The present disclosure relates to strainers or filters for removing foreign material or debris in pressurized fluid flow systems. Heretofore, such systems have employed a strainer or filter basket in a fluid pressure vessel having an inlet disposed above the outlet and debris trapped by the strainer or filter remains in the basket. In order to remove the collected debris, it has heretofore been necessary to stop the fluid process and shut off flow to the inlet and outlet and depressurize the vessel in order to remove the pressure vessel cover or lid and remove the basket for cleaning or replacement. This has resulted in unwanted downtime for the fluid flow process. Therefore, it has been desired to provide a way or means of removing the debris, and in particular, relatively large particles trapped by the filter or strainer and to do so without depressurizing and opening the pressure vessel.
The present disclosure relates in particular to problems encountered in mining industries where it is desired to remove debris, such as rocks, from a liquid slurry on a continuing process basis in which it is desired to trap and remove the debris without significantly interrupting the process. Strainers employed for this type of process encounter substantial quantities of debris which requires frequent emptying of the trapped debris strainer.
The present disclosure provides for relatively coarse straining of debris from pressurized fluid flow systems and utilizes a pressure vessel with an inlet, an outlet disposed at a common lower level than the strainer. The disclosed assembly operates by directing flow from the inlet upwardly through a tubular diverter to the interior of a generally cylindrical strainer. Flow exiting the strainer flows about the exterior of the strainer and downwardly around the tubular diverter and into a chamber in the pressure vessel isolated from the inlet and outwardly through the pressure vessel outlet. The lower end of the tubular diverter in the pressure vessel is formed at an angle and surrounded by a ring sealed against the inner periphery of the pressure vessel; and, the pressure vessel inlet is adjacent the elevated side of the angled diverter and the pressure vessel outlet is adjacent the lower level side of the angled end of the diverter. This arrangement enables the inlet and outlet to be positioned at a common elevation rendering the assembly convenient for in-line installation in the fluid process system. Debris trapped in the strainer settles by gravity flow downwardly through the interior of the tubular diverter through the angled open lower end thereof and into the bottom of the pressure vessel. Removal of the heavy debris is accomplished by opening a drain port provided in the lowest level of the pressure vessel wall. The drain port may be connected to a conduit and a remotely operated drain valve. The cylindrical strainer may be formed, in one version, as having a pleated perforated metal wall; and, in another version, the strainer is formed of a plurality of annular bands having a triangular transverse section and spaced a desired distance through the strainer for controlling the size of the debris permitted to pass.
In the disclosed versions, the strainer is sized and configured for trapping and removing coarse debris such as for applications in mining industry. However, the arrangement of the strainer or filter above the inlet and outlet and for directing upward flow for straining and permitting debris trapped in the strainer to settle by gravity downwardly into the pressure vessel for subsequent removal without depressurization and removal of the strainer or filter may also be employed for operations requiring finer filtering than employed for straining.
Removal of the debris or filtered particles, as the case may be, may be accomplished either by closing the inlet and permitting the removal of debris by backflow from the outlet; or, debris removal may be accomplished by closing the outlet and opening the drain port to permit pressure flushing of the debris from inlet pressure.
Referring to
The pressure vessel has a tubular diverter 30 securely attached at its lower end, in fluid sealing arrangement, to the inner periphery of a ring 28, as for example, by weldment. The flow diverter 30 has the lower end thereof formed at an angle with respect to the central axis of the pressure vessel; and, in the present practice, it has been satisfactory to form the angle of the lower end of the diverter 30 at an inclination of about 50 degrees to the central axis of the pressure vessel. However, the angular inclination of the lower end of the diverter 30 may be formed at other angles of inclination if found expedient. The inclined lower end of the tubular diverter is denoted by reference numeral 32 in
The cover 16 has a plurality of mounting tabs 36 attached inside the lower open end thereof, which tabs 36 have has attached thereto a mounting or strainer support ring 38 which has secured thereto mounting tabs 40 of a strainer indicated generally at 42 by suitable expedient such as pins 44. The support ring 38 has a plurality of radially outwardly extending lugs 39 (see
At assembly with cover 16 secured by swing bolts 14, strainer tabs 40 are pinned to support ring 38 and tabs 39 bolted to tabs 36. The cover clamping band 17 is sealed on pressure vessel attachment ring 15 by a suitable seal such as an O-ring 41. The support ring is sealed over the upper edge of the tubular diverter 30 by an annular seal ring 43, which, in the present practice, has an inverted U-shape in cross section; however, other configurations of seal ring 43 may be used.
Referring to
In operation, fluid from inlet 20 flows upwardly through the interior of diverter 32 and flows upwardly through the support ring 38, into the interior of strainer 42. Flow of strained fluid exiting the strainer 42 flows downwardly around support ring 38 and into the annular space 34 around diverter 30 and outwardly through outlet 24. Debris trapped in strainer 42 settles by gravity flow through diverter 30 to the bottom of pressure vessel 12.
A drain port 58 is provided in the bottom of the pressure vessel wall 30 and includes a mounting flange 60 which is adapted for connection to a conduit 62 shown n dashed line in
When it is desired to drain the debris, which has settled in the bottom of the pressure vessel 30, this may be accomplished in either of two ways. The first way of draining the debris from pressure vessel 30 is accomplished by shutting off flow to the inlet 20 by a valve (not shown) and opening the drain port 58 which permits back pressure in the outlet 24 to flush the debris through drain port 58. The second way is accomplished by leaving the inlet port 20 open and closing the outlet port 24 by a valve (not shown) and permitting inlet flow pressure to flush debris to the drain port. It will be understood that the first way utilizes strained fluid at discharge line pressure; whereas, the second way utilizes unstrained fluid at inlet line pressure for flushing the debris.
Referring to
In the present practice, it has been found satisfactory to form the pressure vessel of carbon steel; however, the pressure vessel may be formed of other materials as, for example, stainless steel or a composite material.
Referring to
The present disclosure thus provides a strainer for pressurized fluid flow for removing debris therefrom and employs a pressure vessel having an inlet and outlet at the common elevation with a strainer disposed vertically above the inlet and the outlet. The assembly of the present disclosure employs a tubular diverter having the lower end thereof extending into the pressure vessel and the interior of the tubular inverter is isolated from the outlet by an elliptical ring surrounding the diverter. Flow from the inlet is directed upwardly into the interior of a cylindrical strainer. Strained fluid emanating from the strainer flows downwardly around a support ring into an annular region surrounding the diverter which communicates with the outlet. Debris trapped within the strainer settles by gravity downwardly to the interior of the diverter and into the lower region of the pressure vessel. When it is desired to remove the trapped debris, a drain port is opened in the bottom of the pressure vessel to permit the debris to flow out of the pressure vessel. The debris may be flushed either by closing the inlet and permitting backflow from the outlet, or alternatively, by closing the outlet and permitting pressurized fluid from the inlet to flush debris through the drain port. The strainer assembly of the present disclosure, thus, enables draining of the trapped debris in the strainer without the need for shutting down the process flow in the system, depressurizing the pressure vessel and removing the cover and strainer for cleaning or replacement. The strainer assembly of the present disclosure, thus, enables removal of trapped debris from the strainer without significant interruption of the fluid flow in the process in which the strainer is in service.
This application claims priority to U.S. Provisional Patent Application No. 61/975,048, filed Apr. 4, 2014, by Vincent Anthony Amarosa, entitled “UPWARD FLOWING COURSE IN-LINE STRAINER” and is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US15/23966 | 4/2/2015 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61975048 | Apr 2014 | US |