Uric Acid and Diabetic Retinopathy

Information

  • Research Project
  • 10238862
  • ApplicationId
    10238862
  • Core Project Number
    R01EY028714
  • Full Project Number
    5R01EY028714-04
  • Serial Number
    028714
  • FOA Number
    PA-16-160
  • Sub Project Id
  • Project Start Date
    9/30/2018 - 5 years ago
  • Project End Date
    8/31/2022 - a year ago
  • Program Officer Name
    SHEN, GRACE L
  • Budget Start Date
    9/1/2021 - 2 years ago
  • Budget End Date
    8/31/2022 - a year ago
  • Fiscal Year
    2021
  • Support Year
    04
  • Suffix
  • Award Notice Date
    9/2/2021 - 2 years ago
Organizations

Uric Acid and Diabetic Retinopathy

Diabetic retinopathy (DR) is a potentially blinding complication of diabetes mellitus and the leading cause of blindness in adults. DR incidence is projected to rise with epidemic proportion causing a serious global health problem. The identification of new therapies as well as new diagnostic tools to allow early intervention are urgently needed. We have designed studies to demonstrate the novel hypothesis that enhanced production and accumulation of monosodium urate (MSU) in retinal cells contributes to DR induction and progression. Rationale for the proposed studies is provided by emerging evidence suggesting that accumulation of MSU contributes to the development of diabetes and its complications. Our preliminary data and evidence provided by the literature confirm this role for MSU in DR. MSU is the crystal form of uric acid (UA), a by-product of the purine catabolism. Increased intracellular production of UA/MSU alters cell homeostasis leading to oxidative stress, inflammation and, potentially, cell death. Our preliminary studies show that UA/MSU formation and accumulation in the diabetic human and rodent retina is significantly increased. Moreover, treatment of diabetic rats with hypouricemic drugs halts retinal inflammation and retinal blood barrier dysfunction. Much of UA/MS pathogenic effects have been attributed to its alarmin-like function in activating the nod-like pyrin 3 (NLRP3)- inflammasome to promote sterile inflammation. Our preliminary data show that UA/MSU exerts a synergistic activity with glucidic stress in promoting NLRP3-inflammasome activation and consequent production of interleukin-1beta (IL-1?). In addition, treatment of STZ-rats with hypouricemic drugs down-regulate inflammasome activation and IL-1? production further supporting the hypothesis of UA/MSU pathogenic role in DR. As part of purine metabolic processing, UA/MSU production could be impacted by dysfunction of adenosinergic and purinergic systems. This implies that MSU monitoring and/or modulation could also account/reflect changes in these systems. Based on this evidence we have designed studies to shed light on the molecular basis regulating MSU formation and mode of action in the diabetic retina and in retinal epithelial and endothelial cells, to: Aim 1) Determine the mechanisms of enhanced UA/MSU production and accumulation in the diabetic retina. Aim 2) Determine the mechanism of MSU pro-inflammatory effects in the diabetic retina Aim 3) Determine the long-term effects of hypouricemic drugs on diabetes-induced retinal neurovascular injury.

IC Name
NATIONAL EYE INSTITUTE
  • Activity
    R01
  • Administering IC
    EY
  • Application Type
    5
  • Direct Cost Amount
    242500
  • Indirect Cost Amount
    130950
  • Total Cost
    373450
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    867
  • Ed Inst. Type
    SCHOOLS OF MEDICINE
  • Funding ICs
    NEI:373450\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    DPVS
  • Study Section Name
    Diseases and Pathophysiology of the Visual System Study Section
  • Organization Name
    AUGUSTA UNIVERSITY
  • Organization Department
    OPHTHALMOLOGY
  • Organization DUNS
    809593387; 966668691
  • Organization City
    AUGUSTA
  • Organization State
    GA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    309120004
  • Organization District
    UNITED STATES