The present invention relates generally to signal conditioning devices for use in cable television (“CATV”) systems, and in particular to signal conditioning devices that increase the signal-to-noise ratio of an upstream bandwidth in a CATV system.
The use of a CATV system to provide internet, voice over internet protocol (VOIP) telephone, television, security, and music services is well known in the art. In providing these services, a downstream bandwidth (i.e., radio frequency (“RF”) signals, digital signals, and/or optical signals) is passed from a supplier of the services to a user, and an upstream bandwidth (i.e., RF signals, digital signals, and/or optical signals) is passed from the user to the supplier. For much of the distance between the supplier and the user, the downstream bandwidth and the upstream bandwidth make up a total bandwidth that is passed via a signal transmission line, such as a coaxial cable. The downstream bandwidth is, for example, signals that are relatively higher frequencies within the total bandwidth of the CATV system while the upstream bandwidth is, for example, signals that are relatively lower frequencies.
Traditionally, the CATV system includes a head end facility, where the downstream bandwidth is initiated into a main CATV distribution system, which typically includes a plurality of trunk lines, each serving at least one local distribution network. In turn, the downstream bandwidth is passed to a relatively small number (e.g., approximately 100 to 500) of users associated with a particular local distribution network. Devices, such as high-pass filters, are positioned at various points within the CATV system to ensure the orderly flow of downstream bandwidth from the head end facility, through the trunk lines, through the local distribution networks, and ultimately to the users.
In stark contrast to the orderly flow of the downstream bandwidth, the upstream bandwidth passing through each of the local distribution networks is a compilation of an upstream bandwidth generated within a premise of each user that is connected to the particular distribution network. The upstream bandwidth generated within each premise includes desirable upstream information signals from a modem, desirable upstream information signals from a set-top-box, and undesirable interference signals, such as noise or other spurious signals. Many generators of such undesirable interference signals are electrical devices that inadvertently generate electrical signals as a result of their operation. These devices include vacuum cleaners, electric motors, household transformers, welders, and many other household electrical devices. Many other generators of such undesirable interference signals include devices that intentionally create RF signals as part of their operation. These devices include wireless home telephones, cellular telephones, wireless internet devices, CB radios, personal communication devices, etc. While the RF signals generated by these latter devices are desirable for their intended purposes, these signals will conflict with the desirable upstream information signals if they are allowed to enter the CATV system.
Undesirable interference signals, whether they are inadvertently generated electrical signals or intentionally created RF signals, may be allowed to enter the CATV system, typically through an unterminated port, an improperly functioning device, a damaged coaxial cable, and/or a damaged splitter. As mentioned above, the downstream/upstream bandwidth is passed through coaxial cables for most of the distance between the user and the head end. This coaxial cable is intentionally shielded from undesirable interference signals by a conductive layer positioned radially outward from a center conductor and positioned coaxial with the center conductor. Similarly, devices connected to the coaxial cable typically provided shielding from undesirable interference signals. However, when there is no coaxial cable or no device connected to a port the center conductor is exposed to any undesirable interference signals and will function like a small antenna to gather those undesirable interference signals. Similarly, a coaxial cable or device having damaged or malfunctioning shielding may also gather undesirable interference signals.
In light of the forgoing, it should be clear that there is an inherent, system-wide flaw that leaves the upstream bandwidth open and easily impacted by any single user. For example, while the downstream bandwidth is constantly monitored and serviced by skilled network engineers, the upstream bandwidth is maintained by the user without the skill or knowledge required to reduce the creation and passage of interference signals into the upstream bandwidth. This issue is further compounded by the number of users connected together within a particular distribution network, especially knowing that one user can easily impact all of the other users.
Attempts at improving an overall signal quality of the upstream bandwidth have not been successful using traditional methods. A measure of the overall signal quality includes such components as signal strength and signal-to-noise ratio (i.e., a ratio of the desirable information signals to undesirable interference signals). Traditionally, increasing the strength of the downstream bandwidth has been accomplished by drop amplifiers employed in or near a particular user's premise. The success of these drop amplifiers is largely due to the fact that there are very low levels of undesirable interference signals present in the downstream bandwidth for the reasons explained more fully above. The inherent presence of the undesirable interference signals in the upstream bandwidth generated by each user has typically precluded the use of these typical, drop amplifiers to amplify the upstream bandwidth, because the undesirable interference signals are amplified by the same amount as the desirable information signals. Accordingly, the signal-to-noise ratio remains nearly constant, or worse, such that the overall signal quality of the upstream bandwidth is not increased when such a typical, drop amplifier is implemented.
For at least the forgoing reasons, a need is apparent for a device, which can increase the overall quality of the upstream bandwidth that includes increasing the signal strength and increasing the signal-to-noise ratio.
The present invention helps to reduce the effect of undesirable interference signals that are unknowingly injected into the main signal distribution system, through the upstream bandwidth, by the user. By selectively attenuating frequency ranges within the upstream bandwidth, the present invention increases the signal-to-noise ratio of the upstream bandwidth. The present invention further increases the signal strength by amplifying desirable information signals to further increase the overall signal quality.
In accordance with one embodiment of the present invention, an upstream bandwidth conditioning device is provided that can be inserted into a signal transmission line of a CATV system on a premise of a user. The device includes a main signal path, and a filter array including a plurality of discrete signal filters coupled to the main signal path. Each of the signal filters is configured to reduce a signal level of at least one frequency portion of an upstream bandwidth. The device further includes a controller configured to select between a plurality of states. In at least two of the states, at least one of the signal filters is selected such that a signal level of a lower frequency portion of the upstream bandwidth and a signal level of an higher frequency portion of the upstream bandwidth are reduced by a greater amount than a signal level of an intermediate frequency portion, which includes frequencies arranged between the lower frequency portion and the higher frequency portion. The intermediate frequency portion is larger in one of the states than in another of the states.
In accordance with one embodiment of the present invention, the plurality of signal filters includes an array of low-pass filters and an array of high-pass filters. Preferably, the controller selects at least one low-pass filter from the array of low-pass filters and at least one high-pass filter from the array of high-pass filters. In accordance with one embodiment of the present invention, the array of low-pass filters and the array of high-pass filters are coupled in series with the main signal path via switching means. Preferably, the low-pass filters in the array attenuate to a different maximum frequency and each of the high-pass filters in the array attenuate to a different minimum frequency. Preferably, the switching means includes at least two switches associated with each of the array of low-pass filters and the array of high-pass filters. Preferably, the switching means is an integrated circuit switch. In accordance with one embodiment of the present invention, the device further includes a signal amplification unit coupled to the main signal path.
In accordance with one embodiment of the present invention, the plurality of signal filters includes a plurality of band pass filters, each band pass filters being arranged between a ground and the main signal path and being selectively coupled to the main signal path by a respective switching means. Preferably, a selection of each band pass filter by closing the respective switching means results in an attenuation of a frequency range associated with the particular band pass filter. Preferably, the controller is configured to select each band pass filter by the respective switching means. Preferably, each of the plurality of band pass filters attenuates to a different maximum frequency and to a different minimum frequency. Preferably, the switching means is an integrated circuit switch. In accordance with one embodiment of the present invention, the device further includes a signal amplification unit coupled to the main signal path.
In accordance with one embodiment of the present invention, the plurality of signal filters comprises a plurality of band stop filters arranged in series with the main signal path and a bypass path including a respective switching means associated with each of the band stop filters. Preferably, the selection of a particular band stop filter by opening the respective switching means results in an attenuation of a frequency range associated with the particular band stop filter. Preferably, the controller is configured to select each band stop filter by the respective switching means. Preferably, the switching means is an integrated circuit switch. In accordance with one embodiment of the present invention, the device further includes a signal amplification unit coupled to the main signal path.
In accordance with one embodiment of the present invention, the plurality of signal filters includes an array of band pass filters arranged parallel to one another in the array, which is arranged in series with the main signal path, each of the band pass filters in the array having a respective switching means. Preferably, the selection of a particular band pass filter by closing the respective switching means results in a passage of a frequency range associated with the particular band pass filter. Preferably, the controller is configured to select each band pass filter by the respective switching means. Preferably, the switching means is an integrated circuit switch. In accordance with one embodiment of the present invention, the device further includes a signal amplification unit coupled to the main signal path.
In accordance with one embodiment of the present invention, the plurality of signal filters includes a plurality of band stop filters connected in series between a ground and the main signal path, and a bypass path including a respective switching means associated with each of the band stop filters. Preferably, the selection of a particular band stop filter by opening the respective switching means results in a passage through the main signal path of a frequency range associated with the particular band stop filter. Preferably, the controller is configured to select each band stop filter by the respective switching means. In accordance with one embodiment of the present invention, the controller is manually actuated using an interface mounted on the device. In accordance with one embodiment of the present invention, the controller is an analog circuit controllable using an informational signal received through the signal transmission line. In accordance with one embodiment of the present invention, the controller is a microprocessor controllable using an informational signal received through the signal transmission line.
In accordance with one embodiment of the present invention, a method is provided for conditioning an upstream bandwidth transmitted through a transmission line of a CATV system using a device located on a premise of a user. The method includes providing a main signal path, and providing a filter array comprising a plurality of discrete signal filters coupled to the main signal path. Each of the signal filters is configured to reduce a signal level of at least one frequency portion of an upstream bandwidth. The method further includes selectively engaging at least one of the signal filters such that a signal level of a lower frequency portion of the upstream bandwidth and a signal level of an higher frequency portion of the upstream bandwidth are reduced by a greater amount than a signal level of an intermediate frequency portion, which includes frequencies arranged between the lower frequency portion and the higher frequency portion. In accordance with one embodiment of the present invention, the method further includes amplifying at least the intermediate frequency portion of the upstream bandwidth.
In accordance with one embodiment of the present invention, the plurality of signal filters includes an array of low-pass filters and an array of high-pass filters. Preferably, the step of selectively engaging includes selecting at least one low-pass filter from the array of low-pass filters, and selecting at least one high-pass filter from the array of high-pass filters. The high-pass filter array and the low-pass filter array are coupled in series with the main signal path via switching means.
In accordance with one embodiment of the present invention, the method further includes selectively engaging an additional one of the signal filters such that a signal level of a frequency portion within the intermediate frequency portion is reduced by a greater amount than remaining portions of the intermediate frequency portion.
In accordance with one embodiment of the present invention, the plurality of signal filters includes a plurality of band pass filters. Each band pass filter is arranged between a ground and the main signal path and is selectively coupled to the main signal path by a respective switching means. The step of selectively engaging includes selecting at least one of the band pass filters by closing the respective switching means to attenuate a frequency range associated with the particular band pass filter.
In accordance with one embodiment of the present invention, the plurality of signal filters includes a plurality of band stop filters arranged in series with the main signal path and a bypass path including a respective switching means associated with each of the band stop filters. The step of selectively engaging includes selecting at least one of the band stop filters by opening the respective switching means to attenuate a frequency range associated with the particular band stop filter.
In accordance with one embodiment of the present invention, the plurality of signal filters includes an array of band pass filters arranged parallel to one another in the array, which is arranged in series with the main signal path. Each of the band pass filters in the array has a respective switching means. The step of selectively engaging includes selecting a particular band pass filter by closing the respective switching means to pass a frequency range associated with the particular band pass filter.
In accordance with one embodiment of the present invention, the plurality of signal filters includes a plurality of band stop filters connected in series between a ground and the main signal path and a bypass path including a respective switching means associated with each of the band stop filters. The step of selectively engaging includes opening the respective switching to pass a frequency range associated with the particular band stop filter through the main signal path.
For a further understanding of the objects of the invention, reference will be made to the following detailed description of the invention which is to be read in connection with the accompanying drawings, where:
The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the drawings, like numerals are used to indicate like parts throughout the various views.
As shown in
Referring still to
As shown in
Additionally, it is common practice to provide a set-top box (“STB”) or a set-top unit (“STU”) for use directly with the television 150. For the sake of clarity, however, there is no representation of a STB or a STU included in
Further, while not shown explicitly in
Further, while not shown explicitly in
It should be understood that the goal of placing the upstream signal conditioning device 100 into one of the locations described above is to increase the overall quality of the upstream bandwidth in the main distribution system 30 by increasing the signal-to-noise ratio of the upstream bandwidth leaving a user's premise before that particular user's upstream bandwidth is merged with those of other users. As discussed above, merely amplifying the upstream bandwidth fails to achieve the desired result because the undesirable interference signals present in the upstream bandwidth are also amplified.
A significant amount of undesirable interference signals may occur within lower frequencies of the upstream bandwidth and within higher frequencies of the upstream bandwidth, while the desirable information signals are often present in intermediate frequencies of the upstream bandwidth. For example, in an upstream bandwidth spanning 5-42 MHz, there may be no desirable information signals in the 5-11 MHz range and in the 37-42 MHz range, while there are likely desirable information signals in the 11-37 MHz range. Based on this example, the signal-to-noise ratio of this upstream bandwidth could be significantly increased by attenuating or blocking signals in the 5-11 MHz range and the 37-42 MHz range while amplifying signals the 11-37 MHz range. While a system with a fixed range of attenuation and a fixed range of amplification may be helpful to increase the signal-to-noise ratio in the upstream bandwidth in the present example, it is expected that (i) additional undesirable interference signals may remain present in the amplified range, (ii) desirable information signals may not always be present in the amplified range, (iii) desired signals may become present in the attenuated range, and (iv) and the entire range of the upstream bandwidth may change. Accordingly, the present upstream bandwidth conditioning device 100 has been developed to change the range of frequencies attenuated at a lower frequency portion and a higher frequency portion such that the intermediate frequency portion can be broadened and/or narrowed as necessary to allow the passage of the desirable information signals. Further, in accordance with some embodiments of the present invention, particular portions of the intermediate frequency portion may also be attenuated.
Further, a secondary benefit of some embodiments of the upstream bandwidth conditioning device 100 is that the intermediate frequency portion can be broadened as required to accommodate any future changes to the CATV system that increase the size of the upstream bandwidth from the current range of 5-42 MHz to 5-85 MHz, for example, to allow for a greater flow of upstream information signals. While this is not the primary purpose of the present upstream signal conditioning device 100, the ability for the device 100 to accommodate such changes allows the device 100 to remain relevant after such changes. Any devices that can not accommodate a change to a broader upstream bandwidth will inherently block the expanded portion of the upstream bandwidth, and will, therefore need to be replaced or physically altered once the upstream bandwidth is broadened.
Referring now to
The signal amplification device 310 can be any of the well known devices for amplifying a signal, whether it is an electromagnetic signal or an optical signal. For example, a conventional bipolar transistor amplifier or a field-effect transistor amplifier could be used to amplify electromagnetic signals. A few of the possible variations of the filter array 300 will be discussed more fully below.
A pair of diplexer filters (not shown) may be utilized with one diplexer positioned between the filter array 300 and the user-side connector 340 and the other positioned between the filter array 300 and the supplier-side connector 350. The purpose of the diplexer filters would be to create a return path separate from a forward path, with the return path carrying the upstream bandwidth and the forward path carrying the downstream bandwidth. In such an embodiment, the filter array 300 and the signal amplification device 310 (if used) may be located on the return path. Such an arrangement allows the downstream bandwidth to pass unimpeded and unaltered by the filter array 300 and the signal amplification device 310 (if used) located in the return path. It should be understood, however, that the use of the diplexer filters is not required unless it is determined that the particular filter array 300 and/or the amplification device 310 would adversely alter the downstream bandwidth. For example, some embodiments of the filter array 300, such as the embodiment represented in
Still referring to
For the continuing description of
In the embodiment shown in
The frequency of the receiver 380 can be set by the controller 360 and can be tuned to a particular frequency by a phase-locked loop control system 390 in any of the manners that are well known in the art. The receiver 380 may also be fixed to a single frequency if and/or when that frequency is sufficient to carry the desired information transmission signal. It should be understood that the particular frequency is only important to the degree that the receiver 380 must be tuned to a particular frequency where the information transmission signal is expected in order to receive the information transmission signal. In the present instance, the particular frequency is a frequency within a range of 110-135 MHz because the components of the receiver 380, a low power mixer FM IF system SA605DK and clock generator ADF4001, are relatively inexpensive for this frequency range. It should also be understood that the particular frequencies may, as in the present case, be a frequency within a typical CATV channel, but between the video carrier frequency and audio carrier frequency.
Further, as described below, there may be multiple particular frequencies with some located in the upstream bandwidth and some located in the downstream bandwidth. For example, when the information transmission signal is being passed from the supplier 20, the information transmission signal may be sent on one or more particular frequencies within the downstream bandwidth. Alternatively, when the information transmission signal is sent from a device within the premise of the user, the information transmission signal may be sent using one or more particular frequencies within the upstream bandwidth. In such cases, there may be one receiver 380 that is tunable between the particular frequencies or one receiver 380 for each particular frequency (e.g., one receiver for use with the upstream bandwidth, and one receiver for use with the downstream bandwidth).
In its simplest form, the information transmission signal can be a tone, such as a 100 kHz tone that is RF modulated onto the particular frequency. Is a tone is going to be used as an information transmission signal, the receiver 380 may then include a tone demodulator, which are well known in the art, to identify whether a tone is present and provide an output to the controller 360 indicating whether a tone is present. As indicated above, there may be provisions in the upstream bandwidth conditioning device 100 for more than one receiver 380 or a receiver 380 that can tune to a plurality of frequencies to identify tones in those frequencies for the purpose of providing a more detailed control of the upstream bandwidth conditioning device 100. The more detailed control may allow for more precise control of the frequencies that are to be attenuated and that are to be passed and amplified. This more detailed control may also be accomplished by incorporating an information transmission signal that includes a coded operational signal.
A coded operational signal may be provided on the particular frequency along with the tone, or the coded operational signal may be provided by itself on the particular frequency. In the present embodiment, a coded operational signal is RF modulated along with the tone. For example, the coded operational signal is provided at 500 MHz on the particular frequency, and provides for a transfer rate of 2400 baud. To accommodate the tone and the coded operational signal in the present example, the mixer in the receiver 380 provides two outputs, one with a band pass filter to pass the 100 Hz tone to the tone demodulator, and one with a band pass filter to pass the 500 MHz signals to a demodulator, which is well known in the art, to convert the RF signals into a data steam, such as RS232, suitable for use by the controller 360.
It is also envisaged that the receiver 380 of the upstream bandwidth conditioning device 100 may include full cable modem functionality. For example, the controller 360 may include a cable modem configured to operate in accordance with the DOCSIS standard such that the supplier 20 would be able to access each individual upstream bandwidth by an identifiable address, such as a modem number and/or a TCP/IP address. Using this format, the supplier can provide the controller 380 with a detailed set of parameters, including the frequencies to be attenuated, the frequencies to be pass, and how much amplification to apply to the frequencies that are passed, using information transfer and control methods that will be understood by one skilled in the art based on the present specification.
It should be understood that any of the known information transmission signals, including those described above, may be incorporated into the present upstream bandwidth conditioning device 100. It is also important to note that the present upstream bandwidth conditioning device 100 may be configured to accept a combination of the known information transmission, such as tones, digital signals to be demodulated into serial data, digital signals according to the DOCSIS standard, and any other information signals that perform a similar function to these.
The functionality of the controller 360 and how it utilizes the information transmission signals will become clearer with the discussion of each embodiment of the present invention below. Along these lines, it is important to remember that the controller 360 may actuate the switching means of each embodiment and the signal amplification device 310 (if installed) based on the information control signals provided in the downstream bandwidth by the supplier 20 and/or the upstream bandwidth by a device in the premise of the user.
In light of the forgoing, it should also be understood that the controller 360 can be any one of a variety of devices depending on the sophistication of the information transmission signals to be used. In the most simplistic case, the controller 360 can be a manual input device allowing a service technician to manually enter the frequencies that are to be attenuated, passed, amplified, or otherwise conditioned. As it is shown in
Referring now to
Each of the switching means 420 and 440 includes one or more switches that allows signals to flow to one of the high-pass filters 4301-430n and the bypass element 450 (if installed) while not allowing signals to flow to the remaining of the high-pass filters 4301-430n and the bypass element 450 (if installed). An open position may also be desired to offer a position where no signals are passed to any of the high-pass filters 4301-430n and the bypass element 450 (if installed). In the case shown in
Still referring to
Similar to as discussed above, each of the switching means 470 and 490 includes one or more switches that allows signals to flow to one of the low-pass filters 4801-480n and the bypass element 455 (if installed) while not allowing signals to flow to the remaining of the low-pass filters 4801-480n and the bypass element 455 (if installed). An open position may also be desired to offer a position where no signals are passed to any of the low-pass filters 4801-480n and the bypass element 455 (if installed). As discussed above, each of the switching means 470 and 490 may be one or more multichannel SPST switches, a plurality of single channel SPST switches, a mechanical switch capable of selecting between a plurality of channels or many of the other know switches.
In light of the forgoing, the filter array 300 in the embodiment represented in
Referring to
Referring now to
In use, the present embodiment can take a variety of forms. For example, creating an attenuation of the frequencies up to 6 MHz and above 28 MHz can be accomplished in at least two ways utilizing the basic structure shown in
In this scenario, individual intermediate frequency portions may be attenuated separate from the higher frequency portion and the lower frequency portion. For example, within the intermediate frequency range of 6-28 MHz passed in the example above, additional frequency portions, such as 14-18 MHz can be attenuated by actuating switches 6207-6209. Along these lines, even further frequency portions within the intermediate frequency range of 6-28 MHz can be attenuated.
According to a second scenario, each of the filters 6301-63013 becomes incrementally broader by 2 MHz up to a frequency attenuation range of 0-26 MHz, and each of the filters 63014-63026 decreases by 2 MHz from a range of 26-52 MHZ (63014) to 50-52 MHz (63026). Accordingly, to allow for an intermediate frequency range 6-28 MHz to pass, switches 6203 and 62014 would need to be actuated to engage band pass filters 6303 and 63014.
Please note that for the preceding examples and for those that follow, the number of filters has been arbitrarily identified is 26 (i.e., XXX1-XXX26), and the increment has been arbitrarily identified as 2 MHz. It should be understood that the number of filters and the increment may be different. For example, due to cost or complexity, the number of filters may be reduced to 20, 10, or even 5. Similarly, the increment may be something more along the lines of 5, 10, or 20 MHz. The overall goal is to cover the entire possible width of the upstream bandwidth, which is likely to grow from a maximum of 42 MHz to 85 MHz, and potentially beyond.
Referring now to
In use, the present embodiment can take a variety of forms. For example, creating an attenuation of the frequencies up to 6 MHz and above 28 MHz can be accomplished in at least two ways utilizing the basic structure shown in
In this scenario, individual intermediate frequency portions may be attenuated separate from the higher frequency portion and the lower frequency portion. For example, within the intermediate frequency range of 6-28 MHz passed in the example above, additional frequency portions, such as 14-18 MHz can be attenuated by opening switches 7207-7209. Along these lines, even further frequency portions within the intermediate frequency range of 6-28 MHz can be attenuated.
According to a second scenario, each of the band stop filters 7301-73013 becomes incrementally broader by 2 MHz up to a frequency attenuation range of 0-26 MHz, and each of the band stop filters 73014-73026 decrease by 2 MHz from a range of 26-52 MHZ (73014) to 50-52 MHz (73026). Accordingly, to allow for an intermediate frequency range 6-28 MHz to pass, switches 7203 and 72014 would need to be open to engage band stop filters 7303 and 73014, and the remaining switches would remain closed to bypass the remaining band stop filters.
With reference to
In use, the present embodiment can take a variety of forms. For example, creating an attenuation of the frequencies up to 6 MHz and above 28 MHz can be accomplished by configuring each of the band pass filters 8301-83026 to be part of a series incrementing by, for example, 2 MHz (assuming that there are 26 filters/switches). Accordingly, band pass filter 8301 passes 0-2 MHz, band pass filter 8302 passes 2-4 MHz, band pass filter 8303 passes 4-6 MHz, (sequence continuing), band pass filter 83025 passes 48-50 MHz, and band pass filter 83026 passes 50-52 MHz. Accordingly, to allow for an intermediate frequency range of 6-28 MHz to pass, switches 8204-82014 would need to be closed to engage band pass filters 8304-83014, and the remaining switches 8201-8203 and 82015-82026 would need to remain open.
Referring now to
In use, the present embodiment can take a variety of forms. For example, creating an attenuation of the frequencies up to 6 MHz and above 28 MHz can be accomplished in at least two ways utilizing the basic structure shown in
In this scenario, individual intermediate frequency portions may be attenuated separate from the higher frequency portion and the lower frequency portion. For example, within the intermediate frequency range of 6-28 MHz passed in the example above, additional frequency portions, such as 14-18 MHz can be attenuated by opening switches 9207-9209. Along these lines, even further frequency portions within the intermediate frequency range of 6-28 MHz can be attenuated.
According to a second scenario, assuming that there are 26 filters/switches, each of the filters 9301-93013 becomes incrementally narrower by 2 MHz, and each of the filters 93014-93026 becomes incrementally narrower by 2 MHz. For example, selecting band stop filter 9301 allows 24-26 MHz to pass through the main signal path 330, selecting band stop filter 9302 allows 22-26 MHz to pass through the main signal path 330, selecting band stop filter 9303 allows 20-26 MHz to pass through the main signal path 330, (sequence continuing), selecting band stop filter 93014 attenuates 26-28 MHz to pass through the main signal path 330, selecting band stop filter 93015 attenuates 26-30 MHz to pass through the main signal path 330, and selecting band stop filter 93016 attenuates 26-32 MHz to pass through the main signal path 330, and so on. Accordingly, to allow for an intermediate frequency range of 6-28 MHz to pass, switches 92010 and 92014 would need to be open.
A skilled artisan would appreciate the fact that other types of frequency filters and other implementations of filter assemblies are within the scope and the spirit of the present invention.
It should be understood that any of the filter array embodiments can be configured to allow for an attenuation of the entire upstream bandwidth should such an attenuation be required. For example, such attenuation can be useful for end users having CATV equipment which only uses the downstream transmission path.
While the present invention has been particularly shown and described with reference to the preferred mode as illustrated in the drawings, it will be understood by one skilled in the art that various changes in detail may be effected therein without departing from the spirit and scope of the invention as defined by the claims.
This application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application No. 61/164,800 entitled “UPSTREAM BANDWIDTH CONDITIONING DEVICE” filed Mar. 30, 2009, and U.S. Provisional Patent Application No. 61/186,604 entitled “UPSTREAM BANDWIDTH CONDITIONING DEVICE” filed on Jun. 12, 2009 which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61164800 | Mar 2009 | US | |
61186604 | Jun 2009 | US |