Data over cable service interface specification (DOCSIS) is an international telecommunications standard that permits the addition of high-speed data transfer to an existing cable television system. Cable television operators use DOCSIS 3.0 to provide two-way communication over their existing hybrid fiber-coaxial (HFC) infrastructure.
An HFC network is a broadband network that combines optical fiber and coaxial cable. The HFC network is a two-way communication network between a cable modem termination system (CMTS) and a cable modem. The CMTS is communication equipment typically located in a cable operator's headend facility. The CMTS collects and processes communication signals, distributes those signals to customer locations using downstream channels, and receives other communication signals from the customer locations on upstream channels. The cable modem is a communication device that receives the communication signals on the downstream channels from the CMTS, and transmits the other communication signals to the CMTS on the upstream channels. The cable modem may be a standalone device that connects to the Internet, or integrated with the set-top box.
Channel bonding is a DOCSIS 3.0 feature that enables a cable modem at a customer location to use multiple downstream channels, or multiple upstream channels, together at the same time. For example, a cable modem configured with four upstream channels can use DOCSIS 3.0 channel bonding to increase the throughput of the upstream communication with the CMTS. The cable modem distributes, or segments, the data packets among the four channels in an upstream bonding group and transmits the data packets to the CMTS in parallel, rather than in series. When the upstream bonding group operates in full service mode, the CMTS receives and reassembles the data packets on all four channels in the upstream bonding group. If there is a problem receiving data packets on a CMTS receiver, due to an upstream channel that is associated with the receiver being impaired or unavailable, the CMTS cannot properly reassemble the data packets for the upstream bonding group and data loss or throughput degradation will result. The detection of this problem will allow communication to continue between the CMTS and cable modem by transitioning the upstream bonding group to operate in partial service mode by disabling data grant scheduling on the faulty receiver/channel. The prior art relies on the cable modem to detect the need to transition to partial service mode, and notify the CMTS. For example, the prior art DOCSIS method relies on the cable modem to detect power transmission issues due to ranging outside of the dynamic range power window for the cable modem. However, a cable modem cannot detect the impairment of an upstream channel. The cable modem can only infer the impairment because a channel can be impaired even though ranging messages can still make it through, and by the absence of the RNG-RSP messages from the CMTS after cable modem ranging intervals. Detection by the cable modem is a process that is unreliable and may result in significant time delay in the detection process. Thus, the prior art methods for transitioning from partial service mode to full service mode will allow the transition to occur before the channel is available, or perform the transition incorrectly, thereby resulting in data loss and performance degradation.
There is a need for a method of transitioning channels in an upstream bonding group from partial service mode to full service mode that minimizes data loss and maximizes performance. The presently disclosed invention satisfies this demand.
Aspects of the present invention provide a method and computing device that receives data packets on an upstream bonding group in full service mode, where the upstream bonding group includes a set of channels and each channel has a transmission quality. The method detects that a select channel in the set of channels is impaired when the transmission quality of the select channel is below a threshold value, and transitions the receiving of the data packets from full service mode to partial service mode by disabling data grant scheduling on the select channel. The method monitors the select channel using a spectrum management method while the receiving of the data packets is in partial service mode. The method transitions the receiving of the data packets from partial service mode to full service mode when a result from the spectrum management method indicates that the select channel can transmit data packets error free.
The IP network 110 shown in
The cable network 130 shown in
The CMTS 120, in one embodiment, is communication equipment located in a cable operator's headend or hubsite that provides high-speed data services, such as cable Internet or voice over Internet protocol, to cable subscribers. The CMTS 120 shown in
The customer location 140 shown in
The cable modem 142 shown in
The processor 155 performs the disclosed methods by executing sequences of operational instructions that comprise each computer program resident in, or operative on, the memory 170. The reader should understand that the memory 170 may include operating system, administrative, and database programs that support the programs disclosed in this application. In one embodiment, the configuration of the memory 170 of the cable modem 142 includes a DOCSIS program 172. The DOCSIS program 172 is an implementation of DOCSIS 3.0. The DOCSIS program 172 together with the spectrum management program 122 and partial service transition program 124 perform the method of the present invention disclosed in the exemplary embodiments depicted in
The cable operator configures the spectrum management program 122 on the CMTS 120 to monitor each channel in the upstream bonding group. When the transmission quality of one of those channels drops below a threshold value, the spectrum management program 122 determines that the channel is impaired (step 220). Thus, the upstream bonding group is running in partial service mode when one or more of the receivers/channels in the group are impaired, and in full service mode when the receivers/channels in the group are all running normally. The partial service transition program 124 transitions the receiving of data packets on the upstream bonding group from full service mode to partial service mode by disabling data grant scheduling on the channel that is impaired (step 230). In one embodiment, the cable operator can configure the threshold value for the modulation type of the modulation profile that the channel is using to detect whether an upstream channel is impaired. In another embodiment, the threshold value is set to a default value. In yet another embodiment, the spectrum management program 122 will first attempt to correct the impairment by either changing the upstream frequency of the impaired channel or dropping the impaired channel to a lower modulation profile. If these attempts to improve the transmission quality of the impaired channel are not successful, the partial service transition program 124 will transition the receiving of data packets on the upstream bonding group from full service mode to partial service mode. Even though a transition from full service mode to partial service mode will reduce the throughput for the cable modem 142, it will avoid the loss, or need to retransmit, any data packets. In yet another embodiment, the spectrum management program 122 can detect a potential loss of data, transition from full service mode to partial service mode, remedy the situation, and avoid the loss of any data.
The spectrum management program 122 monitors the transmission quality of the channel that is impaired using a spectrum management method while the receiving of data packets on the upstream bonding group is in partial service mode (step 240). Once the spectrum management program 122 determines that the impaired channel is clean, the partial service transition program 124 transitions the receiving of data packets on the upstream bonding group from partial service mode to full service mode (step 250).
The spectrum management program 122 attempts to keep the channels in the upstream bonding group running at optimal efficiency at all times. The spectrum management program 122 uses its existing frequency and modulation agility features before the upstream bonding group transitions from full service mode to partial service mode, and transitions into partial service mode only as a last step. In one embodiment, the cable operator configures the spectrum management program 122 specifically for partial service mode, thereby allowing the cable operator to bypass the implementation of frequency or modulation agility. If the cable operator bypasses the implementation of frequency or modulation agility, the spectrum management program 122 will transition the upstream bonding group directly to partial service mode when it detects an impaired channel and recovers when the channel is no longer impaired. When the upstream bonding group goes into partial service mode, it not only has to recover as quickly as possible, but also has to do it correctly. If the CMTS 120 allows the upstream bonding group to come out of partial service mode prematurely, or incorrectly, and allows the cable modem 142 to start using that upstream channel again before it is clean enough to use without error, the situation starts all over again and becomes untrustworthy and unreliable.
While in partial service mode, the spectrum management program 122 monitors the impaired channel by observing ranging requests or keep alive messages from the cable modem 142. Based on either the quality metric value of a particular modem, or the quality metric value of the whole channel, and the configuration chosen by the cable operator, the spectrum management program 122 determines whether the channel is clean enough to pass data packets successfully. The modulation mode associated with the channel determines which threshold the spectrum management program 122 uses to determine whether the channel is clean enough to pass data packets. The modulation type of the channel means the modulation mode of the long, or advanced long, data grants. The cable modem 142 and CMTS 120 can transmit and receive data packets at 8 quadrature amplitude modulation (QAM), 16 QAM, 32 QAM, 64 QAM, or even higher modulation modes. In other embodiments, the implementation of the modulation type could also use other data grants such as short or voice grants.
The availability of a separate set of quality metric and FFT threshold values is an advantage because the existing threshold of the modulation type may not be desirable for detecting when the quality of the impaired channel is good enough to avoid dropping data packets during transmission. The implementation of the FFT thresholds with no modems is an advantage over prior art systems that rely on the DOCSIS specification and cable modem ranging to determine whether to transition from partial service mode to full service mode. For example, when a CMTS is using four bonded channels with one channel in the “down” mode, when the CMTS brings the channel to the “up” mode, but it is not yet using any modems, the CMTS still needs to determine whether the quality of the channel is good enough to transmit data packets error free.
One advantage of the present invention over the prior art is the avoidance of transitioning from partial service mode to full service mode too early, thereby causing the cable modem to return back to partial service mode and creating a ping-pong effect. For example, prior art solutions that utilize the DOCSIS method may transition from partial service mode to full service mode because the channel is good enough to pass ranging messages in quadrature phase-shift keying (QPSK), but the channel is not able to pass data or voice packets. When these prior art solutions transition from partial service mode to full service mode under these conditions, the cable modem will not be able to reassemble packets and will transition back into partial service mode again. Furthermore, since an impaired channel impacts all modems that are attempting to operate on the channel, detection of the impaired channel by the CMTS, and subsequent mitigation, provides significant performance advantages rather than waiting for each modem to detect the problem and report it to the CMTS.
Another advantage of bringing impaired channels back online quickly is to improve customer service. Since a cable operator typically offers different tiers of service where the customer pays for the use of each upstream channel, if the customer wants faster throughput they may pay for four channels and expect all four to be transmitting data at all times. Thus, if the cable operator only has three or two channels working properly, the customer may notice that the upstream data transmission has degraded.
Although the disclosed embodiments describe a fully functioning method and computing device that uses a spectrum management method to determine when upstream bonded channels can recover from partial service mode, the reader should understand that other equivalent embodiments exist. Since numerous modifications and variations will occur to those reviewing this disclosure, the method and computing device that uses a spectrum management method to determine when upstream bonded channels can recover from partial service mode is not limited to the exact construction and operation illustrated and disclosed. Accordingly, this disclosure intends all suitable modifications and equivalents to fall within the scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
3838221 | Schmidt et al. | Sep 1974 | A |
4245342 | Entenman | Jan 1981 | A |
4385392 | Angell et al. | May 1983 | A |
4811360 | Potter | Mar 1989 | A |
4999787 | McNally et al. | Mar 1991 | A |
5228060 | Uchiyama | Jul 1993 | A |
5251324 | McMullan | Oct 1993 | A |
5271060 | Moran et al. | Dec 1993 | A |
5278977 | Spencer et al. | Jan 1994 | A |
5347539 | Sridhar et al. | Sep 1994 | A |
5390339 | Bruckert et al. | Feb 1995 | A |
5463661 | Moran et al. | Oct 1995 | A |
5532865 | Utsumi et al. | Jul 1996 | A |
5557603 | Barlett et al. | Sep 1996 | A |
5606725 | Hart | Feb 1997 | A |
5631846 | Szurkowski | May 1997 | A |
5694437 | Yang et al. | Dec 1997 | A |
5732104 | Brown et al. | Mar 1998 | A |
5790523 | Ritchie et al. | Aug 1998 | A |
5862451 | Grau et al. | Jan 1999 | A |
5867539 | Koslov | Feb 1999 | A |
5870429 | Moran et al. | Feb 1999 | A |
5886749 | Williams et al. | Mar 1999 | A |
5939887 | Schmidt et al. | Aug 1999 | A |
5943604 | Chen et al. | Aug 1999 | A |
6032019 | Chen et al. | Feb 2000 | A |
6061393 | Tsui et al. | May 2000 | A |
6108351 | Hardy et al. | Aug 2000 | A |
6154503 | Strolle | Nov 2000 | A |
6229792 | Anderson et al. | May 2001 | B1 |
6230326 | Unger et al. | May 2001 | B1 |
6233274 | Tsui et al. | May 2001 | B1 |
6240553 | Son et al. | May 2001 | B1 |
6272150 | Hrastar et al. | Aug 2001 | B1 |
6278730 | Tsui et al. | Aug 2001 | B1 |
6308286 | Richmond et al. | Oct 2001 | B1 |
6310909 | Jones | Oct 2001 | B1 |
6321384 | Eldering | Nov 2001 | B1 |
6330221 | Gomez | Dec 2001 | B1 |
6334219 | Hill et al. | Dec 2001 | B1 |
6377552 | Moran et al. | Apr 2002 | B1 |
6385773 | Schwartzman et al. | May 2002 | B1 |
6389068 | Smith et al. | May 2002 | B1 |
6434583 | Dapper et al. | Aug 2002 | B1 |
6445734 | Chen et al. | Sep 2002 | B1 |
6456597 | Bare | Sep 2002 | B1 |
6459703 | Grimwood et al. | Oct 2002 | B1 |
6477197 | Unger | Nov 2002 | B1 |
6480469 | Moore et al. | Nov 2002 | B1 |
6483033 | Simoes et al. | Nov 2002 | B1 |
6498663 | Farhan et al. | Dec 2002 | B1 |
6512616 | Nishihara | Jan 2003 | B1 |
6526260 | Hick et al. | Feb 2003 | B1 |
6546557 | Ovadia | Apr 2003 | B1 |
6556239 | Al-Araji et al. | Apr 2003 | B1 |
6556562 | Bhagavath et al. | Apr 2003 | B1 |
6556660 | Li et al. | Apr 2003 | B1 |
6559756 | Al-Araji et al. | May 2003 | B2 |
6563868 | Zhang et al. | May 2003 | B1 |
6570394 | Williams | May 2003 | B1 |
6570913 | Chen | May 2003 | B1 |
6574797 | Naegeli et al. | Jun 2003 | B1 |
6588016 | Chen et al. | Jul 2003 | B1 |
6606351 | Dapper et al. | Aug 2003 | B1 |
6611795 | Cooper | Aug 2003 | B2 |
6646677 | Noro et al. | Nov 2003 | B2 |
6662135 | Burns et al. | Dec 2003 | B1 |
6662368 | Cloonan et al. | Dec 2003 | B1 |
6671334 | Kuntz et al. | Dec 2003 | B1 |
6687632 | Rittman | Feb 2004 | B1 |
6690655 | Miner et al. | Feb 2004 | B1 |
6700875 | Schroeder et al. | Mar 2004 | B1 |
6700927 | Esliger et al. | Mar 2004 | B1 |
6711134 | Wichelman et al. | Mar 2004 | B1 |
6741947 | Wichelman et al. | May 2004 | B1 |
6748551 | Furudate et al. | Jun 2004 | B2 |
6757253 | Cooper et al. | Jun 2004 | B1 |
6772388 | Cooper et al. | Aug 2004 | B2 |
6772437 | Cooper et al. | Aug 2004 | B1 |
6816463 | Cooper et al. | Nov 2004 | B2 |
6834057 | Rabenko et al. | Dec 2004 | B1 |
6839829 | Daruwalla et al. | Jan 2005 | B1 |
6853932 | Wichelman et al. | Feb 2005 | B1 |
6877166 | Roeck et al. | Apr 2005 | B1 |
6895043 | Naegeli et al. | May 2005 | B1 |
6895594 | Simoes et al. | May 2005 | B1 |
6906526 | Hart et al. | Jun 2005 | B2 |
6928475 | Schenkel et al. | Aug 2005 | B2 |
6944881 | Vogel | Sep 2005 | B1 |
6961314 | Quigley et al. | Nov 2005 | B1 |
6961370 | Chappell | Nov 2005 | B2 |
6967994 | Boer et al. | Nov 2005 | B2 |
6973141 | Isaksen et al. | Dec 2005 | B1 |
6985437 | Vogel | Jan 2006 | B1 |
6999408 | Gomez | Feb 2006 | B1 |
7002899 | Azenkot et al. | Feb 2006 | B2 |
7010002 | Chow et al. | Mar 2006 | B2 |
7017176 | Lee et al. | Mar 2006 | B1 |
7032159 | Lusky et al. | Apr 2006 | B2 |
7039939 | Millet et al. | May 2006 | B1 |
7050419 | Azenkot et al. | May 2006 | B2 |
7054554 | McNamara et al. | May 2006 | B1 |
7058007 | Daruwalla et al. | Jun 2006 | B1 |
7072365 | Ansley | Jul 2006 | B1 |
7079457 | Wakabayashi et al. | Jul 2006 | B2 |
7099412 | Coffey | Aug 2006 | B2 |
7099580 | Bulbul | Aug 2006 | B1 |
7139283 | Quigley et al. | Nov 2006 | B2 |
7142609 | Terreault et al. | Nov 2006 | B2 |
7145887 | Akgun et al. | Dec 2006 | B1 |
7152025 | Lusky et al. | Dec 2006 | B2 |
7158542 | Zeng et al. | Jan 2007 | B1 |
7164694 | Nodoushani et al. | Jan 2007 | B1 |
7177324 | Choudhury et al. | Feb 2007 | B1 |
7197067 | Lusky et al. | Mar 2007 | B2 |
7222255 | Claessens et al. | May 2007 | B1 |
7227863 | Leung et al. | Jun 2007 | B1 |
7242862 | Saunders et al. | Jul 2007 | B2 |
7246368 | Millet et al. | Jul 2007 | B1 |
7263123 | Yousef | Aug 2007 | B2 |
7274735 | Lusky et al. | Sep 2007 | B2 |
7315573 | Lusky et al. | Jan 2008 | B2 |
7315967 | Azenko et al. | Jan 2008 | B2 |
7400677 | Jones | Jul 2008 | B2 |
7421276 | Steer et al. | Sep 2008 | B2 |
7451472 | Williams | Nov 2008 | B2 |
7492703 | Lusky et al. | Feb 2009 | B2 |
7554902 | Kim et al. | Jun 2009 | B2 |
7573884 | Klimker et al. | Aug 2009 | B2 |
7573935 | Min et al. | Aug 2009 | B2 |
7616654 | Moran, III et al. | Nov 2009 | B2 |
7650112 | Utsumi et al. | Jan 2010 | B2 |
7672310 | Cooper et al. | Mar 2010 | B2 |
7684315 | Beser | Mar 2010 | B1 |
7684341 | Howald | Mar 2010 | B2 |
7693090 | Kimpe | Apr 2010 | B1 |
7716712 | Booth et al. | May 2010 | B2 |
7739359 | Millet et al. | Jun 2010 | B1 |
7742697 | Cooper et al. | Jun 2010 | B2 |
7742771 | Thibeault | Jun 2010 | B2 |
7760624 | Goodson et al. | Jul 2010 | B1 |
7778314 | Wajcer et al. | Aug 2010 | B2 |
7787557 | Kim et al. | Aug 2010 | B2 |
7792183 | Massey et al. | Sep 2010 | B2 |
7856049 | Currivan et al. | Dec 2010 | B2 |
7876697 | Thompson et al. | Jan 2011 | B2 |
7953144 | Allen et al. | May 2011 | B2 |
7970010 | Denney et al. | Jun 2011 | B2 |
8000254 | Thompson et al. | Aug 2011 | B2 |
8037541 | Montague et al. | Oct 2011 | B2 |
8040915 | Cummings | Oct 2011 | B2 |
8059546 | Pai et al. | Nov 2011 | B2 |
8081674 | Thompson et al. | Dec 2011 | B2 |
8116360 | Thibeault | Feb 2012 | B2 |
8265559 | Cooper et al. | Sep 2012 | B2 |
8284828 | Cooper et al. | Oct 2012 | B2 |
8345557 | Thibeault et al. | Jan 2013 | B2 |
20010055319 | Quigley et al. | Dec 2001 | A1 |
20020038461 | White et al. | Mar 2002 | A1 |
20020044531 | Cooper et al. | Apr 2002 | A1 |
20020091970 | Furudate et al. | Jul 2002 | A1 |
20020116493 | Schenkel et al. | Aug 2002 | A1 |
20020154620 | Azenkot et al. | Oct 2002 | A1 |
20020168131 | Walter et al. | Nov 2002 | A1 |
20020181395 | Foster et al. | Dec 2002 | A1 |
20030028898 | Howald | Feb 2003 | A1 |
20030043732 | Walton et al. | Mar 2003 | A1 |
20030067883 | Azenkot et al. | Apr 2003 | A1 |
20030067944 | Sala et al. | Apr 2003 | A1 |
20030101463 | Greene et al. | May 2003 | A1 |
20030108052 | Inoue et al. | Jun 2003 | A1 |
20030120819 | Abramson et al. | Jun 2003 | A1 |
20030138250 | Glynn | Jul 2003 | A1 |
20030149991 | Reidhead et al. | Aug 2003 | A1 |
20030158940 | Leigh | Aug 2003 | A1 |
20030179768 | Lusky et al. | Sep 2003 | A1 |
20030179770 | Reznic et al. | Sep 2003 | A1 |
20030179821 | Lusky et al. | Sep 2003 | A1 |
20030181185 | Lusky et al. | Sep 2003 | A1 |
20030182664 | Lusky et al. | Sep 2003 | A1 |
20030185176 | Lusky et al. | Oct 2003 | A1 |
20030188254 | Lusky et al. | Oct 2003 | A1 |
20030200317 | Zeitak et al. | Oct 2003 | A1 |
20030212999 | Cai | Nov 2003 | A1 |
20040015765 | Cooper et al. | Jan 2004 | A1 |
20040042385 | Kim et al. | Mar 2004 | A1 |
20040047284 | Eidson | Mar 2004 | A1 |
20040052356 | McKinzie et al. | Mar 2004 | A1 |
20040062548 | Obeda et al. | Apr 2004 | A1 |
20040073937 | Williams | Apr 2004 | A1 |
20040096216 | Ito | May 2004 | A1 |
20040109661 | Bierman et al. | Jun 2004 | A1 |
20040139473 | Greene | Jul 2004 | A1 |
20040163129 | Chapman et al. | Aug 2004 | A1 |
20040181811 | Rakib | Sep 2004 | A1 |
20040208513 | Peddanarappagari et al. | Oct 2004 | A1 |
20040233234 | Chaudhry et al. | Nov 2004 | A1 |
20040233926 | Cummings | Nov 2004 | A1 |
20040248520 | Miyoshi | Dec 2004 | A1 |
20040261119 | Williams et al. | Dec 2004 | A1 |
20050010958 | Rakib et al. | Jan 2005 | A1 |
20050025145 | Rakib et al. | Feb 2005 | A1 |
20050034159 | Ophir et al. | Feb 2005 | A1 |
20050039103 | Azenko et al. | Feb 2005 | A1 |
20050058082 | Moran et al. | Mar 2005 | A1 |
20050064890 | Johan et al. | Mar 2005 | A1 |
20050097617 | Currivan et al. | May 2005 | A1 |
20050108763 | Baran et al. | May 2005 | A1 |
20050122996 | Azenkot et al. | Jun 2005 | A1 |
20050163088 | Yamano et al. | Jul 2005 | A1 |
20050175080 | Bouillett | Aug 2005 | A1 |
20050183130 | Sadja et al. | Aug 2005 | A1 |
20050198688 | Fong | Sep 2005 | A1 |
20050226161 | Jaworski | Oct 2005 | A1 |
20050281200 | Terreault | Dec 2005 | A1 |
20060013147 | Terpstra et al. | Jan 2006 | A1 |
20060121946 | Walton et al. | Jun 2006 | A1 |
20060250967 | Miller et al. | Nov 2006 | A1 |
20060262722 | Chapman et al. | Nov 2006 | A1 |
20070002752 | Thibeault et al. | Jan 2007 | A1 |
20070030805 | Pantelias et al. | Feb 2007 | A1 |
20070058542 | Thibeault | Mar 2007 | A1 |
20070076592 | Thibeault | Apr 2007 | A1 |
20070076789 | Thibeault | Apr 2007 | A1 |
20070076790 | Thibeault et al. | Apr 2007 | A1 |
20070086328 | Kao et al. | Apr 2007 | A1 |
20070094691 | Gazdzinski | Apr 2007 | A1 |
20070097907 | Cummings | May 2007 | A1 |
20070133672 | Lee et al. | Jun 2007 | A1 |
20070143654 | Joyce et al. | Jun 2007 | A1 |
20070147489 | Sun et al. | Jun 2007 | A1 |
20070177526 | Siripunkaw et al. | Aug 2007 | A1 |
20070184835 | Bitran et al. | Aug 2007 | A1 |
20070189770 | Sucharczuk et al. | Aug 2007 | A1 |
20070206600 | Klimker et al. | Sep 2007 | A1 |
20070206625 | Maeda | Sep 2007 | A1 |
20070211618 | Cooper et al. | Sep 2007 | A1 |
20070223512 | Cooper et al. | Sep 2007 | A1 |
20070223920 | Moore et al. | Sep 2007 | A1 |
20070245177 | Cooper et al. | Oct 2007 | A1 |
20080056713 | Cooper et al. | Mar 2008 | A1 |
20080062888 | Lusky et al. | Mar 2008 | A1 |
20080075157 | Allen et al. | Mar 2008 | A1 |
20080101210 | Thompson et al. | May 2008 | A1 |
20080140823 | Thompson et al. | Jun 2008 | A1 |
20080193137 | Thompson et al. | Aug 2008 | A1 |
20080200129 | Cooper et al. | Aug 2008 | A1 |
20080242339 | Anderson | Oct 2008 | A1 |
20080250508 | Montague | Oct 2008 | A1 |
20080274700 | Li | Nov 2008 | A1 |
20080291840 | Cooper et al. | Nov 2008 | A1 |
20090031384 | Brooks et al. | Jan 2009 | A1 |
20090103557 | Hong et al. | Apr 2009 | A1 |
20090103669 | Kolze et al. | Apr 2009 | A1 |
20090249421 | Liu et al. | Oct 2009 | A1 |
20100083356 | Steckley et al. | Apr 2010 | A1 |
20100095360 | Pavlovski et al. | Apr 2010 | A1 |
20100154016 | Li et al. | Jun 2010 | A1 |
20100154017 | An et al. | Jun 2010 | A1 |
20100157824 | Thompson et al. | Jun 2010 | A1 |
20100158093 | Thompson et al. | Jun 2010 | A1 |
20100223650 | Millet et al. | Sep 2010 | A1 |
20110026577 | Primo et al. | Feb 2011 | A1 |
20110030019 | Ulm et al. | Feb 2011 | A1 |
20110069745 | Thompson et al. | Mar 2011 | A1 |
20110110415 | Cooper et al. | May 2011 | A1 |
20110194418 | Wolcott et al. | Aug 2011 | A1 |
20110194597 | Wolcott et al. | Aug 2011 | A1 |
20110197071 | Wolcott et al. | Aug 2011 | A1 |
20110243214 | Wolcott et al. | Oct 2011 | A1 |
20120054312 | Salinger | Mar 2012 | A1 |
20120084416 | Thibeault et al. | Apr 2012 | A1 |
20120147751 | Ulm | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
69631420 | Dec 2004 | DE |
0905998 | Mar 1999 | EP |
1235402 | Aug 2002 | EP |
1341335 | Sep 2003 | EP |
55132161 | Oct 1980 | JP |
04208707 | Jul 1992 | JP |
6120896 | Apr 1994 | JP |
6177840 | Jun 1994 | JP |
09008738 | Jan 1997 | JP |
9162816 | Jun 1997 | JP |
10247893 | Sep 1998 | JP |
11230857 | Aug 1999 | JP |
2001044956 | Feb 2001 | JP |
2003530761 | Oct 2003 | JP |
2004172783 | Jun 2004 | JP |
2004343678 | Dec 2004 | JP |
0192901 | Jun 2001 | WO |
0233974 | Apr 2002 | WO |
2004062124 | Jul 2004 | WO |
2009146426 | Dec 2009 | WO |
Entry |
---|
PCT Search Report and Written Opinion, RE: Application #PCT/US2012/063485, Feb. 19, 2013. |
Cable Television Laboratories, Inc., “A Simple Algorithm for Fault Localization Using Naming Convention and Micro-reflection Signature,” Invention Disclosure 60193, 2 pages, Jun. 2008. |
Cable Television Laboratories, Inc., “DOCSIS® Best Practices and Guidelines: Proactive Network Maintenance Using Preequalization,” CM-GL-PNMP-V01-100415, Apr. 2010. |
Cable Television Laboratories, Inc., “Pre-Equalization Based Pro-active Network Maintenance Process Model for CMs Transmitting on Multiple Upstream Channels,” Invention Disclosure 60203, 2 pages, May 2009. |
Cable Television Laboratories, Inc., “Pre-Equalization based pro-active network maintenance process model”, Invention Disclosure 60177, 2 pages, Jun. 2008. |
Cable Television Laboratories, Inc., “DOCSIS® Best Practices and Guidelines: Proactive Network Maintenance Using Pre-equalization,” CM-GL-PNMP-V02-110623, Jun. 2011. |
Cable Television Laboratories, Inc., “Data-Over-Cable Service Interface Specifications: DOCSIS 2.0 Radio Frequency Interface Specification,” CM-SP-RFIv2.0-106-040804, Apr. 2004. |
L.A. Campos, et al., “Pre-equalization based Pro-active Network Maintenance Methodology”, Cable Television Laboratories, Inc., presentation, 32 pages, 2008. |
R.L. Howald, et al., “Customized Broadband—Analysis Techniques for Blended Multiplexes,” NCTA Technical Papers, 2002. |
R. Howald, “Access Networks Solutions: Introduction to S-CDMA,” Presentation to Society of Cable Telecommunications Engineers (SCTE) South Florida Chapter, 2009. |
R. Howald, “Upstream Snapshots & Indicators (2009),” Regional Samples, Presentation to Society of Cable Telecommunications Engineers (SCTE) South Florida Chapter, Jan. 2010. |
R.L. Howald et al., “Characterizing and Aligning the HFC Return Path for Successful DOCSIS 3.0 Rollouts”, SCTE Cable-Tec Expo, Oct. 2009. |
R. Howald, et al., “DOCSIS 3.0 Upstream: Readiness & Qualification,” SCTE Cable-Tec Expo, Oct. 2009. |
R. Howald, et al., “The Grown-Up Potential of a Teenage PHY”, NCTA Convention and Exposition, May 2012. |
R. Howald, “DOCSIS 3.0 Upstream: Technology, RF Variables & Case Studies,” Access Networks Solutions, 2009, presentation to Society of Cable Telecommunications Engineers (SCTE) South Florida Chapter, 23 pages, Jan. 2010. |
R. Hranac, “Linear Distortions, Part 1,” Communication Technology, Jul. 2005. |
X. Liu, et al., “Variable Bit Rate Video Services in DOCSIS 3.0 Networks,” NCTA Technical Papers, 2008. |
Motorola, Inc., “White Paper: Expanding Bandwidth Using Advanced Spectrum Management,” Sep. 25, 2003. |
H. Newton, Newton's Telecom Dictionary, Flatiron Publishing, 9th ed., pp. 216 and 1023 (definitions of “carrier to noise ratio” and “signal to noise ratio”), Sep. 1995. |
M. Patrick, et al., “Delivering Economical IP Video over DOCSIS by Bypassing the M-CMTS with DIBA,” SCTE 2007 Emerging Technologies, NCTA Technical Papers, 2007. |
A. Popper, et al., “An Advanced Receiver with Interference Cancellation for Broadband Cable Networks,” International Zurich Seminar on Broadband Communications Access 2002, pp. 23-1 to 23-6, IEEE, 2002. |
A. Popper, et al., “Ingress Noise Cancellation for the Upstream Channel in Broadband Cable Access Systems,” International Conference on Communications 2002, vol. 3, pp. 1808-1812, IEEE, 2002. |
S.U.H. Qureshi, “Adaptive Equalization,” Proceedings of the IEEE, vol. 73, No. 9, pp. 1349-1387, Sep. 1985. |
S. Ramakrishnan, “Scaling the DOCSIS Network for IPTV,” SCTE Conference on Emerging Technologies, NCTA Cable Show, Apr. 2009. |
Y.R. Shelke, “Knowledge Based Topology Discovery and Geo-localization”, Thesis, Master of Science, Ohio State University, 2010. |
R. Thompson, et al., “256-QAM for Upstream HFC,” NCTA 2010 Spring Technical Forum Proceedings, pp. 142-152, May 2010. |
R. Thompson, et al., “256-QAM for Upstream HFC Part Two”, SCTE Cable-Tec Expo 2011, Technical Paper, Nov. 2011. |
R. Thompson, et al., “Multiple Access Made Easy,” SCTE Cable-Tec Expo 2011, Technical Paper, Nov. 2011. |
R. Thompson, et al., “Optimizing Upstream Throughput Using Equalization Coefficient Analysis”, National Cable & Telecommunications Association (NCTA) Technical Papers, Apr. 2009. |
R. Thompson, et al., “Practical Considerations for Migrating the Network Toward All-Digital”, Society of Cable Telecommunications Engineers (SCTE) Cable-Tec Expo, Oct. 2009. |
R. Thompson, et al., “64-QAM, 6.4MHz Upstream Deployment Challenges,” SCTE Canadian Summit, Toronto, Canada, Technical Paper, Mar. 2011. |
L. Wolcott, “Modem Signal Usage and Fault Isolation,” U.S. Appl. No. 61/301,835, filed Feb. 5, 2010. |
F. Zhao, et al., “Techniques for minimizing error propagation in decision feedback detectors for recording channels,” IEEE Transactions on Magnetics, vol. 37, No. 1, pp. 592-602, Jan. 2001. |
B. Volpe and W. Miller, “Cable-Tec Expo 2011: Advanced Troubleshooting in a DOCSIS © 3.0 Plant”, Nov. 14-17, 2011. |
Cable Television Laboratories, Inc., “Data-Over-Cable Service Interface Specifications DOCSIS 3.0: MAC and Upper Layer Protocols Interface”, CM-SP-MULPIv3.0-116-110623, Jun. 2011, section 8, pp. 242-266. |
Number | Date | Country | |
---|---|---|---|
20130128723 A1 | May 2013 | US |