US-UK Collab: Modelling reassortment at the cellular, clinical, and phylogenetic level in emerging Bunyaviruses

Information

  • Research Project
  • 10379508
  • ApplicationId
    10379508
  • Core Project Number
    R01AI167048
  • Full Project Number
    1R01AI167048-01
  • Serial Number
    167048
  • FOA Number
    PAR-21-003
  • Sub Project Id
  • Project Start Date
    7/1/2021 - 2 years ago
  • Project End Date
    6/30/2026 - 2 years from now
  • Program Officer Name
    ALARCON, RODOLFO M
  • Budget Start Date
    7/1/2021 - 2 years ago
  • Budget End Date
    6/30/2022 - a year ago
  • Fiscal Year
    2021
  • Support Year
    01
  • Suffix
  • Award Notice Date
    7/1/2021 - 2 years ago

US-UK Collab: Modelling reassortment at the cellular, clinical, and phylogenetic level in emerging Bunyaviruses

Genome segmentation has important implications for viral gene expression control and RNA assembly into nascent virions. It also creates the potential for reassortment: the exchange of intact gene segments between viruses that coinfect the same cell. Reassortment is different from recombination since it allows many distinct genotypes to emerge from a single coinfected cell. Not only does segmentation enhance genetic diversification but it plays a unique role in the evolutionary history of segmented viruses due to the rare occasions when a reassortant is successful at a population scale. A striking example from the Bunyaviridae family of the emergence of a novel virus through reassortment is that of Ngari virus. For influenza A (IAV), the best characterised segmented virus, reassortment has facilitated the formation of pandemic strains in 1957, 1968 and 2009. Out of seven epidemic-prone diseases prioritized by the WHO 2018 R&D Blueprint as public health emergencies with an urgent need for accelerated research, three are Bunyaviruses: Lassa, Rift Valley and Crimean-Congo hemorrhagic fevers. Thus, the overarching hypothesis of this project is that reassortment of segmented viruses plays a major role not only to drive their diversification and evolution, but to dramatically alter their ecology and transmission dynamics. Specifically, we aim to 1) develop mathematical models of the intracellular life cycle for a family of segmented viruses to quantify for the first time their viral replication dynamics and reassortment frequencies, and 2) develop standardised sequencing protocols and novel phylogenetic methods to quantify the evolutionary and epidemiological implications of reassortment for Crimean-Congo hemorrhagic fever virus (CCHFV). A biobank with clinical and field samples from CCHFV endemic regions in Turkey and Tajikistan will be set up in this project. Clinical and field data will be leveraged to ensure our methods and results have the potential to inform public health strategies, predict outbreak risk and contribute to the One Health approach for the prevention and control of CCHF disease.

IC Name
NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES
  • Activity
    R01
  • Administering IC
    AI
  • Application Type
    1
  • Direct Cost Amount
    290222
  • Indirect Cost Amount
    165496
  • Total Cost
    455718
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    855
  • Ed Inst. Type
  • Funding ICs
    NIAID:455718\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    TRIAD NATIONAL SECURITY, LLC
  • Organization Department
  • Organization DUNS
    080961356
  • Organization City
    Los Alamos
  • Organization State
    NM
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    875450001
  • Organization District
    UNITED STATES