus or other communication link 1613. In at least one embodiment, communication link 1613 may be one of any number of standards based communication link technologies or protocols, such as, but not limited to PCI Express, or may be a vendor specific communications interface or communications fabric. In at least one embodiment, one or more parallel processor(s) 1612 form a computationally focused parallel or vector processing system that can include a large number of processing cores and/or processing clusters, such as a many integrated core (MIC) processor. In at least one embodiment, one or more parallel processor(s) 1612 form a graphics processing subsystem that can output pixels to one of one or more display device(s) 1610A coupled via I/O Hub 1607. In at least one embodiment, one or more parallel processor(s) 1612 can also include a display controller and display interface (not shown) to enable a direct connection to one or more display device(s) 1610B.
In at least one embodiment, a system storage unit 1614 can connect to I/O hub 1607 to provide a storage mechanism for computing system 1600. In at least one embodiment, an I/O switch 1616 can be used to provide an interface mechanism to enable connections between I/O hub 1607 and other components, such as a network adapter 1618 and/or wireless network adapter 1619 that may be integrated into a platform(s), and various other devices that can be added via one or more add-in device(s) 1620. In at least one embodiment, network adapter 1618 can be an Ethernet adapter or another wired network adapter. In at least one embodiment, wireless network adapter 1619 can include one or more of a Wi-Fi, Bluetooth, near field communication (NFC), or other network device that includes one or more wireless radios.
In at least one embodiment, computing system 1600 can include other components not explicitly shown, including USB or other port connections, optical storage drives, video capture devices, and like, may also be connected to I/O hub 1607. In at least one embodiment, communication paths interconnecting various components in
In at least one embodiment, one or more parallel processor(s) 1612 incorporate circuitry optimized for graphics and video processing, including, for example, video output circuitry, and constitutes a graphics processing unit (GPU). In at least one embodiment, one or more parallel processor(s) 1612 incorporate circuitry optimized for general purpose processing. In at least one embodiment, components of computing system 1600 may be integrated with one or more other system elements on a single integrated circuit. For example, in at least one embodiment, one or more parallel processor(s) 1612, memory hub 1605, processor(s) 1602, and I/O hub 1607 can be integrated into a system on chip (SoC) integrated circuit. In at least one embodiment, components of computing system 1600 can be integrated into a single package to form a system in package (SIP) configuration. In at least one embodiment, at least a portion of components of computing system 1600 can be integrated into a multi-chip module (MCM), which can be interconnected with other multi-chip modules into a modular computing system.
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. Details regarding inference and/or training logic 615 are provided below in conjunction with
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. In at least one embodiment, this logic can be used with components of these figures to train one or more neural networks using long image sequences, where backpropagation is performed only for a subset of image frames of those sequences.
In at least one embodiment, parallel processor 1700 includes a parallel processing unit 1702. In at least one embodiment, parallel processing unit 1702 includes an I/O unit 1704 that enables communication with other devices, including other instances of parallel processing unit 1702. In at least one embodiment, I/O unit 1704 may be directly connected to other devices. In at least one embodiment, I/O unit 1704 connects with other devices via use of a hub or switch interface, such as memory hub 1605. In at least one embodiment, connections between memory hub 1605 and I/O unit 1704 form a communication link 1613. In at least one embodiment, I/O unit 1704 connects with a host interface 1706 and a memory crossbar 1716, where host interface 1706 receives commands directed to performing processing operations and memory crossbar 1716 receives commands directed to performing memory operations.
In at least one embodiment, when host interface 1706 receives a command buffer via I/O unit 1704, host interface 1706 can direct work operations to perform those commands to a front end 1708. In at least one embodiment, front end 1708 couples with a scheduler 1710, which is configured to distribute commands or other work items to a processing cluster array 1712. In at least one embodiment, scheduler 1710 ensures that processing cluster array 1712 is properly configured and in a valid state before tasks are distributed to processing cluster array 1712. In at least one embodiment, scheduler 1710 is implemented via firmware logic executing on a microcontroller. In at least one embodiment, microcontroller implemented scheduler 1710 is configurable to perform complex scheduling and work distribution operations at coarse and fine granularity, enabling rapid preemption and context switching of threads executing on processing array 1712. In at least one embodiment, host software can prove workloads for scheduling on processing array 1712 via one of multiple graphics processing doorbells. In at least one embodiment, workloads can then be automatically distributed across processing array 1712 by scheduler 1710 logic within a microcontroller including scheduler 1710.
In at least one embodiment, processing cluster array 1712 can include up to “N” processing clusters (e.g., cluster 1714A, cluster 1714B, through cluster 1714N). In at least one embodiment, each cluster 1714A-1714N of processing cluster array 1712 can execute a large number of concurrent threads. In at least one embodiment, scheduler 1710 can allocate work to clusters 1714A-1714N of processing cluster array 1712 using various scheduling and/or work distribution algorithms, which may vary depending on workload arising for each type of program or computation. In at least one embodiment, scheduling can be handled dynamically by scheduler 1710, or can be assisted in part by compiler logic during compilation of program logic configured for execution by processing cluster array 1712. In at least one embodiment, different clusters 1714A-1714N of processing cluster array 1712 can be allocated for processing different types of programs or for performing different types of computations.
In at least one embodiment, processing cluster array 1712 can be configured to perform various types of parallel processing operations. In at least one embodiment, processing cluster array 1712 is configured to perform general-purpose parallel compute operations. For example, in at least one embodiment, processing cluster array 1712 can include logic to execute processing tasks including filtering of video and/or audio data, performing modeling operations, including physics operations, and performing data transformations.
In at least one embodiment, processing cluster array 1712 is configured to perform parallel graphics processing operations. In at least one embodiment, processing cluster array 1712 can include additional logic to support execution of such graphics processing operations, including, but not limited to texture sampling logic to perform texture operations, as well as tessellation logic and other vertex processing logic. In at least one embodiment, processing cluster array 1712 can be configured to execute graphics processing related shader programs such as, but not limited to vertex shaders, tessellation shaders, geometry shaders, and pixel shaders. In at least one embodiment, parallel processing unit 1702 can transfer data from system memory via I/O unit 1704 for processing. In at least one embodiment, during processing, transferred data can be stored to on-chip memory (e.g., parallel processor memory 1722) during processing, then written back to system memory.
In at least one embodiment, when parallel processing unit 1702 is used to perform graphics processing, scheduler 1710 can be configured to divide a processing workload into approximately equal sized tasks, to better enable distribution of graphics processing operations to multiple clusters 1714A-1714N of processing cluster array 1712. In at least one embodiment, portions of processing cluster array 1712 can be configured to perform different types of processing. For example, in at least one embodiment, a first portion may be configured to perform vertex shading and topology generation, a second portion may be configured to perform tessellation and geometry shading, and a third portion may be configured to perform pixel shading or other screen space operations, to produce a rendered image for display. In at least one embodiment, intermediate data produced by one or more of clusters 1714A-1714N may be stored in buffers to allow intermediate data to be transmitted between clusters 1714A-1714N for further processing.
In at least one embodiment, processing cluster array 1712 can receive processing tasks to be executed via scheduler 1710, which receives commands defining processing tasks from front end 1708. In at least one embodiment, processing tasks can include indices of data to be processed, e.g., surface (patch) data, primitive data, vertex data, and/or pixel data, as well as state parameters and commands defining how data is to be processed (e.g., what program is to be executed). In at least one embodiment, scheduler 1710 may be configured to fetch indices corresponding to tasks or may receive indices from front end 1708. In at least one embodiment, front end 1708 can be configured to ensure processing cluster array 1712 is configured to a valid state before a workload specified by incoming command buffers (e.g., batch-buffers, push buffers, etc.) is initiated.
In at least one embodiment, each of one or more instances of parallel processing unit 1702 can couple with parallel processor memory 1722. In at least one embodiment, parallel processor memory 1722 can be accessed via memory crossbar 1716, which can receive memory requests from processing cluster array 1712 as well as I/O unit 1704. In at least one embodiment, memory crossbar 1716 can access parallel processor memory 1722 via a memory interface 1718. In at least one embodiment, memory interface 1718 can include multiple partition units (e.g., partition unit 1720A, partition unit 1720B, through partition unit 1720N) that can each couple to a portion (e.g., memory unit) of parallel processor memory 1722. In at least one embodiment, a number of partition units 1720A-1720N is configured to be equal to a number of memory units, such that a first partition unit 1720A has a corresponding first memory unit 1724A, a second partition unit 1720B has a corresponding memory unit 1724B, and a Nth partition unit 1720N has a corresponding Nth memory unit 1724N. In at least one embodiment, a number of partition units 1720A-1720N may not be equal to a number of memory devices.
In at least one embodiment, memory units 1724A-1724N can include various types of memory devices, including dynamic random access memory (DRAM) or graphics random access memory, such as synchronous graphics random access memory (SGRAM), including graphics double data rate (GDDR) memory. In at least one embodiment, memory units 1724A-1724N may also include 3D stacked memory, including but not limited to high bandwidth memory (HBM). In at least one embodiment, render targets, such as frame buffers or texture maps may be stored across memory units 1724A-1724N, allowing partition units 1720A-1720N to write portions of each render target in parallel to efficiently use available bandwidth of parallel processor memory 1722. In at least one embodiment, a local instance of parallel processor memory 1722 may be excluded in favor of a unified memory design that utilizes system memory in conjunction with local cache memory.
In at least one embodiment, any one of clusters 1714A-1714N of processing cluster array 1712 can process data that will be written to any of memory units 1724A-1724N within parallel processor memory 1722. In at least one embodiment, memory crossbar 1716 can be configured to transfer an output of each cluster 1714A-1714N to any partition unit 1720A-1720N or to another cluster 1714A-1714N, which can perform additional processing operations on an output. In at least one embodiment, each cluster 1714A-1714N can communicate with memory interface 1718 through memory crossbar 1716 to read from or write to various external memory devices. In at least one embodiment, memory crossbar 1716 has a connection to memory interface 1718 to communicate with I/O unit 1704, as well as a connection to a local instance of parallel processor memory 1722, enabling processing units within different processing clusters 1714A-1714N to communicate with system memory or other memory that is not local to parallel processing unit 1702. In at least one embodiment, memory crossbar 1716 can use virtual channels to separate traffic streams between clusters 1714A-1714N and partition units 1720A-1720N.
In at least one embodiment, multiple instances of parallel processing unit 1702 can be provided on a single add-in card, or multiple add-in cards can be interconnected. In at least one embodiment, different instances of parallel processing unit 1702 can be configured to inter-operate even if different instances have different numbers of processing cores, different amounts of local parallel processor memory, and/or other configuration differences. For example, in at least one embodiment, some instances of parallel processing unit 1702 can include higher precision floating point units relative to other instances. In at least one embodiment, systems incorporating one or more instances of parallel processing unit 1702 or parallel processor 1700 can be implemented in a variety of configurations and form factors, including but not limited to desktop, laptop, or handheld personal computers, servers, workstations, game consoles, and/or embedded systems.
In at least one embodiment, ROP 1726 is a processing unit that performs raster operations such as stencil, z test, blending, and so forth. In at least one embodiment, ROP 1726 then outputs processed graphics data that is stored in graphics memory. In at least one embodiment, ROP 1726 includes compression logic to compress depth or color data that is written to memory and decompress depth or color data that is read from memory. In at least one embodiment, compression logic can be lossless compression logic that makes use of one or more of multiple compression algorithms. Compression logic that is performed by ROP 1726 can vary based on statistical characteristics of data to be compressed. For example, in at least one embodiment, delta color compression is performed on depth and color data on a per-tile basis.
In at least one embodiment, ROP 1726 is included within each processing cluster (e.g., cluster 1714A-1714N of
In at least one embodiment, operation of processing cluster 1714 can be controlled via a pipeline manager 1732 that distributes processing tasks to SIMT parallel processors. In at least one embodiment, pipeline manager 1732 receives instructions from scheduler 1710 of
In at least one embodiment, each graphics multiprocessor 1734 within processing cluster 1714 can include an identical set of functional execution logic (e.g., arithmetic logic units, load-store units, etc.). In at least one embodiment, functional execution logic can be configured in a pipelined manner in which new instructions can be issued before previous instructions are complete. In at least one embodiment, functional execution logic supports a variety of operations including integer and floating point arithmetic, comparison operations, Boolean operations, bit-shifting, and computation of various algebraic functions. In at least one embodiment, same functional-unit hardware can be leveraged to perform different operations and any combination of functional units may be present.
In at least one embodiment, instructions transmitted to processing cluster 1714 constitute a thread. In at least one embodiment, a set of threads executing across a set of parallel processing engines is a thread group. In at least one embodiment, thread group executes a program on different input data. In at least one embodiment, each thread within a thread group can be assigned to a different processing engine within a graphics multiprocessor 1734. In at least one embodiment, a thread group may include fewer threads than a number of processing engines within graphics multiprocessor 1734. In at least one embodiment, when a thread group includes fewer threads than a number of processing engines, one or more processing engines may be idle during cycles in which that thread group is being processed. In at least one embodiment, a thread group may also include more threads than a number of processing engines within graphics multiprocessor 1734. In at least one embodiment, when a thread group includes more threads than processing engines within graphics multiprocessor 1734, processing can be performed over consecutive clock cycles. In at least one embodiment, multiple thread groups can be executed concurrently on a graphics multiprocessor 1734.
In at least one embodiment, graphics multiprocessor 1734 includes an internal cache memory to perform load and store operations. In at least one embodiment, graphics multiprocessor 1734 can forego an internal cache and use a cache memory (e.g., L1 cache 1748) within processing cluster 1714. In at least one embodiment, each graphics multiprocessor 1734 also has access to L2 caches within partition units (e.g., partition units 1720A-1720N of
In at least one embodiment, each processing cluster 1714 may include a memory management unit (“MMU”) 1745 that is configured to map virtual addresses into physical addresses. In at least one embodiment, one or more instances of MMU 1745 may reside within memory interface 1718 of
In at least one embodiment, a processing cluster 1714 may be configured such that each graphics multiprocessor 1734 is coupled to a texture unit 1736 for performing texture mapping operations, e.g., determining texture sample positions, reading texture data, and filtering texture data. In at least one embodiment, texture data is read from an internal texture L1 cache (not shown) or from an L1 cache within graphics multiprocessor 1734 and is fetched from an L2 cache, local parallel processor memory, or system memory, as needed. In at least one embodiment, each graphics multiprocessor 1734 outputs processed tasks to data crossbar 1740 to provide processed task(s) to another processing cluster 1714 for further processing or to store processed task(s) in an L2 cache, local parallel processor memory, or system memory via memory crossbar 1716. In at least one embodiment, preROP 1742 (pre-raster operations unit) is configured to receive data from graphics multiprocessor 1734, direct data to ROP units, which may be located with partition units as described herein (e.g., partition units 1720A-1720N of
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. Details regarding inference and/or training logic 615 are provided below in conjunction with
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. In at least one embodiment, this logic can be used with components of these figures to train one or more neural networks using long image sequences, where backpropagation is performed only for a subset of image frames of those sequences.
In at least one embodiment, instruction cache 1752 receives a stream of instructions to execute from pipeline manager 1732. In at least one embodiment, instructions are cached in instruction cache 1752 and dispatched for execution by instruction unit 1754. In at least one embodiment, instruction unit 1754 can dispatch instructions as thread groups (e.g., warps), with each thread group assigned to a different execution unit within GPGPU core(s) 1762. In at least one embodiment, an instruction can access any of a local, shared, or global address space by specifying an address within a unified address space. In at least one embodiment, address mapping unit 1756 can be used to translate addresses in a unified address space into a distinct memory address that can be accessed by load/store unit(s) 1766
In at least one embodiment, register file 1758 provides a set of registers for functional units of graphics multiprocessor 1734. In at least one embodiment, register file 1758 provides temporary storage for operands connected to data paths of functional units (e.g., GPGPU cores 1762, load/store units 1766) of graphics multiprocessor 1734. In at least one embodiment, register file 1758 is divided between each of functional units such that each functional unit is allocated a dedicated portion of register file 1758. In at least one embodiment, register file 1758 is divided between different warps being executed by graphics multiprocessor 1734.
In at least one embodiment, GPGPU cores 1762 can each include floating point units (FPUs) and/or integer arithmetic logic units (ALUs) that are used to execute instructions of graphics multiprocessor 1734. GPGPU cores 1762 can be similar in architecture or can differ in architecture. In at least one embodiment, a first portion of GPGPU cores 1762 include a single precision FPU and an integer ALU while a second portion of GPGPU cores include a double precision FPU. In at least one embodiment, FPUs can implement IEEE 754-2008 standard for floating point arithmetic or enable variable precision floating point arithmetic. In at least one embodiment, graphics multiprocessor 1734 can additionally include one or more fixed function or special function units to perform specific functions such as copy rectangle or pixel blending operations. In at least one embodiment one or more of GPGPU cores can also include fixed or special function logic.
In at least one embodiment, GPGPU cores 1762 include SIMD logic capable of performing a single instruction on multiple sets of data. In at least one embodiment GPGPU cores 1762 can physically execute SIMD4, SIMD8, and SIMD16 instructions and logically execute SIMD1, SIMD2, and SIMD32 instructions. In at least one embodiment, SIMD instructions for GPGPU cores can be generated at compile time by a shader compiler or automatically generated when executing programs written and compiled for single program multiple data (SPMD) or SIMT architectures. In at least one embodiment, multiple threads of a program configured for an SIMT execution model can executed via a single SIMD instruction. For example, in at least one embodiment, eight SIMT threads that perform same or similar operations can be executed in parallel via a single SIMD8 logic unit.
In at least one embodiment, memory and cache interconnect 1768 is an interconnect network that connects each functional unit of graphics multiprocessor 1734 to register file 1758 and to shared memory 1770. In at least one embodiment, memory and cache interconnect 1768 is a crossbar interconnect that allows load/store unit 1766 to implement load and store operations between shared memory 1770 and register file 1758. In at least one embodiment, register file 1758 can operate at a same frequency as GPGPU cores 1762, thus data transfer between GPGPU cores 1762 and register file 1758 is very low latency. In at least one embodiment, shared memory 1770 can be used to enable communication between threads that execute on functional units within graphics multiprocessor 1734. In at least one embodiment, cache memory 1772 can be used as a data cache for example, to cache texture data communicated between functional units and texture unit 1736. In at least one embodiment, shared memory 1770 can also be used as a program managed cache. In at least one embodiment, threads executing on GPGPU cores 1762 can programmatically store data within shared memory in addition to automatically cached data that is stored within cache memory 1772.
In at least one embodiment, a parallel processor or GPGPU as described herein is communicatively coupled to host/processor cores to accelerate graphics operations, machine-learning operations, pattern analysis operations, and various general purpose GPU (GPGPU) functions. In at least one embodiment, GPU may be communicatively coupled to host processor/cores over a bus or other interconnect (e.g., a high speed interconnect such as PCIe or NVLink). In at least one embodiment, GPU may be integrated on same package or chip as cores and communicatively coupled to cores over an internal processor bus/interconnect (i.e., internal to package or chip). In at least one embodiment, regardless of manner in which GPU is connected, processor cores may allocate work to GPU in form of sequences of commands/instructions contained in a work descriptor. In at least one embodiment, GPU then uses dedicated circuitry/logic for efficiently processing these commands/instructions.
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. Details regarding inference and/or training logic 615 are provided below in conjunction with
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. In at least one embodiment, this logic can be used with components of these figures to train one or more neural networks using long image sequences, where backpropagation is performed only for a subset of image frames of those sequences.
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. Details regarding inference and/or training logic 615 are provided below in conjunction with
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. In at least one embodiment, this logic can be used with components of these figures to train one or more neural networks using long image sequences, where backpropagation is performed only for a subset of image frames of those sequences.
In at least one embodiment, graphics processor 1900 receives batches of commands via ring interconnect 1902. In at least one embodiment, incoming commands are interpreted by a command streamer 1903 in pipeline front-end 1904. In at least one embodiment, graphics processor 1900 includes scalable execution logic to perform 3D geometry processing and media processing via graphics core(s) 1980A-1980N. In at least one embodiment, for 3D geometry processing commands, command streamer 1903 supplies commands to geometry pipeline 1936. In at least one embodiment, for at least some media processing commands, command streamer 1903 supplies commands to a video front end 1934, which couples with a media engine 1937. In at least one embodiment, media engine 1937 includes a Video Quality Engine (VQE) 1930 for video and image post-processing and a multi-format encode/decode (MFX) 1933 engine to provide hardware-accelerated media data encode and decode. In at least one embodiment, geometry pipeline 1936 and media engine 1937 each generate execution threads for thread execution resources provided by at least one graphics core 1980A.
In at least one embodiment, graphics processor 1900 includes scalable thread execution resources featuring modular cores 1980A-1980N (sometimes referred to as core slices), each having multiple sub-cores 1950A-1950N, 1960A-1960N (sometimes referred to as core sub-slices). In at least one embodiment, graphics processor 1900 can have any number of graphics cores 1980A through 1980N. In at least one embodiment, graphics processor 1900 includes a graphics core 1980A having at least a first sub-core 1950A and a second sub-core 1960A. In at least one embodiment, graphics processor 1900 is a low power processor with a single sub-core (e.g., 1950A). In at least one embodiment, graphics processor 1900 includes multiple graphics cores 1980A-1980N, each including a set of first sub-cores 1950A-1950N and a set of second sub-cores 1960A-1960N. In at least one embodiment, each sub-core in first sub-cores 1950A-1950N includes at least a first set of execution units 1952A-1952N and media/texture samplers 1954A-1954N. In at least one embodiment, each sub-core in second sub-cores 1960A-1960N includes at least a second set of execution units 1962A-1962N and samplers 1964A-1964N. In at least one embodiment, each sub-core 1950A-1950N, 1960A-1960N shares a set of shared resources 1970A-1970N. In at least one embodiment, shared resources include shared cache memory and pixel operation logic.
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. Details regarding inference and/or training logic 615 are provided below in conjunction with
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. In at least one embodiment, this logic can be used with components of these figures to train one or more neural networks using long image sequences, where backpropagation is performed only for a subset of image frames of those sequences.
In at least one embodiment, processor 2000 includes an in-order front end (“front end”) 2001 to fetch instructions to be executed and prepare instructions to be used later in processor pipeline. In at least one embodiment, front end 2001 may include several units. In at least one embodiment, an instruction prefetcher 2026 fetches instructions from memory and feeds instructions to an instruction decoder 2028 which in turn decodes or interprets instructions. For example, in at least one embodiment, instruction decoder 2028 decodes a received instruction into one or more operations called “micro-instructions” or “micro-operations” (also called “micro ops” or “uops”) that machine may execute. In at least one embodiment, instruction decoder 2028 parses instruction into an opcode and corresponding data and control fields that may be used by micro-architecture to perform operations in accordance with at least one embodiment. In at least one embodiment, a trace cache 2030 may assemble decoded uops into program ordered sequences or traces in a uop queue 2034 for execution. In at least one embodiment, when trace cache 2030 encounters a complex instruction, a microcode ROM 2032 provides uops needed to complete operation.
In at least one embodiment, some instructions may be converted into a single micro-op, whereas others need several micro-ops to complete full operation. In at least one embodiment, if more than four micro-ops are needed to complete an instruction, instruction decoder 2028 may access microcode ROM 2032 to perform instruction. In at least one embodiment, an instruction may be decoded into a small number of micro-ops for processing at instruction decoder 2028. In at least one embodiment, an instruction may be stored within microcode ROM 2032 should a number of micro-ops be needed to accomplish operation. In at least one embodiment, trace cache 2030 refers to an entry point programmable logic array (“PLA”) to determine a correct micro-instruction pointer for reading microcode sequences to complete one or more instructions from microcode ROM 2032 in accordance with at least one embodiment. In at least one embodiment, after microcode ROM 2032 finishes sequencing micro-ops for an instruction, front end 2001 of machine may resume fetching micro-ops from trace cache 2030.
In at least one embodiment, out-of-order execution engine (“out of order engine”) 2003 may prepare instructions for execution. In at least one embodiment, out-of-order execution logic has a number of buffers to smooth out and re-order flow of instructions to optimize performance as they go down pipeline and get scheduled for execution. In at least one embodiment, out-of-order execution engine 2003 includes, without limitation, an allocator/register renamer 2040, a memory uop queue 2042, an integer/floating point uop queue 2044, a memory scheduler 2046, a fast scheduler 2002, a slow/general floating point scheduler (“slow/general FP scheduler”) 2004, and a simple floating point scheduler (“simple FP scheduler”) 2006. In at least one embodiment, fast schedule 2002, slow/general floating point scheduler 2004, and simple floating point scheduler 2006 are also collectively referred to herein as “uop schedulers 2002, 2004, 2006.” In at least one embodiment, allocator/register renamer 2040 allocates machine buffers and resources that each uop needs in order to execute. In at least one embodiment, allocator/register renamer 2040 renames logic registers onto entries in a register file. In at least one embodiment, allocator/register renamer 2040 also allocates an entry for each uop in one of two uop queues, memory uop queue 2042 for memory operations and integer/floating point uop queue 2044 for non-memory operations, in front of memory scheduler 2046 and uop schedulers 2002, 2004, 2006. In at least one embodiment, uop schedulers 2002, 2004, 2006 determine when a uop is ready to execute based on readiness of their dependent input register operand sources and availability of execution resources uops need to complete their operation. In at least one embodiment, fast scheduler 2002 of at least one embodiment may schedule on each half of main clock cycle while slow/general floating point scheduler 2004 and simple floating point scheduler 2006 may schedule once per main processor clock cycle. In at least one embodiment, uop schedulers 2002, 2004, 2006 arbitrate for dispatch ports to schedule uops for execution.
In at least one embodiment, execution block 2011 includes, without limitation, an integer register file/bypass network 2008, a floating point register file/bypass network (“FP register file/bypass network”) 2010, address generation units (“AGUs”) 2012 and 2014, fast Arithmetic Logic Units (ALUs) (“fast ALUs”) 2016 and 2018, a slow Arithmetic Logic Unit (“slow ALU”) 2020, a floating point ALU (“FP”) 2022, and a floating point move unit (“FP move”) 2024. In at least one embodiment, integer register file/bypass network 2008 and floating point register file/bypass network 2010 are also referred to herein as “register files 2008, 2010.” In at least one embodiment, AGUs 2012 and 2014, fast ALUs 2016 and 2018, slow ALU 2020, floating point ALU 2022, and floating point move unit 2024 are also referred to herein as “execution units 2012, 2014, 2016, 2018, 2020, 2022, and 2024.” In at least one embodiment, execution block b 11 may include, without limitation, any number (including zero) and type of register files, bypass networks, address generation units, and execution units, in any combination.
In at least one embodiment, register files 2008, 2010 may be arranged between uop schedulers 2002, 2004, 2006, and execution units 2012, 2014, 2016, 2018, 2020, 2022, and 2024. In at least one embodiment, integer register file/bypass network 2008 performs integer operations. In at least one embodiment, floating point register file/bypass network 2010 performs floating point operations. In at least one embodiment, each of register files 2008, 2010 may include, without limitation, a bypass network that may bypass or forward just completed results that have not yet been written into register file to new dependent uops. In at least one embodiment, register files 2008, 2010 may communicate data with each other. In at least one embodiment, integer register file/bypass network 2008 may include, without limitation, two separate register files, one register file for low-order thirty-two bits of data and a second register file for high order thirty-two bits of data. In at least one embodiment, floating point register file/bypass network 2010 may include, without limitation, 128-bit wide entries because floating point instructions typically have operands from 64 to 128 bits in width.
In at least one embodiment, execution units 2012, 2014, 2016, 2018, 2020, 2022, 2024 may execute instructions. In at least one embodiment, register files 2008, 2010 store integer and floating point data operand values that micro-instructions need to execute. In at least one embodiment, processor 2000 may include, without limitation, any number and combination of execution units 2012, 2014, 2016, 2018, 2020, 2022, 2024. In at least one embodiment, floating point ALU 2022 and floating point move unit 2024, may execute floating point, MMX, SIMD, AVX and SSE, or other operations, including specialized machine learning instructions. In at least one embodiment, floating point ALU 2022 may include, without limitation, a 64-bit by 64-bit floating point divider to execute divide, square root, and remainder micro ops. In at least one embodiment, instructions involving a floating point value may be handled with floating point hardware. In at least one embodiment, ALU operations may be passed to fast ALUs 2016, 2018. In at least one embodiment, fast ALUS 2016, 2018 may execute fast operations with an effective latency of half a clock cycle. In at least one embodiment, most complex integer operations go to slow ALU 2020 as slow ALU 2020 may include, without limitation, integer execution hardware for long-latency type of operations, such as a multiplier, shifts, flag logic, and branch processing. In at least one embodiment, memory load/store operations may be executed by AGUS 2012, 2014. In at least one embodiment, fast ALU 2016, fast ALU 2018, and slow ALU 2020 may perform integer operations on 64-bit data operands. In at least one embodiment, fast ALU 2016, fast ALU 2018, and slow ALU 2020 may be implemented to support a variety of data bit sizes including sixteen, thirty-two, 128, 256, etc. In at least one embodiment, floating point ALU 2022 and floating point move unit 2024 may be implemented to support a range of operands having bits of various widths. In at least one embodiment, floating point ALU 2022 and floating point move unit 2024 may operate on 128-bit wide packed data operands in conjunction with SIMD and multimedia instructions.
In at least one embodiment, uop schedulers 2002, 2004, 2006, dispatch dependent operations before parent load has finished executing. In at least one embodiment, as uops may be speculatively scheduled and executed in processor 2000, processor 2000 may also include logic to handle memory misses. In at least one embodiment, if a data load misses in data cache, there may be dependent operations in flight in pipeline that have left scheduler with temporarily incorrect data. In at least one embodiment, a replay mechanism tracks and re-executes instructions that use incorrect data. In at least one embodiment, dependent operations might need to be replayed and independent ones may be allowed to complete. In at least one embodiment, schedulers and replay mechanism of at least one embodiment of a processor may also be designed to catch instruction sequences for text string comparison operations.
In at least one embodiment, term “registers” may refer to on-board processor storage locations that may be used as part of instructions to identify operands. In at least one embodiment, registers may be those that may be usable from outside of processor (from a programmer's perspective). In at least one embodiment, registers might not be limited to a particular type of circuit. Rather, in at least one embodiment, a register may store data, provide data, and perform functions described herein. In at least one embodiment, registers described herein may be implemented by circuitry within a processor using any number of different techniques, such as dedicated physical registers, dynamically allocated physical registers using register renaming, combinations of dedicated and dynamically allocated physical registers, etc. In at least one embodiment, integer registers store 32-bit integer data. A register file of at least one embodiment also contains eight multimedia SIMD registers for packed data.
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. Details regarding inference and/or training logic 615 are provided below in conjunction with
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. In at least one embodiment, this logic can be used with components of these figures to train one or more neural networks using long image sequences, where backpropagation is performed only for a subset of image frames of those sequences.
In at least one embodiment, processing clusters 2110 may perform deep learning operations, including inference or prediction operations based on weight parameters calculated one or more training techniques, including those described herein. In at least one embodiment, each processing cluster 2110 may include, without limitation, any number and type of processors. In at least one embodiment, deep learning application processor 2100 may include any number and type of processing clusters 2100. In at least one embodiment, Inter-Chip Links 2120 are bi-directional. In at least one embodiment, Inter-Chip Links 2120 and Inter-Chip Controllers 2130 enable multiple deep learning application processors 2100 to exchange information, including activation information resulting from performing one or more machine learning algorithms embodied in one or more neural networks. In at least one embodiment, deep learning application processor 2100 may include any number (including zero) and type of ICLs 2120 and ICCs 2130.
In at least one embodiment, HBM2s 2140 provide a total of 32 Gigabytes (GB) of memory. HBM2 2140(i) is associated with both memory controller 2142(i) and HBM PHY 2144(i). In at least one embodiment, any number of HBM2s 2140 may provide any type and total amount of high bandwidth memory and may be associated with any number (including zero) and type of memory controllers 2142 and HBM PHYs 2144. In at least one embodiment, SPI, I2C, GPIO 2160, PCIe Controller and DMA 2170, and/or PCIe 2180 may be replaced with any number and type of blocks that enable any number and type of communication standards in any technically feasible fashion.
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. Details regarding inference and/or training logic 615 are provided below in conjunction with
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. In at least one embodiment, this logic can be used with components of these figures to train one or more neural networks using long image sequences, where backpropagation is performed only for a subset of image frames of those sequences.
In at least one embodiment, neurons 2202 and synapses 2208 may be interconnected such that neuromorphic processor 2200 operates to process or analyze information received by neuromorphic processor 2200. In at least one embodiment, neurons 2202 may transmit an output pulse (or “fire” or “spike”) when inputs received through neuron input 2204 exceed a threshold. In at least one embodiment, neurons 2202 may sum or integrate signals received at neuron inputs 2204. For example, in at least one embodiment, neurons 2202 may be implemented as leaky integrate-and-fire neurons, wherein if a sum (referred to as a “membrane potential”) exceeds a threshold value, neuron 2202 may generate an output (or “fire”) using a transfer function such as a sigmoid or threshold function. In at least one embodiment, a leaky integrate-and-fire neuron may sum signals received at neuron inputs 2204 into a membrane potential and may also apply a decay factor (or leak) to reduce a membrane potential. In at least one embodiment, a leaky integrate-and-fire neuron may fire if multiple input signals are received at neuron inputs 2204 rapidly enough to exceed a threshold value (i.e., before a membrane potential decays too low to fire). In at least one embodiment, neurons 2202 may be implemented using circuits or logic that receive inputs, integrate inputs into a membrane potential, and decay a membrane potential. In at least one embodiment, inputs may be averaged, or any other suitable transfer function may be used. Furthermore, in at least one embodiment, neurons 2202 may include, without limitation, comparator circuits or logic that generate an output spike at neuron output 2206 when result of applying a transfer function to neuron input 2204 exceeds a threshold. In at least one embodiment, once neuron 2202 fires, it may disregard previously received input information by, for example, resetting a membrane potential to 0 or another suitable default value. In at least one embodiment, once membrane potential is reset to 0, neuron 2202 may resume normal operation after a suitable period of time (or refractory period).
In at least one embodiment, neurons 2202 may be interconnected through synapses 2208. In at least one embodiment, synapses 2208 may operate to transmit signals from an output of a first neuron 2202 to an input of a second neuron 2202. In at least one embodiment, neurons 2202 may transmit information over more than one instance of synapse 2208. In at least one embodiment, one or more instances of neuron output 2206 may be connected, via an instance of synapse 2208, to an instance of neuron input 2204 in same neuron 2202. In at least one embodiment, an instance of neuron 2202 generating an output to be transmitted over an instance of synapse 2208 may be referred to as a “pre-synaptic neuron” with respect to that instance of synapse 2208. In at least one embodiment, an instance of neuron 2202 receiving an input transmitted over an instance of synapse 2208 may be referred to as a “post-synaptic neuron” with respect to that instance of synapse 2208. Because an instance of neuron 2202 may receive inputs from one or more instances of synapse 2208, and may also transmit outputs over one or more instances of synapse 2208, a single instance of neuron 2202 may therefore be both a “pre-synaptic neuron” and “post-synaptic neuron,” with respect to various instances of synapses 2208, in at least one embodiment.
In at least one embodiment, neurons 2202 may be organized into one or more layers. Each instance of neuron 2202 may have one neuron output 2206 that may fan out through one or more synapses 2208 to one or more neuron inputs 2204. In at least one embodiment, neuron outputs 2206 of neurons 2202 in a first layer 2210 may be connected to neuron inputs 2204 of neurons 2202 in a second layer 2212. In at least one embodiment, layer 2210 may be referred to as a “feed-forward layer.” In at least one embodiment, each instance of neuron 2202 in an instance of first layer 2210 may fan out to each instance of neuron 2202 in second layer 2212. In at least one embodiment, first layer 2210 may be referred to as a “fully connected feed-forward layer.” In at least one embodiment, each instance of neuron 2202 in an instance of second layer 2212 may fan out to fewer than all instances of neuron 2202 in a third layer 2214. In at least one embodiment, second layer 2212 may be referred to as a “sparsely connected feed-forward layer.” In at least one embodiment, neurons 2202 in second layer 2212 may fan out to neurons 2202 in multiple other layers, including to neurons 2202 in (same) second layer 2212. In at least one embodiment, second layer 2212 may be referred to as a “recurrent layer.” In at least one embodiment, neuromorphic processor 2200 may include, without limitation, any suitable combination of recurrent layers and feed-forward layers, including, without limitation, both sparsely connected feed-forward layers and fully connected feed-forward layers.
In at least one embodiment, neuromorphic processor 2200 may include, without limitation, a reconfigurable interconnect architecture or dedicated hard wired interconnects to connect synapse 2208 to neurons 2202. In at least one embodiment, neuromorphic processor 2200 may include, without limitation, circuitry or logic that allows synapses to be allocated to different neurons 2202 as needed based on neural network topology and neuron fan-in/out. For example, in at least one embodiment, synapses 2208 may be connected to neurons 2202 using an interconnect fabric, such as network-on-chip, or with dedicated connections. In at least one embodiment, synapse interconnections and components thereof may be implemented using circuitry or logic.
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. In at least one embodiment, this logic can be used with components of these figures to train one or more neural networks using long image sequences, where backpropagation is performed only for a subset of image frames of those sequences.
In at least one embodiment, system 2300 can include, or be incorporated within a server-based gaming platform, a game console, including a game and media console, a mobile gaming console, a handheld game console, or an online game console. In at least one embodiment, system 2300 is a mobile phone, smart phone, tablet computing device or mobile Internet device. In at least one embodiment, processing system 2300 can also include, couple with, or be integrated within a wearable device, such as a smart watch wearable device, smart eyewear device, augmented reality device, or virtual reality device. In at least one embodiment, processing system 2300 is a television or set top box device having one or more processors 2302 and a graphical interface generated by one or more graphics processors 2308.
In at least one embodiment, one or more processors 2302 each include one or more processor cores 2307 to process instructions which, when executed, perform operations for system and user software. In at least one embodiment, each of one or more processor cores 2307 is configured to process a specific instruction set 2309. In at least one embodiment, instruction set 2309 may facilitate Complex Instruction Set Computing (CISC), Reduced Instruction Set Computing (RISC), or computing via a Very Long Instruction Word (VLIW). In at least one embodiment, processor cores 2307 may each process a different instruction set 2309, which may include instructions to facilitate emulation of other instruction sets. In at least one embodiment, processor core 2307 may also include other processing devices, such a Digital Signal Processor (DSP).
In at least one embodiment, processor 2302 includes cache memory 2304. In at least one embodiment, processor 2302 can have a single internal cache or multiple levels of internal cache. In at least one embodiment, cache memory is shared among various components of processor 2302. In at least one embodiment, processor 2302 also uses an external cache (e.g., a Level-3 (L3) cache or Last Level Cache (LLC)) (not shown), which may be shared among processor cores 2307 using known cache coherency techniques. In at least one embodiment, register file 2306 is additionally included in processor 2302 which may include different types of registers for storing different types of data (e.g., integer registers, floating point registers, status registers, and an instruction pointer register). In at least one embodiment, register file 2306 may include general-purpose registers or other registers.
In at least one embodiment, one or more processor(s) 2302 are coupled with one or more interface bus(es) 2310 to transmit communication signals such as address, data, or control signals between processor 2302 and other components in system 2300. In at least one embodiment, interface bus 2310, in one embodiment, can be a processor bus, such as a version of a Direct Media Interface (DMI) bus. In at least one embodiment, interface 2310 is not limited to a DMI bus, and may include one or more Peripheral Component Interconnect buses (e.g., PCI, PCI Express), memory busses, or other types of interface busses. In at least one embodiment processor(s) 2302 include an integrated memory controller 2316 and a platform controller hub 2330. In at least one embodiment, memory controller 2316 facilitates communication between a memory device and other components of system 2300, while platform controller hub (PCH) 2330 provides connections to I/O devices via a local I/O bus.
In at least one embodiment, memory device 2320 can be a dynamic random access memory (DRAM) device, a static random access memory (SRAM) device, flash memory device, phase-change memory device, or some other memory device having suitable performance to serve as process memory. In at least one embodiment memory device 2320 can operate as system memory for system 2300, to store data 2322 and instructions 2321 for use when one or more processors 2302 executes an application or process. In at least one embodiment, memory controller 2316 also couples with an optional external graphics processor 2312, which may communicate with one or more graphics processors 2308 in processors 2302 to perform graphics and media operations. In at least one embodiment, a display device 2311 can connect to processor(s) 2302. In at least one embodiment display device 2311 can include one or more of an internal display device, as in a mobile electronic device or a laptop device or an external display device attached via a display interface (e.g., DisplayPort, etc.). In at least one embodiment, display device 2311 can include a head mounted display (HMD) such as a stereoscopic display device for use in virtual reality (VR) applications or augmented reality (AR) applications.
In at least one embodiment, platform controller hub 2330 enables peripherals to connect to memory device 2320 and processor 2302 via a high-speed I/O bus. In at least one embodiment, I/O peripherals include, but are not limited to, an audio controller 2346, a network controller 2334, a firmware interface 2328, a wireless transceiver 2326, touch sensors 2325, a data storage device 2324 (e.g., hard disk drive, flash memory, etc.). In at least one embodiment, data storage device 2324 can connect via a storage interface (e.g., SATA) or via a peripheral bus, such as a Peripheral Component Interconnect bus (e.g., PCI, PCI Express). In at least one embodiment, touch sensors 2325 can include touch screen sensors, pressure sensors, or fingerprint sensors. In at least one embodiment, wireless transceiver 2326 can be a Wi-Fi transceiver, a Bluetooth transceiver, or a mobile network transceiver such as a 3G, 4G, or Long Term Evolution (LTE) transceiver. In at least one embodiment, firmware interface 2328 enables communication with system firmware, and can be, for example, a unified extensible firmware interface (UEFI). In at least one embodiment, network controller 2334 can enable a network connection to a wired network. In at least one embodiment, a high-performance network controller (not shown) couples with interface bus 2310. In at least one embodiment, audio controller 2346 is a multi-channel high definition audio controller. In at least one embodiment, system 2300 includes an optional legacy I/O controller 2340 for coupling legacy (e.g., Personal System 2 (PS/2)) devices to system. In at least one embodiment, platform controller hub 2330 can also connect to one or more Universal Serial Bus (USB) controllers 2342 connect input devices, such as keyboard and mouse 2343 combinations, a camera 2344, or other USB input devices.
In at least one embodiment, an instance of memory controller 2316 and platform controller hub 2330 may be integrated into a discreet external graphics processor, such as external graphics processor 2312. In at least one embodiment, platform controller hub 2330 and/or memory controller 2316 may be external to one or more processor(s) 2302. For example, in at least one embodiment, system 2300 can include an external memory controller 2316 and platform controller hub 2330, which may be configured as a memory controller hub and peripheral controller hub within a system chipset that is in communication with processor(s) 2302.
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. Details regarding inference and/or training logic 615 are provided below in conjunction with
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. In at least one embodiment, this logic can be used with components of these figures to train one or more neural networks using long image sequences, where backpropagation is performed only for a subset of image frames of those sequences.
In at least one embodiment, internal cache units 2404A-2404N and shared cache units 2406 represent a cache memory hierarchy within processor 2400. In at least one embodiment, cache memory units 2404A-2404N may include at least one level of instruction and data cache within each processor core and one or more levels of shared mid-level cache, such as a Level 2 (L2), Level 3 (L3), Level 4 (L4), or other levels of cache, where a highest level of cache before external memory is classified as an LLC. In at least one embodiment, cache coherency logic maintains coherency between various cache units 2406 and 2404A-2404N.
In at least one embodiment, processor 2400 may also include a set of one or more bus controller units 2416 and a system agent core 2410. In at least one embodiment, one or more bus controller units 2416 manage a set of peripheral buses, such as one or more PCI or PCI express busses. In at least one embodiment, system agent core 2410 provides management functionality for various processor components. In at least one embodiment, system agent core 2410 includes one or more integrated memory controllers 2414 to manage access to various external memory devices (not shown).
In at least one embodiment, one or more of processor cores 2402A-2402N include support for simultaneous multi-threading. In at least one embodiment, system agent core 2410 includes components for coordinating and operating cores 2402A-2402N during multi-threaded processing. In at least one embodiment, system agent core 2410 may additionally include a power control unit (PCU), which includes logic and components to regulate one or more power states of processor cores 2402A-2402N and graphics processor 2408.
In at least one embodiment, processor 2400 additionally includes graphics processor 2408 to execute graphics processing operations. In at least one embodiment, graphics processor 2408 couples with shared cache units 2406, and system agent core 2410, including one or more integrated memory controllers 2414. In at least one embodiment, system agent core 2410 also includes a display controller 2411 to drive graphics processor output to one or more coupled displays. In at least one embodiment, display controller 2411 may also be a separate module coupled with graphics processor 2408 via at least one interconnect, or may be integrated within graphics processor 2408.
In at least one embodiment, a ring based interconnect unit 2412 is used to couple internal components of processor 2400. In at least one embodiment, an alternative interconnect unit may be used, such as a point-to-point interconnect, a switched interconnect, or other techniques. In at least one embodiment, graphics processor 2408 couples with ring interconnect 2412 via an I/O link 2413.
In at least one embodiment, I/O link 2413 represents at least one of multiple varieties of I/O interconnects, including an on package I/O interconnect which facilitates communication between various processor components and a high-performance embedded memory module 2418, such as an eDRAM module. In at least one embodiment, each of processor cores 2402A-2402N and graphics processor 2408 use embedded memory modules 2418 as a shared Last Level Cache.
In at least one embodiment, processor cores 2402A-2402N are homogenous cores executing a common instruction set architecture. In at least one embodiment, processor cores 2402A-2402N are heterogeneous in terms of instruction set architecture (ISA), where one or more of processor cores 2402A-2402N execute a common instruction set, while one or more other cores of processor cores 2402A-24-02N executes a subset of a common instruction set or a different instruction set. In at least one embodiment, processor cores 2402A-2402N are heterogeneous in terms of microarchitecture, where one or more cores having a relatively higher power consumption couple with one or more power cores having a lower power consumption. In at least one embodiment, processor 2400 can be implemented on one or more chips or as an SoC integrated circuit.
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. Details regarding inference and/or training logic 615 are provided below in conjunction with
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. In at least one embodiment, this logic can be used with components of these figures to train one or more neural networks using long image sequences, where backpropagation is performed only for a subset of image frames of those sequences.
In at least one embodiment, fixed function block 2530 includes a geometry/fixed function pipeline 2536 that can be shared by all sub-cores in graphics processor 2500, for example, in lower performance and/or lower power graphics processor implementations. In at least one embodiment, geometry/fixed function pipeline 2536 includes a 3D fixed function pipeline, a video front-end unit, a thread spawner and thread dispatcher, and a unified return buffer manager, which manages unified return buffers.
In at least one embodiment fixed, function block 2530 also includes a graphics SoC interface 2537, a graphics microcontroller 2538, and a media pipeline 2539. In at least one embodiment fixed, graphics SoC interface 2537 provides an interface between graphics core 2500 and other processor cores within a system on a chip integrated circuit. In at least one embodiment, graphics microcontroller 2538 is a programmable sub-processor that is configurable to manage various functions of graphics processor 2500, including thread dispatch, scheduling, and pre-emption. In at least one embodiment, media pipeline 2539 includes logic to facilitate decoding, encoding, pre-processing, and/or post-processing of multimedia data, including image and video data. In at least one embodiment, media pipeline 2539 implements media operations via requests to compute or sampling logic within sub-cores 2501-2501F.
In at least one embodiment, SoC interface 2537 enables graphics core 2500 to communicate with general-purpose application processor cores (e.g., CPUs) and/or other components within an SoC, including memory hierarchy elements such as a shared last level cache memory, system RAM, and/or embedded on-chip or on-package DRAM. In at least one embodiment, SoC interface 2537 can also enable communication with fixed function devices within an SoC, such as camera imaging pipelines, and enables use of and/or implements global memory atomics that may be shared between graphics core 2500 and CPUs within an SoC. In at least one embodiment, SoC interface 2537 can also implement power management controls for graphics core 2500 and enable an interface between a clock domain of graphic core 2500 and other clock domains within an SoC. In at least one embodiment, SoC interface 2537 enables receipt of command buffers from a command streamer and global thread dispatcher that are configured to provide commands and instructions to each of one or more graphics cores within a graphics processor. In at least one embodiment, commands and instructions can be dispatched to media pipeline 2539, when media operations are to be performed, or a geometry and fixed function pipeline (e.g., geometry and fixed function pipeline 2536, geometry and fixed function pipeline 2514) when graphics processing operations are to be performed.
In at least one embodiment, graphics microcontroller 2538 can be configured to perform various scheduling and management tasks for graphics core 2500. In at least one embodiment, graphics microcontroller 2538 can perform graphics and/or compute workload scheduling on various graphics parallel engines within execution unit (EU) arrays 2502A-2502F, 2504A-2504F within sub-cores 2501A-2501F. In at least one embodiment, host software executing on a CPU core of an SoC including graphics core 2500 can submit workloads one of multiple graphic processor doorbells, which invokes a scheduling operation on an appropriate graphics engine. In at least one embodiment, scheduling operations include determining which workload to run next, submitting a workload to a command streamer, pre-empting existing workloads running on an engine, monitoring progress of a workload, and notifying host software when a workload is complete. In at least one embodiment, graphics microcontroller 2538 can also facilitate low-power or idle states for graphics core 2500, providing graphics core 2500 with an ability to save and restore registers within graphics core 2500 across low-power state transitions independently from an operating system and/or graphics driver software on a system.
In at least one embodiment, graphics core 2500 may have greater than or fewer than illustrated sub-cores 2501A-2501F, up to N modular sub-cores. For each set of N sub-cores, in at least one embodiment, graphics core 2500 can also include shared function logic 2510, shared and/or cache memory 2512, a geometry/fixed function pipeline 2514, as well as additional fixed function logic 2516 to accelerate various graphics and compute processing operations. In at least one embodiment, shared function logic 2510 can include logic units (e.g., sampler, math, and/or inter-thread communication logic) that can be shared by each N sub-cores within graphics core 2500. In at least one embodiment fixed, shared and/or cache memory 2512 can be a last-level cache for N sub-cores 2501A-2501F within graphics core 2500 and can also serve as shared memory that is accessible by multiple sub-cores. In at least one embodiment, geometry/fixed function pipeline 2514 can be included instead of geometry/fixed function pipeline 2536 within fixed function block 2530 and can include same or similar logic units.
In at least one embodiment, graphics core 2500 includes additional fixed function logic 2516 that can include various fixed function acceleration logic for use by graphics core 2500. In at least one embodiment, additional fixed function logic 2516 includes an additional geometry pipeline for use in position only shading. In position-only shading, at least two geometry pipelines exist, whereas in a full geometry pipeline within geometry/fixed function pipeline 2516, 2536, and a cull pipeline, which is an additional geometry pipeline which may be included within additional fixed function logic 2516. In at least one embodiment, cull pipeline is a trimmed down version of a full geometry pipeline. In at least one embodiment, a full pipeline and a cull pipeline can execute different instances of an application, each instance having a separate context. In at least one embodiment, position only shading can hide long cull runs of discarded triangles, enabling shading to be completed earlier in some instances. For example, in at least one embodiment, cull pipeline logic within additional fixed function logic 2516 can execute position shaders in parallel with a main application and generally generates critical results faster than a full pipeline, as cull pipeline fetches and shades position attribute of vertices, without performing rasterization and rendering of pixels to a frame buffer. In at least one embodiment, cull pipeline can use generated critical results to compute visibility information for all triangles without regard to whether those triangles are culled. In at least one embodiment, full pipeline (which in this instance may be referred to as a replay pipeline) can consume visibility information to skip culled triangles to shade only visible triangles that are finally passed to a rasterization phase.
In at least one embodiment, additional fixed function logic 2516 can also include machine-learning acceleration logic, such as fixed function matrix multiplication logic, for implementations including optimizations for machine learning training or inferencing.
In at least one embodiment, within each graphics sub-core 2501A-2501F includes a set of execution resources that may be used to perform graphics, media, and compute operations in response to requests by graphics pipeline, media pipeline, or shader programs. In at least one embodiment, graphics sub-cores 2501A-2501F include multiple EU arrays 2502A-2502F, 2504A-2504F, thread dispatch and inter-thread communication (TD/IC) logic 2503A-2503F, a 3D (e.g., texture) sampler 2505A-2505F, a media sampler 2506A-2506F, a shader processor 2507A-2507F, and shared local memory (SLM) 2508A-2508F. EU arrays 2502A-2502F, 2504A-2504F each include multiple execution units, which are general-purpose graphics processing units capable of performing floating-point and integer/fixed-point logic operations in service of a graphics, media, or compute operation, including graphics, media, or compute shader programs. In at least one embodiment, TD/IC logic 2503A-2503F performs local thread dispatch and thread control operations for execution units within a sub-core and facilitate communication between threads executing on execution units of a sub-core. In at least one embodiment, 3D sampler 2505A-2505F can read texture or other 3D graphics related data into memory. In at least one embodiment, 3D sampler can read texture data differently based on a configured sample state and texture format associated with a given texture. In at least one embodiment, media sampler 2506A-2506F can perform similar read operations based on a type and format associated with media data. In at least one embodiment, each graphics sub-core 2501A-2501F can alternately include a unified 3D and media sampler. In at least one embodiment, threads executing on execution units within each of sub-cores 2501A-2501F can make use of shared local memory 2508A-2508F within each sub-core, to enable threads executing within a thread group to execute using a common pool of on-chip memory.
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. Details regarding inference and/or training logic 615 are provided below in conjunction with
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. In at least one embodiment, this logic can be used with components of these figures to train one or more neural networks using long image sequences, where backpropagation is performed only for a subset of image frames of those sequences.
As illustrated in
In at least one embodiment, execution units 2608A-2608N are primarily used to execute shader programs. In at least one embodiment, shader processor 2602 can process various shader programs and dispatch execution threads associated with shader programs via a thread dispatcher 2604. In at least one embodiment, thread dispatcher 2604 includes logic to arbitrate thread initiation requests from graphics and media pipelines and instantiate requested threads on one or more execution units in execution units 2608A-2608N. For example, in at least one embodiment, a geometry pipeline can dispatch vertex, tessellation, or geometry shaders to thread execution logic for processing. In at least one embodiment, thread dispatcher 2604 can also process runtime thread spawning requests from executing shader programs.
In at least one embodiment, execution units 2608A-2608N support an instruction set that includes native support for many standard 3D graphics shader instructions, such that shader programs from graphics libraries (e.g., Direct 3D and OpenGL) are executed with a minimal translation. In at least one embodiment, execution units support vertex and geometry processing (e.g., vertex programs, geometry programs, vertex shaders), pixel processing (e.g., pixel shaders, fragment shaders) and general-purpose processing (e.g., compute and media shaders). In at least one embodiment, each of execution units 2608A-2608N, which include one or more arithmetic logic units (ALUs), is capable of multi-issue single instruction multiple data (SIMD) execution and multi-threaded operation enables an efficient execution environment despite higher latency memory accesses. In at least one embodiment, each hardware thread within each execution unit has a dedicated high-bandwidth register file and associated independent thread-state. In at least one embodiment, execution is multi-issue per clock to pipelines capable of integer, single and double precision floating point operations, SIMD branch capability, logical operations, transcendental operations, and other miscellaneous operations. In at least one embodiment, while waiting for data from memory or one of shared functions, dependency logic within execution units 2608A-2608N causes a waiting thread to sleep until requested data has been returned. In at least one embodiment, while a waiting thread is sleeping, hardware resources may be devoted to processing other threads. For example, in at least one embodiment, during a delay associated with a vertex shader operation, an execution unit can perform operations for a pixel shader, fragment shader, or another type of shader program, including a different vertex shader.
In at least one embodiment, each execution unit in execution units 2608A-2608N operates on arrays of data elements. In at least one embodiment, a number of data elements is “execution size,” or number of channels for an instruction. In at least one embodiment, an execution channel is a logical unit of execution for data element access, masking, and flow control within instructions. In at least one embodiment, a number of channels may be independent of a number of physical Arithmetic Logic Units (ALUs) or Floating Point Units (FPUs) for a particular graphics processor. In at least one embodiment, execution units 2608A-2608N support integer and floating-point data types.
In at least one embodiment, an execution unit instruction set includes SIMD instructions. In at least one embodiment, various data elements can be stored as a packed data type in a register and execution unit will process various elements based on data size of elements. For example, in at least one embodiment, when operating on a 256-bit wide vector, 256 bits of a vector are stored in a register and an execution unit operates on a vector as four separate 64-bit packed data elements (Quad-Word (QW) size data elements), eight separate 32-bit packed data elements (Double Word (DW) size data elements), sixteen separate 16-bit packed data elements (Word (W) size data elements), or thirty-two separate 8-bit data elements (byte (B) size data elements). However, in at least one embodiment, different vector widths and register sizes are possible.
In at least one embodiment, one or more execution units can be combined into a fused execution unit 2609A-2609N having thread control logic (2607A-2607N) that is common to fused EUs. In at least one embodiment, multiple EUs can be fused into an EU group. In at least one embodiment, each EU in fused EU group can be configured to execute a separate SIMD hardware thread. Number of EUs in a fused EU group can vary according to various embodiments. In at least one embodiment, various SIMD widths can be performed per-EU, including but not limited to SIMD8, SIMD16, and SIMD32. In at least one embodiment, each fused graphics execution unit 2609A-2609N includes at least two execution units. For example, in at least one embodiment, fused execution unit 2609A includes a first EU 2608A, second EU 2608B, and thread control logic 2607A that is common to first EU 2608A and second EU 2608B. In at least one embodiment, thread control logic 2607A controls threads executed on fused graphics execution unit 2609A, allowing each EU within fused execution units 2609A-2609N to execute using a common instruction pointer register.
In at least one embodiment, one or more internal instruction caches (e.g., 2606) are included in thread execution logic 2600 to cache thread instructions for execution units. In at least one embodiment, one or more data caches (e.g., 2612) are included to cache thread data during thread execution. In at least one embodiment, a sampler 2610 is included to provide texture sampling for 3D operations and media sampling for media operations. In at least one embodiment, sampler 2610 includes specialized texture or media sampling functionality to process texture or media data during a sampling process before providing sampled data to an execution unit.
During execution, in at least one embodiment, graphics and media pipelines send thread initiation requests to thread execution logic 2600 via thread spawning and dispatch logic. In at least one embodiment, once a group of geometric objects has been processed and rasterized into pixel data, pixel processor logic (e.g., pixel shader logic, fragment shader logic, etc.) within shader processor 2602 is invoked to further compute output information and cause results to be written to output surfaces (e.g., color buffers, depth buffers, stencil buffers, etc.). In at least one embodiment, a pixel shader or fragment shader calculates values of various vertex attributes that are to be interpolated across a rasterized object. In at least one embodiment, pixel processor logic within shader processor 2602 then executes an application programming interface (API)-supplied pixel or fragment shader program. In at least one embodiment, to execute a shader program, shader processor 2602 dispatches threads to an execution unit (e.g., 2608A) via thread dispatcher 2604. In at least one embodiment, shader processor 2602 uses texture sampling logic in sampler 2610 to access texture data in texture maps stored in memory. In at least one embodiment, arithmetic operations on texture data and input geometry data compute pixel color data for each geometric fragment, or discards one or more pixels from further processing.
In at least one embodiment, data port 2614 provides a memory access mechanism for thread execution logic 2600 to output processed data to memory for further processing on a graphics processor output pipeline. In at least one embodiment, data port 2614 includes or couples to one or more cache memories (e.g., data cache 2612) to cache data for memory access via a data port.
As illustrated in
In at least one embodiment, graphics execution unit 2608 has an architecture that is a combination of Simultaneous Multi-Threading (SMT) and fine-grained Interleaved Multi-Threading (IMT). In at least one embodiment, architecture has a modular configuration that can be fine-tuned at design time based on a target number of simultaneous threads and number of registers per execution unit, where execution unit resources are divided across logic used to execute multiple simultaneous threads.
In at least one embodiment, graphics execution unit 2608 can co-issue multiple instructions, which may each be different instructions. In at least one embodiment, thread arbiter 2622 of graphics execution unit thread 2608 can dispatch instructions to one of send unit 2630, branch unit 2642, or SIMD FPU(s) 2634 for execution. In at least one embodiment, each execution thread can access 128 general-purpose registers within GRF 2624, where each register can store 32 bytes, accessible as a SIMD 8-element vector of 32-bit data elements. In at least one embodiment, each execution unit thread has access to 4 Kbytes within GRF 2624, although embodiments are not so limited, and greater or fewer register resources may be provided in other embodiments. In at least one embodiment, up to seven threads can execute simultaneously, although a number of threads per execution unit can also vary according to embodiments. In at least one embodiment, in which seven threads may access 4 Kbytes, GRF 2624 can store a total of 28 Kbytes. In at least one embodiment, flexible addressing modes can permit registers to be addressed together to build effectively wider registers or to represent strided rectangular block data structures.
In at least one embodiment, memory operations, sampler operations, and other longer-latency system communications are dispatched via “send” instructions that are executed by message passing send unit 2630. In at least one embodiment, branch instructions are dispatched to a dedicated branch unit 2632 to facilitate SIMD divergence and eventual convergence.
In at least one embodiment graphics execution unit 2608 includes one or more SIMD floating point units (FPU(s)) 2634 to perform floating-point operations. In at least one embodiment, FPU(s) 2634 also support integer computation. In at least one embodiment FPU(s) 2634 can SIMD execute up to M number of 32-bit floating-point (or integer) operations, or SIMD execute up to 2M 16-bit integer or 16-bit floating-point operations. In at least one embodiment, at least one of FPU(s) provides extended math capability to support high-throughput transcendental math functions and double precision 64-bit floating-point. In at least one embodiment, a set of 8-bit integer SIMD ALUs 2635 are also present, and may be specifically optimized to perform operations associated with machine learning computations.
In at least one embodiment, arrays of multiple instances of graphics execution unit 2608 can be instantiated in a graphics sub-core grouping (e.g., a sub-slice). In at least one embodiment, execution unit 2608 can execute instructions across a plurality of execution channels. In at least one embodiment, each thread executed on graphics execution unit 2608 is executed on a different channel.
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. Details regarding inference and/or training logic 615 are provided below in conjunction with
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. In at least one embodiment, this logic can be used with components of these figures to train one or more neural networks using long image sequences, where backpropagation is performed only for a subset of image frames of those sequences.
In at least one embodiment, one or more PPUs 2700 are configured to accelerate High Performance Computing (“HPC”), data center, and machine learning applications. In at least one embodiment, PPU 2700 is configured to accelerate deep learning systems and applications including following non-limiting examples: autonomous vehicle platforms, deep learning, high-accuracy speech, image, text recognition systems, intelligent video analytics, molecular simulations, drug discovery, disease diagnosis, weather forecasting, big data analytics, astronomy, molecular dynamics simulation, financial modeling, robotics, factory automation, real-time language translation, online search optimizations, and personalized user recommendations, and more.
In at least one embodiment, PPU 2700 includes, without limitation, an Input/Output (“I/O”) unit 2706, a front-end unit 2710, a scheduler unit 2712, a work distribution unit 2714, a hub 2716, a crossbar (“Xbar”) 2720, one or more general processing clusters (“GPCs”) 2718, and one or more partition units (“memory partition units”) 2722. In at least one embodiment, PPU 2700 is connected to a host processor or other PPUs 2700 via one or more high-speed GPU interconnects (“GPU interconnects”) 2708. In at least one embodiment, PPU 2700 is connected to a host processor or other peripheral devices via an interconnect 2702. In at least one embodiment, PPU 2700 is connected to a local memory comprising one or more memory devices (“memory”) 2704. In at least one embodiment, memory devices 2704 include, without limitation, one or more dynamic random access memory (“DRAM”) devices. In at least one embodiment, one or more DRAM devices are configured and/or configurable as high-bandwidth memory (“HBM”) subsystems, with multiple DRAM dies stacked within each device.
In at least one embodiment, high-speed GPU interconnect 2708 may refer to a wire-based multi-lane communications link that is used by systems to scale and include one or more PPUs 2700 combined with one or more central processing units (“CPUs”), supports cache coherence between PPUs 2700 and CPUs, and CPU mastering. In at least one embodiment, data and/or commands are transmitted by high-speed GPU interconnect 2708 through hub 2716 to/from other units of PPU 2700 such as one or more copy engines, video encoders, video decoders, power management units, and other components which may not be explicitly illustrated in
In at least one embodiment, I/O unit 2706 is configured to transmit and receive communications (e.g., commands, data) from a host processor (not illustrated in
In at least one embodiment, I/O unit 2706 decodes packets received via system bus 2702. In at least one embodiment, at least some packets represent commands configured to cause PPU 2700 to perform various operations. In at least one embodiment, I/O unit 2706 transmits decoded commands to various other units of PPU 2700 as specified by commands. In at least one embodiment, commands are transmitted to front-end unit 2710 and/or transmitted to hub 2716 or other units of PPU 2700 such as one or more copy engines, a video encoder, a video decoder, a power management unit, etc. (not explicitly illustrated in
In at least one embodiment, a program executed by host processor encodes a command stream in a buffer that provides workloads to PPU 2700 for processing. In at least one embodiment, a workload comprises instructions and data to be processed by those instructions. In at least one embodiment, buffer is a region in a memory that is accessible (e.g., read/write) by both host processor and PPU 2700—a host interface unit may be configured to access buffer in a system memory connected to system bus 2702 via memory requests transmitted over system bus 2702 by I/O unit 2706. In at least one embodiment, host processor writes command stream to buffer and then transmits a pointer to start of command stream to PPU 2700 such that front-end unit 2710 receives pointers to one or more command streams and manages one or more command streams, reading commands from command streams and forwarding commands to various units of PPU 2700.
In at least one embodiment, front-end unit 2710 is coupled to scheduler unit 2712 that configures various GPCs 2718 to process tasks defined by one or more command streams. In at least one embodiment, scheduler unit 2712 is configured to track state information related to various tasks managed by scheduler unit 2712 where state information may indicate which of GPCs 2718 a task is assigned to, whether task is active or inactive, a priority level associated with task, and so forth. In at least one embodiment, scheduler unit 2712 manages execution of a plurality of tasks on one or more of GPCs 2718.
In at least one embodiment, scheduler unit 2712 is coupled to work distribution unit 2714 that is configured to dispatch tasks for execution on GPCs 2718. In at least one embodiment, work distribution unit 2714 tracks a number of scheduled tasks received from scheduler unit 2712 and work distribution unit 2714 manages a pending task pool and an active task pool for each of GPCs 2718. In at least one embodiment, pending task pool comprises a number of slots (e.g., 32 slots) that contain tasks assigned to be processed by a particular GPC 2718; active task pool may comprise a number of slots (e.g., 4 slots) for tasks that are actively being processed by GPCs 2718 such that as one of GPCs 2718 completes execution of a task, that task is evicted from active task pool for GPC 2718 and one of other tasks from pending task pool is selected and scheduled for execution on GPC 2718. In at least one embodiment, if an active task is idle on GPC 2718, such as while waiting for a data dependency to be resolved, then active task is evicted from GPC 2718 and returned to pending task pool while another task in pending task pool is selected and scheduled for execution on GPC 2718.
In at least one embodiment, work distribution unit 2714 communicates with one or more GPCs 2718 via XBar 2720. In at least one embodiment, XBar 2720 is an interconnect network that couples many of units of PPU 2700 to other units of PPU 2700 and can be configured to couple work distribution unit 2714 to a particular GPC 2718. In at least one embodiment, one or more other units of PPU 2700 may also be connected to XBar 2720 via hub 2716.
In at least one embodiment, tasks are managed by scheduler unit 2712 and dispatched to one of GPCs 2718 by work distribution unit 2714. GPC 2718 is configured to process task and generate results. In at least one embodiment, results may be consumed by other tasks within GPC 2718, routed to a different GPC 2718 via XBar 2720, or stored in memory 2704. In at least one embodiment, results can be written to memory 2704 via partition units 2722, which implement a memory interface for reading and writing data to/from memory 2704. In at least one embodiment, results can be transmitted to another PPU 2704 or CPU via high-speed GPU interconnect 2708. In at least one embodiment, PPU 2700 includes, without limitation, a number U of partition units 2722 that is equal to number of separate and distinct memory devices 2704 coupled to PPU 2700. In at least one embodiment, partition unit 2722 will be described in more detail below in conjunction with
In at least one embodiment, a host processor executes a driver kernel that implements an application programming interface (“API”) that enables one or more applications executing on host processor to schedule operations for execution on PPU 2700. In at least one embodiment, multiple compute applications are simultaneously executed by PPU 2700 and PPU 2700 provides isolation, quality of service (“QoS”), and independent address spaces for multiple compute applications. In at least one embodiment, an application generates instructions (e.g., in form of API calls) that cause driver kernel to generate one or more tasks for execution by PPU 2700 and driver kernel outputs tasks to one or more streams being processed by PPU 2700. In at least one embodiment, each task comprises one or more groups of related threads, which may be referred to as a warp. In at least one embodiment, a warp comprises a plurality of related threads (e.g., 32 threads) that can be executed in parallel. In at least one embodiment, cooperating threads can refer to a plurality of threads including instructions to perform task and that exchange data through shared memory. In at least one embodiment, threads and cooperating threads are described in more detail, in accordance with at least one embodiment, in conjunction with
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. Details regarding inference and/or training logic 615 are provided below in conjunction with
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. In at least one embodiment, this logic can be used with components of these figures to train one or more neural networks using long image sequences, where backpropagation is performed only for a subset of image frames of those sequences.
In at least one embodiment, operation of GPC 2800 is controlled by pipeline manager 2802. In at least one embodiment, pipeline manager 2802 manages configuration of one or more DPCs 2806 for processing tasks allocated to GPC 2800. In at least one embodiment, pipeline manager 2802 configures at least one of one or more DPCs 2806 to implement at least a portion of a graphics rendering pipeline. In at least one embodiment, DPC 2806 is configured to execute a vertex shader program on a programmable streaming multi-processor (“SM”) 2814. In at least one embodiment, pipeline manager 2802 is configured to route packets received from a work distribution unit to appropriate logical units within GPC 2800, in at least one embodiment, and some packets may be routed to fixed function hardware units in PROP 2804 and/or raster engine 2808 while other packets may be routed to DPCs 2806 for processing by a primitive engine 2812 or SM 2814. In at least one embodiment, pipeline manager 2802 configures at least one of DPCs 2806 to implement a neural network model and/or a computing pipeline.
In at least one embodiment, PROP unit 2804 is configured, in at least one embodiment, to route data generated by raster engine 2808 and DPCs 2806 to a Raster Operations (“ROP”) unit in partition unit 2722, described in more detail above in conjunction with
In at least one embodiment, each DPC 2806 included in GPC 2800 comprise, without limitation, an M-Pipe Controller (“MPC”) 2810; primitive engine 2812; one or more SMs 2814; and any suitable combination thereof. In at least one embodiment, MPC 2810 controls operation of DPC 2806, routing packets received from pipeline manager 2802 to appropriate units in DPC 2806. In at least one embodiment, packets associated with a vertex are routed to primitive engine 2812, which is configured to fetch vertex attributes associated with vertex from memory; in contrast, packets associated with a shader program may be transmitted to SM 2814.
In at least one embodiment, SM 2814 comprises, without limitation, a programmable streaming processor that is configured to process tasks represented by a number of threads. In at least one embodiment, SM 2814 is multi-threaded and configured to execute a plurality of threads (e.g., 32 threads) from a particular group of threads concurrently and implements a Single-Instruction, Multiple-Data (“SIMD”) architecture where each thread in a group of threads (e.g., a warp) is configured to process a different set of data based on same set of instructions. In at least one embodiment, all threads in group of threads execute same instructions. In at least one embodiment, SM 2814 implements a Single-Instruction, Multiple Thread (“SIMT”) architecture wherein each thread in a group of threads is configured to process a different set of data based on same set of instructions, but where individual threads in group of threads are allowed to diverge during execution. In at least one embodiment, a program counter, call stack, and execution state is maintained for each warp, enabling concurrency between warps and serial execution within warps when threads within warp diverge. In another embodiment, a program counter, call stack, and execution state is maintained for each individual thread, enabling equal concurrency between all threads, within and between warps. In at least one embodiment, execution state is maintained for each individual thread and threads executing same instructions may be converged and executed in parallel for better efficiency. At least one embodiment of SM 2814 are described in more detail below.
In at least one embodiment, MMU 2818 provides an interface between GPC 2800 and memory partition unit (e.g., partition unit 2722 of
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. Details regarding inference and/or training logic 615 are provided below in conjunction with
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. In at least one embodiment, this logic can be used with components of these figures to train one or more neural networks using long image sequences, where backpropagation is performed only for a subset of image frames of those sequences.
In at least one embodiment, memory interface 2906 implements a high bandwidth memory second generation (“HBM2”) memory interface and Y equals half U. In at least one embodiment, HBM2 memory stacks are located on same physical package as PPU, providing substantial power and area savings compared with conventional GDDR5 SDRAM systems. In at least one embodiment, each HBM2 stack includes, without limitation, four memory dies and Y equals 4, with each HBM2 stack including two 128-bit channels per die for a total of 8 channels and a data bus width of 1024 bits. In at least one embodiment, memory supports Single-Error Correcting Double-Error Detecting (“SECDED”) Error Correction Code (“ECC”) to protect data. In at least one embodiment, ECC provides higher reliability for compute applications that are sensitive to data corruption.
In at least one embodiment, PPU implements a multi-level memory hierarchy. In at least one embodiment, memory partition unit 2900 supports a unified memory to provide a single unified virtual address space for central processing unit (“CPU”) and PPU memory, enabling data sharing between virtual memory systems. In at least one embodiment, frequency of accesses by a PPU to memory located on other processors is traced to ensure that memory pages are moved to physical memory of PPU that is accessing pages more frequently. In at least one embodiment, high-speed GPU interconnect 2708 supports address translation services allowing PPU to directly access a CPU's page tables and providing full access to CPU memory by PPU.
In at least one embodiment, copy engines transfer data between multiple PPUs or between PPUs and CPUs. In at least one embodiment, copy engines can generate page faults for addresses that are not mapped into page tables and memory partition unit 2900 then services page faults, mapping addresses into page table, after which copy engine performs transfer. In at least one embodiment, memory is pinned (i.e., non-pageable) for multiple copy engine operations between multiple processors, substantially reducing available memory. In at least one embodiment, with hardware page faulting, addresses can be passed to copy engines without regard as to whether memory pages are resident, and copy process is transparent.
Data from memory 2704 of
ROP unit 2902 performs graphics raster operations related to pixel color, such as color compression, pixel blending, and more, in at least one embodiment. ROP unit 2902, in at least one embodiment, implements depth testing in conjunction with raster engine 2808, receiving a depth for a sample location associated with a pixel fragment from culling engine of raster engine 2808. In at least one embodiment, depth is tested against a corresponding depth in a depth buffer for a sample location associated with fragment. In at least one embodiment, if fragment passes depth test for sample location, then ROP unit 2902 updates depth buffer and transmits a result of depth test to raster engine 2808. It will be appreciated that number of partition units 2900 may be different than number of GPCs and, therefore, each ROP unit 2902 can, in at least one embodiment, be coupled to each of GPCs. In at least one embodiment, ROP unit 2902 tracks packets received from different GPCs and determines which that a result generated by ROP unit 2902 is routed to through XBar 2720.
In at least one embodiment, Cooperative Groups may refer to a programming model for organizing groups of communicating threads that allows developers to express granularity at which threads are communicating, enabling expression of richer, more efficient parallel decompositions. In at least one embodiment, cooperative launch APIs support synchronization amongst thread blocks for execution of parallel algorithms. In at least one embodiment, applications of conventional programming models provide a single, simple construct for synchronizing cooperating threads: a barrier across all threads of a thread block (e.g., syncthreads( ) function). However, In at least one embodiment, programmers may define groups of threads at smaller than thread block granularities and synchronize within defined groups to enable greater performance, design flexibility, and software reuse in form of collective group-wide function interfaces. In at least one embodiment, Cooperative Groups enables programmers to define groups of threads explicitly at sub-block (i.e., as small as a single thread) and multi-block granularities, and to perform collective operations such as synchronization on threads in a cooperative group. In at least one embodiment, programming model supports clean composition across software boundaries, so that libraries and utility functions can synchronize safely within their local context without having to make assumptions about convergence. In at least one embodiment, Cooperative Groups primitives enable new patterns of cooperative parallelism, including, without limitation, producer-consumer parallelism, opportunistic parallelism, and global synchronization across an entire grid of thread blocks.
In at least one embodiment, a dispatch unit 3006 is configured to transmit instructions to one or more of functional units and scheduler unit 3004 includes, without limitation, two dispatch units 3006 that enable two different instructions from same warp to be dispatched during each clock cycle. In at least one embodiment, each scheduler unit 3004 includes a single dispatch unit 3006 or additional dispatch units 3006.
In at least one embodiment, each SM 3000, in at least one embodiment, includes, without limitation, register file 3008 that provides a set of registers for functional units of SM 3000. In at least one embodiment, register file 3008 is divided between each of functional units such that each functional unit is allocated a dedicated portion of register file 3008. In at least one embodiment, register file 3008 is divided between different warps being executed by SM 3000 and register file 3008 provides temporary storage for operands connected to data paths of functional units. In at least one embodiment, each SM 3000 comprises, without limitation, a plurality of L processing cores 3010. In at least one embodiment, SM 3000 includes, without limitation, a large number (e.g., 128 or more) of distinct processing cores 3010. In at least one embodiment, each processing core 3010, in at least one embodiment, includes, without limitation, a fully-pipelined, single-precision, double-precision, and/or mixed precision processing unit that includes, without limitation, a floating point arithmetic logic unit and an integer arithmetic logic unit. In at least one embodiment, floating point arithmetic logic units implement IEEE 754-2008 standard for floating point arithmetic. In at least one embodiment, processing cores 3010 include, without limitation, 64 single-precision (32-bit) floating point cores, 64 integer cores, 32 double-precision (64-bit) floating point cores, and 8 tensor cores.
Tensor cores are configured to perform matrix operations in accordance with at least one embodiment. In at least one embodiment, one or more tensor cores are included in processing cores 3010. In at least one embodiment, tensor cores are configured to perform deep learning matrix arithmetic, such as convolution operations for neural network training and inferencing. In at least one embodiment, each tensor core operates on a 4×4 matrix and performs a matrix multiply and accumulate operation D=A×B+C, where A, B, C, and D are 4×4 matrices.
In at least one embodiment, matrix multiply inputs A and B are 16-bit floating point matrices and accumulation matrices C and D are 16-bit floating point or 32-bit floating point matrices. In at least one embodiment, tensor cores operate on 16-bit floating point input data with 32-bit floating point accumulation. In at least one embodiment, 16-bit floating point multiply uses 64 operations and results in a full precision product that is then accumulated using 32-bit floating point addition with other intermediate products for a 4×4×4 matrix multiply. Tensor cores are used to perform much larger two-dimensional or higher dimensional matrix operations, built up from these smaller elements, in at least one embodiment. In at least one embodiment, an API, such as CUDA 9 C++ API, exposes specialized matrix load, matrix multiply and accumulate, and matrix store operations to efficiently use tensor cores from a CUDA-C++ program. In at least one embodiment, at CUDA level, warp-level interface assumes 16×16 size matrices spanning all 32 threads of warp.
In at least one embodiment, each SM 3000 comprises, without limitation, M SFUs 3012 that perform special functions (e.g., attribute evaluation, reciprocal square root, etc.). In at least one embodiment, SFUs 3012 include, without limitation, a tree traversal unit configured to traverse a hierarchical tree data structure. In at least one embodiment, SFUs 3012 include, without limitation, a texture unit configured to perform texture map filtering operations. In at least one embodiment, texture units are configured to load texture maps (e.g., a 2D array of texels) from memory and sample texture maps to produce sampled texture values for use in shader programs executed by SM 3000. In at least one embodiment, texture maps are stored in shared memory/L1 cache 3018. In at least one embodiment, texture units implement texture operations such as filtering operations using mip-maps (e.g., texture maps of varying levels of detail), in accordance with at least one embodiment. In at least one embodiment, each SM 3000 includes, without limitation, two texture units.
Each SM 3000 comprises, without limitation, N LSUs 3014 that implement load and store operations between shared memory/L1 cache 3018 and register file 3008, in at least one embodiment. Each SM 3000 includes, without limitation, interconnect network 3016 that connects each of functional units to register file 3008 and LSU 3014 to register file 3008 and shared memory/L1 cache 3018 in at least one embodiment. In at least one embodiment, interconnect network 3016 is a crossbar that can be configured to connect any of functional units to any of registers in register file 3008 and connect LSUs 3014 to register file 3008 and memory locations in shared memory/L1 cache 3018.
In at least one embodiment, shared memory/L1 cache 3018 is an array of on-chip memory that allows for data storage and communication between SM 3000 and primitive engine and between threads in SM 3000, in at least one embodiment. In at least one embodiment, shared memory/L1 cache 3018 comprises, without limitation, 128 KB of storage capacity and is in path from SM 3000 to partition unit. In at least one embodiment, shared memory/L1 cache 3018, in at least one embodiment, is used to cache reads and writes. In at least one embodiment, one or more of shared memory/L1 cache 3018, L2 cache, and memory are backing stores.
Combining data cache and shared memory functionality into a single memory block provides improved performance for both types of memory accesses, in at least one embodiment. In at least one embodiment, capacity is used or is usable as a cache by programs that do not use shared memory, such as if shared memory is configured to use half of capacity, texture and load/store operations can use remaining capacity. Integration within shared memory/L1 cache 3018 enables shared memory/L1 cache 3018 to function as a high-throughput conduit for streaming data while simultaneously providing high-bandwidth and low-latency access to frequently reused data, in accordance with at least one embodiment. In at least one embodiment, when configured for general purpose parallel computation, a simpler configuration can be used compared with graphics processing. In at least one embodiment, fixed function graphics processing units are bypassed, creating a much simpler programming model. In general purpose parallel computation configuration, work distribution unit assigns and distributes blocks of threads directly to DPCs, in at least one embodiment. In at least one embodiment, threads in a block execute same program, using a unique thread ID in calculation to ensure each thread generates unique results, using SM 3000 to execute program and perform calculations, shared memory/L1 cache 3018 to communicate between threads, and LSU 3014 to read and write global memory through shared memory/L1 cache 3018 and memory partition unit. In at least one embodiment, when configured for general purpose parallel computation, SM 3000 writes commands that scheduler unit 3004 can use to launch new work on DPCs.
In at least one embodiment, PPU is included in or coupled to a desktop computer, a laptop computer, a tablet computer, servers, supercomputers, a smart-phone (e.g., a wireless, hand-held device), personal digital assistant (“PDA”), a digital camera, a vehicle, a head mounted display, a hand-held electronic device, and more. In at least one embodiment, PPU is embodied on a single semiconductor substrate. In at least one embodiment, PPU is included in a system-on-a-chip (“SoC”) along with one or more other devices such as additional PPUs, memory, a reduced instruction set computer (“RISC”) CPU, a memory management unit (“MMU”), a digital-to-analog converter (“DAC”), and like.
In at least one embodiment, PPU may be included on a graphics card that includes one or more memory devices. A graphics card may be configured to interface with a PCIe slot on a motherboard of a desktop computer. In at least one embodiment, PPU may be an integrated graphics processing unit (“iGPU”) included in chipset of motherboard.
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. Details regarding inference and/or training logic 615 are provided below in conjunction with
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. In at least one embodiment, this logic can be used with components of these figures to train one or more neural networks using long image sequences, where backpropagation is performed only for a subset of image frames of those sequences.
In at least one embodiment, a single semiconductor platform may refer to a sole unitary semiconductor-based integrated circuit or chip. In at least one embodiment, multi-chip modules may be used with increased connectivity which simulate on-chip operation, and make substantial improvements over utilizing a conventional central processing unit (“CPU”) and bus implementation. In at least one embodiment, various modules may also be situated separately or in various combinations of semiconductor platforms per desires of user.
In at least one embodiment, computer programs in form of machine-readable executable code or computer control logic algorithms are stored in main memory 1004 and/or secondary storage. Computer programs, if executed by one or more processors, enable system 1000 to perform various functions in accordance with at least one embodiment. In at least one embodiment, memory 1004, storage, and/or any other storage are possible examples of computer-readable media. In at least one embodiment, secondary storage may refer to any suitable storage device or system such as a hard disk drive and/or a removable storage drive, representing a floppy disk drive, a magnetic tape drive, a compact disk drive, digital versatile disk (“DVD”) drive, recording device, universal serial bus (“USB”) flash memory, etc. In at least one embodiment, architecture and/or functionality of various previous figures are implemented in context of CPU 1002; parallel processing system 1012; an integrated circuit capable of at least a portion of capabilities of both CPU 1002; parallel processing system 1012; a chipset (e.g., a group of integrated circuits designed to work and sold as a unit for performing related functions, etc.); and any suitable combination of integrated circuit(s).
In at least one embodiment, architecture and/or functionality of various previous figures are implemented in context of a general computer system, a circuit board system, a game console system dedicated for entertainment purposes, an application-specific system, and more. In at least one embodiment, computer system 1000 may take form of a desktop computer, a laptop computer, a tablet computer, servers, supercomputers, a smart-phone (e.g., a wireless, hand-held device), personal digital assistant (“PDA”), a digital camera, a vehicle, a head mounted display, a hand-held electronic device, a mobile phone device, a television, workstation, game consoles, embedded system, and/or any other type of logic.
In at least one embodiment, parallel processing system 1012 includes, without limitation, a plurality of parallel processing units (“PPUs”) 1014 and associated memories 1016. In at least one embodiment, PPUs 1014 are connected to a host processor or other peripheral devices via an interconnect 1018 and a switch 1020 or multiplexer. In at least one embodiment, parallel processing system 1012 distributes computational tasks across PPUs 1014 which can be parallelizable—for example, as part of distribution of computational tasks across multiple graphics processing unit (“GPU”) thread blocks. In at least one embodiment, memory is shared and accessible (e.g., for read and/or write access) across some or all of PPUs 1014, although such shared memory may incur performance penalties relative to use of local memory and registers resident to a PPU 1014. In at least one embodiment, operation of PPUs 1014 is synchronized through use of a command such as _syncthreads( ), wherein all threads in a block (e.g., executed across multiple PPUs 1014) to reach a certain point of execution of code before proceeding.
Embodiments are disclosed related a virtualized computing platform for advanced computing, such as image inferencing and image processing. With reference to
In at least one embodiment, some of applications used in advanced processing and inferencing pipelines may use machine learning models or other AI to perform one or more processing steps. In at least one embodiment, machine learning models may be trained at facility 3102 using data 3108 (such as imaging data) generated at facility 3102 (and stored on one or more picture archiving and communication system (PACS) servers at facility 3102), may be trained using imaging or sequencing data 3108 from another facility(ies) (e.g., a different hospital, lab, clinic, etc.), or a combination thereof. In at least one embodiment, training system 3104 may be used to provide applications, services, and/or other resources for generating working, deployable machine learning models for deployment system 3106.
In at least one embodiment, model registry 3124 may be backed by object storage that may support versioning and object metadata. In at least one embodiment, object storage may be accessible through, for example, a cloud storage (e.g., cloud 3226 of
In at least one embodiment, training pipeline 3204 (
In at least one embodiment, training pipeline 3204 (
In at least one embodiment, training pipeline 3204 (
In at least one embodiment, deployment system 3106 may include software 3118, services 3120, hardware 3122, and/or other components, features, and functionality. In at least one embodiment, deployment system 3106 may include a software “stack,” such that software 3118 may be built on top of services 3120 and may use services 3120 to perform some or all of processing tasks, and services 3120 and software 3118 may be built on top of hardware 3122 and use hardware 3122 to execute processing, storage, and/or other compute tasks of deployment system 3106. In at least one embodiment, software 3118 may include any number of different containers, where each container may execute an instantiation of an application. In at least one embodiment, each application may perform one or more processing tasks in an advanced processing and inferencing pipeline (e.g., inferencing, object detection, feature detection, segmentation, image enhancement, calibration, etc.). In at least one embodiment, for each type of imaging device (e.g., CT, MM, X-Ray, ultrasound, sonography, echocardiography, etc.), sequencing device, radiology device, genomics device, etc., there may be any number of containers that may perform a data processing task with respect to imaging data 3108 (or other data types, such as those described herein) generated by a device. In at least one embodiment, an advanced processing and inferencing pipeline may be defined based on selections of different containers that are desired or required for processing imaging data 3108, in addition to containers that receive and configure imaging data for use by each container and/or for use by facility 3102 after processing through a pipeline (e.g., to convert outputs back to a usable data type, such as digital imaging and communications in medicine (DICOM) data, radiology information system (RIS) data, clinical information system (CIS) data, remote procedure call (RPC) data, data substantially compliant with a representation state transfer (REST) interface, data substantially compliant with a file-based interface, and/or raw data, for storage and display at facility 3102). In at least one embodiment, a combination of containers within software 3118 (e.g., that make up a pipeline) may be referred to as a virtual instrument (as described in more detail herein), and a virtual instrument may leverage services 3120 and hardware 3122 to execute some or all processing tasks of applications instantiated in containers.
In at least one embodiment, a data processing pipeline may receive input data (e.g., imaging data 3108) in a DICOM, RIS, CIS, REST compliant, RPC, raw, and/or other format in response to an inference request (e.g., a request from a user of deployment system 3106, such as a clinician, a doctor, a radiologist, etc.). In at least one embodiment, input data may be representative of one or more images, video, and/or other data representations generated by one or more imaging devices, sequencing devices, radiology devices, genomics devices, and/or other device types. In at least one embodiment, data may undergo pre-processing as part of data processing pipeline to prepare data for processing by one or more applications. In at least one embodiment, post-processing may be performed on an output of one or more inferencing tasks or other processing tasks of a pipeline to prepare an output data for a next application and/or to prepare output data for transmission and/or use by a user (e.g., as a response to an inference request). In at least one embodiment, inferencing tasks may be performed by one or more machine learning models, such as trained or deployed neural networks, which may include output models 3116 of training system 3104.
In at least one embodiment, tasks of data processing pipeline may be encapsulated in a container(s) that each represent a discrete, fully functional instantiation of an application and virtualized computing environment that is able to reference machine learning models. In at least one embodiment, containers or applications may be published into a private (e.g., limited access) area of a container registry (described in more detail herein), and trained or deployed models may be stored in model registry 3124 and associated with one or more applications. In at least one embodiment, images of applications (e.g., container images) may be available in a container registry, and once selected by a user from a container registry for deployment in a pipeline, an image may be used to generate a container for an instantiation of an application for use by a user's system.
In at least one embodiment, developers (e.g., software developers, clinicians, doctors, etc.) may develop, publish, and store applications (e.g., as containers) for performing image processing and/or inferencing on supplied data. In at least one embodiment, development, publishing, and/or storing may be performed using a software development kit (SDK) associated with a system (e.g., to ensure that an application and/or container developed is compliant with or compatible with a system). In at least one embodiment, an application that is developed may be tested locally (e.g., at a first facility, on data from a first facility) with an SDK which may support at least some of services 3120 as a system (e.g., system 3200 of
In at least one embodiment, developers may then share applications or containers through a network for access and use by users of a system (e.g., system 3200 of
In at least one embodiment, to aid in processing or execution of applications or containers in pipelines, services 3120 may be leveraged. In at least one embodiment, services 3120 may include compute services, artificial intelligence (AI) services, visualization services, and/or other service types. In at least one embodiment, services 3120 may provide functionality that is common to one or more applications in software 3118, so functionality may be abstracted to a service that may be called upon or leveraged by applications. In at least one embodiment, functionality provided by services 3120 may run dynamically and more efficiently, while also scaling well by allowing applications to process data in parallel (e.g., using a parallel computing platform 3230 (
In at least one embodiment, where a service 3120 includes an AI service (e.g., an inference service), one or more machine learning models associated with an application for anomaly detection (e.g., tumors, growth abnormalities, scarring, etc.) may be executed by calling upon (e.g., as an API call) an inference service (e.g., an inference server) to execute machine learning model(s), or processing thereof, as part of application execution. In at least one embodiment, where another application includes one or more machine learning models for segmentation tasks, an application may call upon an inference service to execute machine learning models for performing one or more of processing operations associated with segmentation tasks. In at least one embodiment, software 3118 implementing advanced processing and inferencing pipeline that includes segmentation application and anomaly detection application may be streamlined because each application may call upon a same inference service to perform one or more inferencing tasks.
In at least one embodiment, hardware 3122 may include GPUs, CPUs, graphics cards, an AI/deep learning system (e.g., an AI supercomputer, such as NVIDIA's DGX), a cloud platform, or a combination thereof. In at least one embodiment, different types of hardware 3122 may be used to provide efficient, purpose-built support for software 3118 and services 3120 in deployment system 3106. In at least one embodiment, use of GPU processing may be implemented for processing locally (e.g., at facility 3102), within an AI/deep learning system, in a cloud system, and/or in other processing components of deployment system 3106 to improve efficiency, accuracy, and efficacy of image processing, image reconstruction, segmentation, Mill exams, stroke or heart attack detection (e.g., in real-time), image quality in rendering, etc. In at least one embodiment, a facility may include imaging devices, genomics devices, sequencing devices, and/or other device types on-premises that may leverage GPUs to generate imaging data representative of a subject's anatomy. In at least one embodiment, software 3118 and/or services 3120 may be optimized for GPU processing with respect to deep learning, machine learning, and/or high-performance computing, as non-limiting examples. In at least one embodiment, at least some of computing environment of deployment system 3106 and/or training system 3104 may be executed in a datacenter one or more supercomputers or high performance computing systems, with GPU optimized software (e.g., hardware and software combination of NVIDIA's DGX System). In at least one embodiment, datacenters may be compliant with provisions of HIPAA, such that receipt, processing, and transmission of imaging data and/or other patient data is securely handled with respect to privacy of patient data. In at least one embodiment, hardware 3122 may include any number of GPUs that may be called upon to perform processing of data in parallel, as described herein. In at least one embodiment, cloud platform may further include GPU processing for GPU-optimized execution of deep learning tasks, machine learning tasks, or other computing tasks. In at least one embodiment, cloud platform (e.g., NVIDIA's NGC) may be executed using an AI/deep learning supercomputer(s) and/or GPU-optimized software (e.g., as provided on NVIDIA's DGX Systems) as a hardware abstraction and scaling platform. In at least one embodiment, cloud platform may integrate an application container clustering system or orchestration system (e.g., KUBERNETES) on multiple GPUs to enable seamless scaling and load balancing.
In at least one embodiment, system 3200 (e.g., training system 3104 and/or deployment system 3106) may implemented in a cloud computing environment (e.g., using cloud 3226). In at least one embodiment, system 3200 may be implemented locally with respect to a healthcare services facility, or as a combination of both cloud and local computing resources. In at least one embodiment, in embodiments where cloud computing is implemented, patient data may be separated from, or unprocessed by, by one or more components of system 3200 that would render processing non-compliant with HIPAA and/or other data handling and privacy regulations or laws. In at least one embodiment, access to APIs in cloud 3226 may be restricted to authorized users through enacted security measures or protocols. In at least one embodiment, a security protocol may include web tokens that may be signed by an authentication (e.g., AuthN, AuthZ, Gluecon, etc.) service and may carry appropriate authorization. In at least one embodiment, APIs of virtual instruments (described herein), or other instantiations of system 3200, may be restricted to a set of public IPs that have been vetted or authorized for interaction.
In at least one embodiment, various components of system 3200 may communicate between and among one another using any of a variety of different network types, including but not limited to local area networks (LANs) and/or wide area networks (WANs) via wired and/or wireless communication protocols. In at least one embodiment, communication between facilities and components of system 3200 (e.g., for transmitting inference requests, for receiving results of inference requests, etc.) may be communicated over data bus(ses), wireless data protocols (Wi-Fi), wired data protocols (e.g., Ethernet), etc.
In at least one embodiment, training system 3104 may execute training pipelines 3204, similar to those described herein with respect to
In at least one embodiment, output model(s) 3116 and/or pre-trained model(s) 3206 may include any types of machine learning models depending on implementation or embodiment. In at least one embodiment, and without limitation, machine learning models used by system 3200 may include machine learning model(s) using linear regression, logistic regression, decision trees, support vector machines (SVM), Naïve Bayes, k-nearest neighbor (Knn), K means clustering, random forest, dimensionality reduction algorithms, gradient boosting algorithms, neural networks (e.g., auto-encoders, convolutional, recurrent, perceptrons, Long/Short Term Memory (LSTM), Hopfield, Boltzmann, deep belief, deconvolutional, generative adversarial, liquid state machine, etc.), and/or other types of machine learning models.
In at least one embodiment, training pipelines 3204 may include AI-assisted annotation, as described in more detail herein with respect to at least
In at least one embodiment, a software layer may be implemented as a secure, encrypted, and/or authenticated API through which applications or containers may be invoked (e.g., called) from an external environment(s) (e.g., facility 3102). In at least one embodiment, applications may then call or execute one or more services 3120 for performing compute, AI, or visualization tasks associated with respective applications, and software 3118 and/or services 3120 may leverage hardware 3122 to perform processing tasks in an effective and efficient manner.
In at least one embodiment, deployment system 3106 may execute deployment pipelines 3210. In at least one embodiment, deployment pipelines 3210 may include any number of applications that may be sequentially, non-sequentially, or otherwise applied to imaging data (and/or other data types) generated by imaging devices, sequencing devices, genomics devices, etc.—including AI-assisted annotation, as described above. In at least one embodiment, as described herein, a deployment pipeline 3210 for an individual device may be referred to as a virtual instrument for a device (e.g., a virtual ultrasound instrument, a virtual CT scan instrument, a virtual sequencing instrument, etc.). In at least one embodiment, for a single device, there may be more than one deployment pipeline 3210 depending on information desired from data generated by a device. In at least one embodiment, where detections of anomalies are desired from an Mill machine, there may be a first deployment pipeline 3210, and where image enhancement is desired from output of an Mill machine, there may be a second deployment pipeline 3210.
In at least one embodiment, applications available for deployment pipelines 3210 may include any application that may be used for performing processing tasks on imaging data or other data from devices. In at least one embodiment, different applications may be responsible for image enhancement, segmentation, reconstruction, anomaly detection, object detection, feature detection, treatment planning, dosimetry, beam planning (or other radiation treatment procedures), and/or other analysis, image processing, or inferencing tasks. In at least one embodiment, deployment system 3106 may define constructs for each of applications, such that users of deployment system 3106 (e.g., medical facilities, labs, clinics, etc.) may understand constructs and adapt applications for implementation within their respective facility. In at least one embodiment, an application for image reconstruction may be selected for inclusion in deployment pipeline 3210, but data type generated by an imaging device may be different from a data type used within an application. In at least one embodiment, DICOM adapter 3202B (and/or a DICOM reader) or another data type adapter or reader (e.g., RIS, CIS, REST compliant, RPC, raw, etc.) may be used within deployment pipeline 3210 to convert data to a form useable by an application within deployment system 3106. In at least one embodiment, access to DICOM, RIS, CIS, REST compliant, RPC, raw, and/or other data type libraries may be accumulated and pre-processed, including decoding, extracting, and/or performing any convolutions, color corrections, sharpness, gamma, and/or other augmentations to data. In at least one embodiment, DICOM, RIS, CIS, REST compliant, RPC, and/or raw data may be unordered and a pre-pass may be executed to organize or sort collected data. In at least one embodiment, because various applications may share common image operations, in some embodiments, a data augmentation library (e.g., as one of services 3120) may be used to accelerate these operations. In at least one embodiment, to avoid bottlenecks of conventional processing approaches that rely on CPU processing, parallel computing platform 3230 may be used for GPU acceleration of these processing tasks.
In at least one embodiment, an image reconstruction application may include a processing task that includes use of a machine learning model. In at least one embodiment, a user may desire to use their own machine learning model, or to select a machine learning model from model registry 3124. In at least one embodiment, a user may implement their own machine learning model or select a machine learning model for inclusion in an application for performing a processing task. In at least one embodiment, applications may be selectable and customizable, and by defining constructs of applications, deployment and implementation of applications for a particular user are presented as a more seamless user experience. In at least one embodiment, by leveraging other features of system 3200—such as services 3120 and hardware 3122—deployment pipelines 3210 may be even more user friendly, provide for easier integration, and produce more accurate, efficient, and timely results.
In at least one embodiment, deployment system 3106 may include a user interface 3214 (e.g., a graphical user interface, a web interface, etc.) that may be used to select applications for inclusion in deployment pipeline(s) 3210, arrange applications, modify or change applications or parameters or constructs thereof, use and interact with deployment pipeline(s) 3210 during set-up and/or deployment, and/or to otherwise interact with deployment system 3106. In at least one embodiment, although not illustrated with respect to training system 3104, user interface 3214 (or a different user interface) may be used for selecting models for use in deployment system 3106, for selecting models for training, or retraining, in training system 3104, and/or for otherwise interacting with training system 3104.
In at least one embodiment, pipeline manager 3212 may be used, in addition to an application orchestration system 3228, to manage interaction between applications or containers of deployment pipeline(s) 3210 and services 3120 and/or hardware 3122. In at least one embodiment, pipeline manager 3212 may be configured to facilitate interactions from application to application, from application to service 3120, and/or from application or service to hardware 3122. In at least one embodiment, although illustrated as included in software 3118, this is not intended to be limiting, and in some examples pipeline manager 3212 may be included in services 3120. In at least one embodiment, application orchestration system 3228 (e.g., Kubernetes, DOCKER, etc.) may include a container orchestration system that may group applications into containers as logical units for coordination, management, scaling, and deployment. In at least one embodiment, by associating applications from deployment pipeline(s) 3210 (e.g., a reconstruction application, a segmentation application, etc.) with individual containers, each application may execute in a self-contained environment (e.g., at a kernel level) to increase speed and efficiency.
In at least one embodiment, each application and/or container (or image thereof) may be individually developed, modified, and deployed (e.g., a first user or developer may develop, modify, and deploy a first application and a second user or developer may develop, modify, and deploy a second application separate from a first user or developer), which may allow for focus on, and attention to, a task of a single application and/or container(s) without being hindered by tasks of another application(s) or container(s). In at least one embodiment, communication, and cooperation between different containers or applications may be aided by pipeline manager 3212 and application orchestration system 3228. In at least one embodiment, so long as an expected input and/or output of each container or application is known by a system (e.g., based on constructs of applications or containers), application orchestration system 3228 and/or pipeline manager 3212 may facilitate communication among and between, and sharing of resources among and between, each of applications or containers. In at least one embodiment, because one or more of applications or containers in deployment pipeline(s) 3210 may share same services and resources, application orchestration system 3228 may orchestrate, load balance, and determine sharing of services or resources between and among various applications or containers. In at least one embodiment, a scheduler may be used to track resource requirements of applications or containers, current usage or planned usage of these resources, and resource availability. In at least one embodiment, a scheduler may thus allocate resources to different applications and distribute resources between and among applications in view of requirements and availability of a system. In some examples, a scheduler (and/or other component of application orchestration system 3228) may determine resource availability and distribution based on constraints imposed on a system (e.g., user constraints), such as quality of service (QoS), urgency of need for data outputs (e.g., to determine whether to execute real-time processing or delayed processing), etc.
In at least one embodiment, services 3120 leveraged by and shared by applications or containers in deployment system 3106 may include compute services 3216, AI services 3218, visualization services 3220, and/or other service types. In at least one embodiment, applications may call (e.g., execute) one or more of services 3120 to perform processing operations for an application. In at least one embodiment, compute services 3216 may be leveraged by applications to perform super-computing or other high-performance computing (HPC) tasks. In at least one embodiment, compute service(s) 3216 may be leveraged to perform parallel processing (e.g., using a parallel computing platform 3230) for processing data through one or more of applications and/or one or more tasks of a single application, substantially simultaneously. In at least one embodiment, parallel computing platform 3230 (e.g., NVIDIA's CUDA) may enable general purpose computing on GPUs (GPGPU) (e.g., GPUs 3222). In at least one embodiment, a software layer of parallel computing platform 3230 may provide access to virtual instruction sets and parallel computational elements of GPUs, for execution of compute kernels. In at least one embodiment, parallel computing platform 3230 may include memory and, in some embodiments, a memory may be shared between and among multiple containers, and/or between and among different processing tasks within a single container. In at least one embodiment, inter-process communication (IPC) calls may be generated for multiple containers and/or for multiple processes within a container to use same data from a shared segment of memory of parallel computing platform 3230 (e.g., where multiple different stages of an application or multiple applications are processing same information). In at least one embodiment, rather than making a copy of data and moving data to different locations in memory (e.g., a read/write operation), same data in same location of a memory may be used for any number of processing tasks (e.g., at a same time, at different times, etc.). In at least one embodiment, as data is used to generate new data as a result of processing, this information of a new location of data may be stored and shared between various applications. In at least one embodiment, location of data and a location of updated or modified data may be part of a definition of how a payload is understood within containers.
In at least one embodiment, AI services 3218 may be leveraged to perform inferencing services for executing machine learning model(s) associated with applications (e.g., tasked with performing one or more processing tasks of an application). In at least one embodiment, AI services 3218 may leverage AI system 3224 to execute machine learning model(s) (e.g., neural networks, such as CNNs) for segmentation, reconstruction, object detection, feature detection, classification, and/or other inferencing tasks. In at least one embodiment, applications of deployment pipeline(s) 3210 may use one or more of output models 3116 from training system 3104 and/or other models of applications to perform inference on imaging data (e.g., DICOM data, RIS data, CIS data, REST compliant data, RPC data, raw data, etc.). In at least one embodiment, two or more examples of inferencing using application orchestration system 3228 (e.g., a scheduler) may be available. In at least one embodiment, a first category may include a high priority/low latency path that may achieve higher service level agreements, such as for performing inference on urgent requests during an emergency, or for a radiologist during diagnosis. In at least one embodiment, a second category may include a standard priority path that may be used for requests that may be non-urgent or where analysis may be performed at a later time. In at least one embodiment, application orchestration system 3228 may distribute resources (e.g., services 3120 and/or hardware 3122) based on priority paths for different inferencing tasks of AI services 3218.
In at least one embodiment, shared storage may be mounted to AI services 3218 within system 3200. In at least one embodiment, shared storage may operate as a cache (or other storage device type) and may be used to process inference requests from applications. In at least one embodiment, when an inference request is submitted, a request may be received by a set of API instances of deployment system 3106, and one or more instances may be selected (e.g., for best fit, for load balancing, etc.) to process a request. In at least one embodiment, to process a request, a request may be entered into a database, a machine learning model may be located from model registry 3124 if not already in a cache, a validation step may ensure appropriate machine learning model is loaded into a cache (e.g., shared storage), and/or a copy of a model may be saved to a cache. In at least one embodiment, a scheduler (e.g., of pipeline manager 3212) may be used to launch an application that is referenced in a request if an application is not already running or if there are not enough instances of an application. In at least one embodiment, if an inference server is not already launched to execute a model, an inference server may be launched. Any number of inference servers may be launched per model. In at least one embodiment, in a pull model, in which inference servers are clustered, models may be cached whenever load balancing is advantageous. In at least one embodiment, inference servers may be statically loaded in corresponding, distributed servers.
In at least one embodiment, inferencing may be performed using an inference server that runs in a container. In at least one embodiment, an instance of an inference server may be associated with a model (and optionally a plurality of versions of a model). In at least one embodiment, if an instance of an inference server does not exist when a request to perform inference on a model is received, a new instance may be loaded. In at least one embodiment, when starting an inference server, a model may be passed to an inference server such that a same container may be used to serve different models so long as inference server is running as a different instance.
In at least one embodiment, during application execution, an inference request for a given application may be received, and a container (e.g., hosting an instance of an inference server) may be loaded (if not already), and a start procedure may be called. In at least one embodiment, pre-processing logic in a container may load, decode, and/or perform any additional pre-processing on incoming data (e.g., using a CPU(s) and/or GPU(s)). In at least one embodiment, once data is prepared for inference, a container may perform inference as necessary on data. In at least one embodiment, this may include a single inference call on one image (e.g., a hand X-ray), or may require inference on hundreds of images (e.g., a chest CT). In at least one embodiment, an application may summarize results before completing, which may include, without limitation, a single confidence score, pixel level-segmentation, voxel-level segmentation, generating a visualization, or generating text to summarize findings. In at least one embodiment, different models or applications may be assigned different priorities. For example, some models may have a real-time (TAT <1 min) priority while others may have lower priority (e.g., TAT <10 min). In at least one embodiment, model execution times may be measured from requesting institution or entity and may include partner network traversal time, as well as execution on an inference service.
In at least one embodiment, transfer of requests between services 3120 and inference applications may be hidden behind a software development kit (SDK), and robust transport may be provide through a queue. In at least one embodiment, a request will be placed in a queue via an API for an individual application/tenant ID combination and an SDK will pull a request from a queue and give a request to an application. In at least one embodiment, a name of a queue may be provided in an environment from where an SDK will pick it up. In at least one embodiment, asynchronous communication through a queue may be useful as it may allow any instance of an application to pick up work as it becomes available. Results may be transferred back through a queue, to ensure no data is lost. In at least one embodiment, queues may also provide an ability to segment work, as highest priority work may go to a queue with most instances of an application connected to it, while lowest priority work may go to a queue with a single instance connected to it that processes tasks in an order received. In at least one embodiment, an application may run on a GPU-accelerated instance generated in cloud 3226, and an inference service may perform inferencing on a GPU.
In at least one embodiment, visualization services 3220 may be leveraged to generate visualizations for viewing outputs of applications and/or deployment pipeline(s) 3210. In at least one embodiment, GPUs 3222 may be leveraged by visualization services 3220 to generate visualizations. In at least one embodiment, rendering effects, such as ray-tracing, may be implemented by visualization services 3220 to generate higher quality visualizations. In at least one embodiment, visualizations may include, without limitation, 2D image renderings, 3D volume renderings, 3D volume reconstruction, 2D tomographic slices, virtual reality displays, augmented reality displays, etc. In at least one embodiment, virtualized environments may be used to generate a virtual interactive display or environment (e.g., a virtual environment) for interaction by users of a system (e.g., doctors, nurses, radiologists, etc.). In at least one embodiment, visualization services 3220 may include an internal visualizer, cinematics, and/or other rendering or image processing capabilities or functionality (e.g., ray tracing, rasterization, internal optics, etc.).
In at least one embodiment, hardware 3122 may include GPUs 3222, AI system 3224, cloud 3226, and/or any other hardware used for executing training system 3104 and/or deployment system 3106. In at least one embodiment, GPUs 3222 (e.g., NVIDIA's TESLA and/or QUADRO GPUs) may include any number of GPUs that may be used for executing processing tasks of compute services 3216, AI services 3218, visualization services 3220, other services, and/or any of features or functionality of software 3118. For example, with respect to AI services 3218, GPUs 3222 may be used to perform pre-processing on imaging data (or other data types used by machine learning models), post-processing on outputs of machine learning models, and/or to perform inferencing (e.g., to execute machine learning models). In at least one embodiment, cloud 3226, AI system 3224, and/or other components of system 3200 may use GPUs 3222. In at least one embodiment, cloud 3226 may include a GPU-optimized platform for deep learning tasks. In at least one embodiment, AI system 3224 may use GPUs, and cloud 3226—or at least a portion tasked with deep learning or inferencing—may be executed using one or more AI systems 3224. As such, although hardware 3122 is illustrated as discrete components, this is not intended to be limiting, and any components of hardware 3122 may be combined with, or leveraged by, any other components of hardware 3122.
In at least one embodiment, AI system 3224 may include a purpose-built computing system (e.g., a super-computer or an HPC) configured for inferencing, deep learning, machine learning, and/or other artificial intelligence tasks. In at least one embodiment, AI system 3224 (e.g., NVIDIA's DGX) may include GPU-optimized software (e.g., a software stack) that may be executed using a plurality of GPUs 3222, in addition to CPUs, RAM, storage, and/or other components, features, or functionality. In at least one embodiment, one or more AI systems 3224 may be implemented in cloud 3226 (e.g., in a data center) for performing some or all of AI-based processing tasks of system 3200.
In at least one embodiment, cloud 3226 may include a GPU-accelerated infrastructure (e.g., NVIDIA's NGC) that may provide a GPU-optimized platform for executing processing tasks of system 3200. In at least one embodiment, cloud 3226 may include an AI system(s) 3224 for performing one or more of AI-based tasks of system 3200 (e.g., as a hardware abstraction and scaling platform). In at least one embodiment, cloud 3226 may integrate with application orchestration system 3228 leveraging multiple GPUs to enable seamless scaling and load balancing between and among applications and services 3120. In at least one embodiment, cloud 3226 may tasked with executing at least some of services 3120 of system 3200, including compute services 3216, AI services 3218, and/or visualization services 3220, as described herein. In at least one embodiment, cloud 3226 may perform small and large batch inference (e.g., executing NVIDIA's TENSOR RT), provide an accelerated parallel computing API and platform 3230 (e.g., NVIDIA's CUDA), execute application orchestration system 3228 (e.g., KUBERNETES), provide a graphics rendering API and platform (e.g., for ray-tracing, 2D graphics, 3D graphics, and/or other rendering techniques to produce higher quality cinematics), and/or may provide other functionality for system 3200.
In at least one embodiment, in an effort to preserve patient confidentiality (e.g., where patient data or records are to be used off-premises), cloud 3226 may include a registry—such as a deep learning container registry. In at least one embodiment, a registry may store containers for instantiations of applications that may perform pre-processing, post-processing, or other processing tasks on patient data. In at least one embodiment, cloud 3226 may receive data that includes patient data as well as sensor data in containers, perform requested processing for just sensor data in those containers, and then forward a resultant output and/or visualizations to appropriate parties and/or devices (e.g., on-premises medical devices used for visualization or diagnoses), all without having to extract, store, or otherwise access patient data. In at least one embodiment, confidentiality of patient data is preserved in compliance with HIPAA and/or other data regulations.
In at least one embodiment, model training 3114 may include retraining or updating an initial model 3304 (e.g., a pre-trained model) using new training data (e.g., new input data, such as customer dataset 3306, and/or new ground truth data associated with input data). In at least one embodiment, to retrain, or update, initial model 3304, output or loss layer(s) of initial model 3304 may be reset, or deleted, and/or replaced with an updated or new output or loss layer(s). In at least one embodiment, initial model 3304 may have previously fine-tuned parameters (e.g., weights and/or biases) that remain from prior training, so training or retraining 3114 may not take as long or require as much processing as training a model from scratch. In at least one embodiment, during model training 3114, by having reset or replaced output or loss layer(s) of initial model 3304, parameters may be updated and re-tuned for a new data set based on loss calculations associated with accuracy of output or loss layer(s) at generating predictions on new, customer dataset 3306 (e.g., image data 3108 of
In at least one embodiment, pre-trained models 3206 may be stored in a data store, or registry (e.g., model registry 3124 of
In at least one embodiment, when selecting applications for use in deployment pipelines 3210, a user may also select machine learning models to be used for specific applications. In at least one embodiment, a user may not have a model for use, so a user may select a pre-trained model 3206 to use with an application. In at least one embodiment, pre-trained model 3206 may not be optimized for generating accurate results on customer dataset 3306 of a facility of a user (e.g., based on patient diversity, demographics, types of medical imaging devices used, etc.). In at least one embodiment, prior to deploying pre-trained model 3206 into deployment pipeline 3210 for use with an application(s), pre-trained model 3206 may be updated, retrained, and/or fine-tuned for use at a respective facility.
In at least one embodiment, a user may select pre-trained model 3206 that is to be updated, retrained, and/or fine-tuned, and pre-trained model 3206 may be referred to as initial model 3304 for training system 3104 within process 3300. In at least one embodiment, customer dataset 3306 (e.g., imaging data, genomics data, sequencing data, or other data types generated by devices at a facility) may be used to perform model training 3114 (which may include, without limitation, transfer learning) on initial model 3304 to generate refined model 3312. In at least one embodiment, ground truth data corresponding to customer dataset 3306 may be generated by training system 3104. In at least one embodiment, ground truth data may be generated, at least in part, by clinicians, scientists, doctors, practitioners, at a facility (e.g., as labeled clinic data 3112 of
In at least one embodiment, AI-assisted annotation 3110 may be used in some examples to generate ground truth data. In at least one embodiment, AI-assisted annotation 3110 (e.g., implemented using an AI-assisted annotation SDK) may leverage machine learning models (e.g., neural networks) to generate suggested or predicted ground truth data for a customer dataset. In at least one embodiment, user 3310 may use annotation tools within a user interface (a graphical user interface (GUI)) on computing device 3308.
In at least one embodiment, user 3310 may interact with a GUI via computing device 3308 to edit or fine-tune (auto)annotations. In at least one embodiment, a polygon editing feature may be used to move vertices of a polygon to more accurate or fine-tuned locations.
In at least one embodiment, once customer dataset 3306 has associated ground truth data, ground truth data (e.g., from AI-assisted annotation, manual labeling, etc.) may be used by during model training 3114 to generate refined model 3312. In at least one embodiment, customer dataset 3306 may be applied to initial model 3304 any number of times, and ground truth data may be used to update parameters of initial model 3304 until an acceptable level of accuracy is attained for refined model 3312. In at least one embodiment, once refined model 3312 is generated, refined model 3312 may be deployed within one or more deployment pipelines 3210 at a facility for performing one or more processing tasks with respect to medical imaging data.
In at least one embodiment, refined model 3312 may be uploaded to pre-trained models 3206 in model registry 3124 to be selected by another facility. In at least one embodiment, his process may be completed at any number of facilities such that refined model 3312 may be further refined on new datasets any number of times to generate a more universal model.
Inference and/or training logic 615 are used to perform inferencing and/or training operations associated with one or more embodiments. In at least one embodiment, this logic can be used with components of these figures to train one or more neural networks using long image sequences, where backpropagation is performed only for a subset of image frames of those sequences.
Other variations are within spirit of present disclosure. Thus, while disclosed techniques are susceptible to various modifications and alternative constructions, certain illustrated embodiments thereof are shown in drawings and have been described above in detail. It should be understood, however, that there is no intention to limit disclosure to specific form or forms disclosed, but on contrary, intention is to cover all modifications, alternative constructions, and equivalents falling within spirit and scope of disclosure, as defined in appended claims.
Use of terms “a” and “an” and “the” and similar referents in context of describing disclosed embodiments (especially in context of following claims) are to be construed to cover both singular and plural, unless otherwise indicated herein or clearly contradicted by context, and not as a definition of a term. Terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (meaning “including, but not limited to,”) unless otherwise noted. Term “connected,” when unmodified and referring to physical connections, is to be construed as partly or wholly contained within, attached to, or joined together, even if there is something intervening. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within range, unless otherwise indicated herein and each separate value is incorporated into specification as if it were individually recited herein. Use of term “set” (e.g., “a set of items”) or “subset,” unless otherwise noted or contradicted by context, is to be construed as a nonempty collection comprising one or more members. Further, unless otherwise noted or contradicted by context, term “subset” of a corresponding set does not necessarily denote a proper subset of corresponding set, but subset and corresponding set may be equal.
Conjunctive language, such as phrases of form “at least one of A, B, and C,” or “at least one of A, B and C,” unless specifically stated otherwise or otherwise clearly contradicted by context, is otherwise understood with context as used in general to present that an item, term, etc., may be either A or B or C, or any nonempty subset of set of A and B and C. For instance, in illustrative example of a set having three members, conjunctive phrases “at least one of A, B, and C” and “at least one of A, B and C” refer to any of following sets: {A}, {B}, {C}, {A, B}, {A, C}, {B, C}, {A, B, C}. Thus, such conjunctive language is not generally intended to imply that certain embodiments require at least one of A, at least one of B, and at least one of C each to be present. In addition, unless otherwise noted or contradicted by context, term “plurality” indicates a state of being plural (e.g., “a plurality of items” indicates multiple items). A plurality is at least two items, but can be more when so indicated either explicitly or by context. Further, unless stated otherwise or otherwise clear from context, phrase “based on” means “based at least in part on” and not “based solely on.”
Operations of processes described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. In at least one embodiment, a process such as those processes described herein (or variations and/or combinations thereof) is performed under control of one or more computer systems configured with executable instructions and is implemented as code (e.g., executable instructions, one or more computer programs or one or more applications) executing collectively on one or more processors, by hardware or combinations thereof. In at least one embodiment, code is stored on a computer-readable storage medium, for example, in form of a computer program comprising a plurality of instructions executable by one or more processors. In at least one embodiment, a computer-readable storage medium is a non-transitory computer-readable storage medium that excludes transitory signals (e.g., a propagating transient electric or electromagnetic transmission) but includes non-transitory data storage circuitry (e.g., buffers, cache, and queues) within transceivers of transitory signals. In at least one embodiment, code (e.g., executable code or source code) is stored on a set of one or more non-transitory computer-readable storage media having stored thereon executable instructions (or other memory to store executable instructions) that, when executed (i.e., as a result of being executed) by one or more processors of a computer system, cause computer system to perform operations described herein. A set of non-transitory computer-readable storage media, in at least one embodiment, comprises multiple non-transitory computer-readable storage media and one or more of individual non-transitory storage media of multiple non-transitory computer-readable storage media lack all of code while multiple non-transitory computer-readable storage media collectively store all of code. In at least one embodiment, executable instructions are executed such that different instructions are executed by different processors. For example, a non-transitory computer-readable storage medium stores instructions and a main central processing unit (“CPU”) executes some of instructions while a graphics processing unit (“GPU”) executes other instructions. In at least one embodiment, different components of a computer system have separate processors and different processors execute different subsets of instructions.
Accordingly, in at least one embodiment, computer systems are configured to implement one or more services that singly or collectively perform operations of processes described herein and such computer systems are configured with applicable hardware and/or software that enable performance of operations. Further, a computer system that implements at least one embodiment of present disclosure is a single device and, in another embodiment, is a distributed computer system comprising multiple devices that operate differently such that distributed computer system performs operations described herein and such that a single device does not perform all operations.
Use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate embodiments of disclosure and does not pose a limitation on scope of disclosure unless otherwise claimed. No language in specification should be construed as indicating any non-claimed element as essential to practice of disclosure.
All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
In description and claims, terms “coupled” and “connected,” along with their derivatives, may be used. It should be understood that these terms may be not intended as synonyms for each other. Rather, in particular examples, “connected” or “coupled” may be used to indicate that two or more elements are in direct or indirect physical or electrical contact with each other. “Coupled” may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
Unless specifically stated otherwise, it may be appreciated that throughout specification terms such as “processing,” “computing,” “calculating,” “determining,” or like, refer to action and/or processes of a computer or computing system, or similar electronic computing device, that manipulate and/or transform data represented as physical, such as electronic, quantities within computing system's registers and/or memories into other data similarly represented as physical quantities within computing system's memories, registers or other such information storage, transmission or display devices.
In a similar manner, term “processor” may refer to any device or portion of a device that processes electronic data from registers and/or memory and transform that electronic data into other electronic data that may be stored in registers and/or memory. As non-limiting examples, “processor” may be a CPU or a GPU. A “computing platform” may comprise one or more processors. As used herein, “software” processes may include, for example, software and/or hardware entities that perform work over time, such as tasks, threads, and intelligent agents. Also, each process may refer to multiple processes, for carrying out instructions in sequence or in parallel, continuously or intermittently. Terms “system” and “method” are used herein interchangeably insofar as system may embody one or more methods and methods may be considered a system.
In present document, references may be made to obtaining, acquiring, receiving, or inputting analog or digital data into a subsystem, computer system, or computer-implemented machine. Obtaining, acquiring, receiving, or inputting analog and digital data can be accomplished in a variety of ways such as by receiving data as a parameter of a function call or a call to an application programming interface. In some implementations, process of obtaining, acquiring, receiving, or inputting analog or digital data can be accomplished by transferring data via a serial or parallel interface. In another implementation, process of obtaining, acquiring, receiving, or inputting analog or digital data can be accomplished by transferring data via a computer network from providing entity to acquiring entity. References may also be made to providing, outputting, transmitting, sending, or presenting analog or digital data. In various examples, process of providing, outputting, transmitting, sending, or presenting analog or digital data can be accomplished by transferring data as an input or output parameter of a function call, a parameter of an application programming interface or interprocess communication mechanism.
Although discussion above sets forth example implementations of described techniques, other architectures may be used to implement described functionality, and are intended to be within scope of this disclosure. Furthermore, although specific distributions of responsibilities are defined above for purposes of discussion, various functions and responsibilities might be distributed and divided in different ways, depending on circumstances.
Furthermore, although subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that subject matter claimed in appended claims is not necessarily limited to specific features or acts described. Rather, specific features and acts are disclosed as exemplary forms of implementing the claims.